Oracle® Text
Reference

11gRelease 2 (11.2)
E24436-05

October 2015

ORACLE

Oracle Text Reference, 11g Release 2 (11.2)

E24436-05

Copyright © 1998, 2015, Oracle and/or its affiliates. All rights reserved.
Primary Author: Reema Khosla

Contributors: Edwin Balthes, Rajesh Bhatiya, Mohammad Faisal, Roger Ford, Rahul Kadwe, George Krupka,
Paul Lane, Wesley Lin, Yasuhiro Matsuda, Colin McGregor, Padmaja Potineni, Yiming Qi, Sanoop
Sethumadhavan, Asha Tarachandani, Gaurav Yadav

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PUrOIACE ...ttt XVii
AN S Lo 1= VLT T T RRRR TR XVii
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiicc s XVii
Related DOCUITIEIESooviiieiiecteeceeeeeteeeee ettt ettt et e et e et e eaeeesaeeseeeaseesesesesestesssssenssessesneeeneeas XVii
CONMVEIILIONS ..oiiittieeeieeitee e ettt eee e e ee ettt e e e eesaateeeeeeaataseeesessaaseesseessaeesssessssasesessssteesessnssraneessnnnrarees XViii

What's NeW iN Oracle TOXE? ... et Xix
Oracle Database 11g Release 2 (11.2) New Features in Oracle Text.......cccccovciiniicicniicnicnnes Xix
Oracle Database 11g Release 1 (11.1) New Features in Oracle TeXt........c.ccccevivvnnnnnnnnncninenenee. XX

1 Oracle Text SQL Statements and Operators

ALTER INDEX ...ooiiii s 1-2
ALTER TABLE: Supported Partitioning Statementscccooeiiiiiiiiii 1-16
CATSEARCH ...ttt 1-21
CONTAINS ..o 1-28
CREATE INDEX ...t 1-36
DROP INDEX ...ttt 1-58
MATCHES ..o s 1-59
MATCH_SCORE......ootitiiitt e 1-61
SCORE ...t 1-62

2 Oracle Text Indexing Elements

2.1 OVEIVIEW ..ottt 2-1
2.1.1 Creating Preferences. ... 2-2
2.2 Datastore TYPESccoveuiiiiiiiiiiitcc s 2-2
2.21 DIRECT_DATASTOREcooviiiiiiiii ettt 2-3
2.2.1.1 DIRECT_DATASTORE CLOB Exampleccoooiiiiiiiiiiicieceece 2-3
222 MULTI_COLUMN_DATASTOREccceoeiiiirieiiiceecee e 2-3
2.2.21 Indexing and DML ... 2-4
2222 MULTI_COLUMN_DATASTORE ReStriction..........c.cccoceueiiirriiiiiicieieccieeae, 2-4
2223 MULTI_COLUMN_DATASTORE Examplecccccoceuviiiininiiininiieceieeeciciees 2-4
2224 MULTI_COLUMN_DATASTORE Filter Example.........c.cccccooiiiiinniiiicicne, 2-4
2225 Tagging BENAVIOT........c.cviiuiiiiici s 2-5

2.2.2.6
2.2.3
2.2.3.1
2.2.3.2
224
2241
2242
2243
2.2.5
2.2.5.1
2.2.5.2
2253
2254
2.2.6
2.2.6.1
2.2.6.2
2.2.6.3
2264
227
2271
2.3
2.3.1
2.3.1.1
23.1.2
2.3.2
2.3.2.1
23.22
2.3.2.3
2.3.3
2.3.3.1
2.34
2.3.4.1
2342
2.3.4.3
2.3.5
2.3.5.1
2.3.5.2
2.3.5.3
2354
2.3.6
2.3.6.1
2.3.6.2
2.3.6.3
2.3.6.4
2.4
2.41
24141

Indexing Columns as SECHONScccueveiiiieieiiiccec s 2-5
DETAIL_DATASTOREcciiiiiiiiiiiiiiiciie s 2-6
Synchronizing Master/Detail INdeXeSccccoeueuriririiniirnrrirrcceree e, 2-7
Example Master/Detail Tables...........ccccccovniiiinniniiiiiiiiccc, 2-7
FILE_DATASTORE ..ottt 2-8
PATH Attribute Limitationscccovveviiniiiiiiiiiccce 2-9
FILE_DATASTORE and SeCUTity........cccovuiiiiiiiiniiieiniiiiiiesinccnn, 2-9
FILE_DATASTORE EXampIeccccoouiuiiriiiiiiiiiiiieniiciscceee s 2-10
URL_DATASTORE ..ot 2-10
URL SYNEAX ettt 2-10
URL_DATASTORE Attributesccccceueiviiiiciiiiiiciciciiicicscecce e 2-11
URL_DATASTORE and Securitycccooiiviiiniiiinininiiiiiccccccencs 2-12
URL_DATASTORE EXample.........cccoouiiviiiimiiniiiiniiiinnecsscsnnns 2-12
USER_DATASTOREcociiiiiiiiiiiiiiiie s 2-12
CONSLAINTS. ..ot s 2-13
Editing Procedure after INdeXing.........cccoovieieiiiiciiiciii e, 2-13
USER_DATASTORE with CLOB Example.........cccocoeuviniiiiniiiiiciinicerenenn, 2-13
USER_DATASTORE with BLOB_LOC Example........ccccccccoeeeeeccicncicecnennn 2-14
NESTED_DATASTORE ..ot 2-14
NESTED_DATASTORE EXamplecccccooieuiiniiiiiiiiieiininesecceseeeens 2-15
FIIET TYPES -ttt 2-16
CHARSET _FILTER ..ot ssnns 2-17
UTEF-16 Big- and Little-Endian Detection............ccccoooiiiiiiiiiciiicc, 2-18
Indexing Mixed-Character Set COIUMNS.........c.cccoeueueiimiieririeiiercecceeeeeeeees 2-18
AUTO_FILTER ..ottt ssans 2-19
Indexing Formatted Documents...........c..coovieieiiiiiicieicieec e, 2-20
Explicitly Bypassing Plain Text or HTML in Mixed Format Columns.............. 2-20
Character Set Conversion With AUTO_FILTER......ccceovvviiiiieiieeeeeeeeeeeeeen 2-21
NULL_FILTER ..ot 2-21
Indexing HTML DOCUMENLSc.cucueuiuimimiiiiiiiiiicicieicieieieieieieie e 2-21
MAIL_FILTERcoiiiiiiiiniiii s ssans 2-21
Filter BENaviOr....c.cooviuiiiiiiicccc ettt 2-22
About the Mail Filter Configuration Filecccocoooiiiiiiiiiiiiicceene 2-23
Mail_Filter EXampleccocociiiiiiiiiiiiiiiiiiicicc e 2-24
USER_FILTER ..ottt 2-24
Using USER_FILTER with Charset and Format Columns.........c.cccccoceucueueneneene. 2-25
Explicitly Bypassing Plain Text or HTML in Mixed Format Columns.............. 2-25
Character Set Conversion with USER_FILTERccooviiiiiiiiiieieeeeeeeeeeeeee e 2-26
User Filter EXample ..o 2-26
PROCEDURE_FILTER.......ccecviiiiiiiiininiiiins s sssssssans 2-27
Parameter Orderccccciriiiinnieiciiecc ettt 2-29
Procedure Filter Execute Requirements............ccccccccucucueueiniciceineecccnccneneeennns 2-29
Error Handling........oovviiioii 2-29
Procedure Filter Preference Exampleccccccoeviiiiivvnninnnnnininincne 2-29
LeXer TYPES vttt 2-30
BASIC_LEXER ...t ssans 2-30
Stemming User-Dictionaries ..o 2-35

2412
242
24.21
2422
2423
243
2.4.3.1
2432
244
2.4.41
2442
245
2.4.51
2452
2.4.6
2.4.6.1
24.6.2
2.46.3
24.6.4
247
24.71
2472
24.7.3
24.7.4
2.4.7.5
24.7.6
248
2.4.8.1
2482
2483
2484
2485
2.4.8.6
2.4.8.7
2488
2.4.8.9
2.4.9
2.4.91
2492
2.5
2.5.1
252
2.5.2.1
2522
2523
2.6
2.6.1

BASIC_LEXER EXampleccccoviuiiiniiiiiiiiiciiiccc e 2-37
MULTI_LEXER ..ottt 2-37
Multi-language StOPLISES........cccueuiueuimiiiiiiiiccecccceee s 2-38
MULTI_LEXER EXaMPIe......ccccoimimiiiiiiiiiniiiiiiicsc s 2-38
Querying Multi-Language Tables..........c.ccocoooriiiiiiiic e, 2-38
CHINESE_VGRAM_LEXERcccceviiiiiniiniiiiiiinn s 2-39
CHINESE_VGRAM_LEXER Attribute........cccooovvniiiiiiiiiinccc, 2-39
Character Sets.........cooviiiiiiiiiii s 2-39
CHINESE_LEXER......c.ciiiiiiniiiiiiicsa s s 2-39
CHINESE_LEXER Attributeccocovvimiiiiiiiiiniiciiccs 2-40
Customizing the Chinese LeXiCon........cccooioirieiiiiicieiiccc e, 2-40
JAPANESE_VGRAM_LEXER.......ccccovviiiiiiiiniiiiiniec s 2-40
JAPANESE_VGRAM_LEXER AHributes........cccooevvivivimiiiiiiiiiiniiiiiinnns 2-40
JAPANESE_VGRAM_LEXER Character Setsccccccoeerrieiniiieiiieinecieieinee, 2-40
JAPANESE_LEXERoviiiiiiiiiiiiiie s 2-40
Customizing the Japanese LeXiCOon ..o, 2-41
JAPANESE_LEXER AtIibUtescoovuiiciiiciiciccccc e 2-41
JAPANESE LEXER Character Sets.......ccocuverierieieieieieininesiestesessessessesesessssennns 2-41
Japanese Lexer Example ..., 2-41
KOREAN_MORPH_LEXERccccceuiiiiiiiniiiiniieiieisis s 2-42
Supplied DictioNaries.........ccccceueuiuiuiueiiiiieiiieiciceeeeee e 2-42
Supported Character Sets...........ccoovviiiiiiiiiiiii s 2-42
Unicode SUPPOTt ...t 2-42
KOREAN_MORPH_LEXER Attributesccccccoviiiiniiiiiiiccccccccn, 2-43
LimitationsS.....oveveuiiieieicce e 2-43
KOREAN_MORPH_LEXER Example: Setting Composite Attribute................ 2-44
USER_LEXER ..ottt 2-44
LimitationsS.....oveviuiiieieicccee e 2-45
USER_LEXER AtribULescocviiiiiiiicciiiccc e 2-45
INDEX_PROCEDUREccccoviiiiiiiiniiii e 2-45
INPUT_TYPE ..o 2-46
QUERY_PROCEDUREccosiiiieiiiiieiriice e 2-48
Encoding Tokens as XML.........cccocooeiiiiiiiiniiiiiiiiiccenees 2-49
XML Schema for No-Location, User-defined Indexing Procedure.................... 2-50
XML Schema for User-defined Indexing Procedure with Location................... 2-52
XML Schema for User-defined Lexer Query Procedure.........ccccccccevuvurvucunnnnnne. 2-54
WORLD_LEXER ...t ssssnns 2-56
WORLD_LEXER AtIibUte.cocviiiiiiiiceicccc e 2-56
WORLD_LEXER EXaQmPIe.......cccociuimimimimiiiiiiiieicieiieicieeieeieeeeseeeeeneneeeeeeeeeeseeeeees 2-57
WOTALISE TYP@ ..t 2-57
BASIC_WORDLIST ..ottt 2-57
BASIC_WORDLIST EXample.........ccccvviiiiiiiiiiiiiiiiiiiicncc s 2-62
Enabling Fuzzy Matching and Stemming.............ccoooeeioiiiiniiniice, 2-62
Enabling Sub-string and Prefix Indexing...........cccccccevvvvinnnininnnnininccnns 2-63
Setting Wildcard Expansion Limit.........cccccocoeiiiiiiiiiiiiiicicceecccees 2-63
SOTAZE TYPES «.ecviiieit s 2-64
BASIC_STORAGEcooviiiiiiicrttce et 2-64

vi

2.6.1.1 Storage Default Behavior..........cccooiiiiiiiiiiiiiiicces 2-65

2.6.1.2 Storage EXamples..........o.ovcioiiiiiei 2-66
2.7 Section GroUP TYPEScovvviiiiiiiiiiiciii e 2-66
271 Section Group Examples...........ccooiiiiiiiiiiiiiiiiiii s 2-67
27141 Creating Section Groups in HTML Documents..........ccccoooeeiiniiiiiinccienenen, 2-67
2712 Creating Sections Groups in XML Documentscccocouviiviiiniicinniininns 2-68
2.71.3 Automatic Sectioning in XML Documentsc.ccouoviieieiinceiniiceece, 2-68
2.8 ClasSifier TYPESc.veeiieiiicicie ettt 2-68
2.8.1 RULE_CLASSIFIER ...ttt 2-68
2.8.2 SVM_CLASSIFIER........ceiiiiiiiiiiiiitiineieessie et 2-69
2.9 CIUSEET TYPOS ..ttt 2-70
2.9.1 KMEAN_CLUSTERINGcooiiiiiiieiiices s 2-71
210 STOPLSES covviiicictctce s 2-71
2.10.1 Multi-Language StOPLists..........cooruiieiiiciiiiicc 2-72
2.10.2 Creating STOPLISESc.cu v 2-72
2.10.3 Modifying the Default StOPListcccoviuiiiiiiiieiee e, 2-72
2.10.3.1 Dynamic Addition of StOpWOrds.........covoiirieiiiiii 2-72
2.11 System-Defined Preferences............cccocciiiiiiiiiiiiiiicciccceeceiceeeeee s 2-73
2.11.1 Data STOTAZEcveveviieiieieiiicic e 2-73
2.11.1.1 CTXSYS.DEFAULT_DATASTORE........ccccoviiiiiiiiiiiiiccs 2-73
211.1.2 CTXSYS.FILE_DATASTOREcccceiiiiiriiiiiiie e, 2-73
211.1.3 CTXSYS.URL_DATASTOREcccceiiriiiiiiniiiiinicicciieeeeee s 2-73
2.11.2 FAIEET o 2-73
2.11.2.1 CTXSYS.INULL_FILTER ...cooviviiiiiiiiiiiiic s 2-73
211.2.2 CTXSYS. AUTO_FILTER ..ottt s 2-74
2.11.3 LEXET .ottt 2-74
2.11.3.1 CTXSYS.DEFAULT_LEXER.......ccoiiiiiiiiiiiiiiniicecn e 2-74
2.11.3.2 CTXSYS.BASIC_LEXER ..ottt s 2-74
2114 SeCtiON GIOUP ...cviviieiieicieiicicct s 2-75
2.11.4.1 CTXSYS.NULL_SECTION_GROUP........ccecetrmirriiiiiriiniieecsnne, 2-75
2.11.4.2 CTXSYS.HTML_SECTION_GROUPcccceviiiiiiiniiiiiiiiiiiccccccees 2-75
2.11.4.3 CTXSYS. AUTO_SECTION_GROUPcccceviiiiiiiiiiiiiiiciciciiieireeceeeeees 2-75
2.11.4.4 CTXSYS.PATH_SECTION_GROUP.cocvtrmiiiiiriiiisiice e, 2-75
2115 STOPLISE ..ttt 2-75
2.11.5.1 CTXSYS.DEFAULT_STOPLISTcocooiiiiiiiiiiiiiciiiiciiirviccse s 2-75
2.11.5.2 CTXSYS.EMPTY_STOPLISTooviiiiiiiiienicrs e 2-75
2.11.6 SEOTAZR .evviecete et e 2-75
2.11.6.1 CTXSYS.DEFAULT_STORAGEcccccciiiiiiiiiiiiicicciccs 2-75
2117 WOTALISE ..ot s 2-75
2.11.7.1 CTXSYS.DEFAULT_WORDLISTc.coiiiiiiiiiiiciciicieeee s 2-75
2.12 System Parameters..........ccccooiiiiiiiiiiiii s 2-75
2.12.1 General System Parameters..........cccccceucuiicieiiicieieieeeeieeceeeeeeeee e 2-76
2.12.2 Default Index Parameterscocovviiiiiiiininiiiiii s 2-76
2.12.21 CONTEXT Index Parameters..........cccocoeueuieiririereenininiereeiseieeesesieneseeseeseneseseseenes 2-76
21222 CTXCAT Index Parameters..........c.ccoveeviveiiimiiniiiieiereiesceeescse e, 2-77
2.12.2.3 CTXRULE Index Parameterscccoeeeveveieiniiiiiciniieiiieeeeeeeeeseeseenens 2-78
2.12.2.4 Viewing Default Values...........ccccociiiiiiiiiiiiiiiiccceeeeees 2-79

2.12.2.5 Changing Default Valuescccoooiiiiiiii e, 2-79

Oracle Text CONTAINS Query Operators

3.1

3.1.1
3.1.2
3.1.3
3.14
3.1.5

Operator Precedence ... s 3-2
GIoup 1 OPerators....ccucuiucieicieicicieiiee s 3-2
Group 2 Operators and Characters.........c.cocccccucueeuiieeeieeeeeeeeeeeneeee e 3-2
Procedural Operators ... 3-3
Precedence EXamples ..o 3-3
Aering Precedencecoccucuiiiiciiiiiiiiicceccec e 3-3

ABOUT ..ttt ettt sttt b ettt b bttt b bt b ket e et bt es 3-4

ACCUMUIALE () ceverrereenienienieietete ettt sttt ettt ettt e e st b s b e sbe st e s besae st estesteseebeebesbesbesaens 3-7

AND (&) cvveveniiriereieeretee ettt ettt sttt es 3-9

Broader Term (BT, BTG, BTP, BTT)....c.coiiiieieieeiee ettt 3-10

DEFINEMERGEcooiiiiiriniieitininieieictntnetcict sttt bttt eb st b et se bbb e e s sene 3-12

DEFINESCOREoouoieiiirinieieiiininieieietneeeteectreee ettt et sese st e sesesesessesesesesessenene 3-13

EQUIVALENEE (F) vverveuerieirieirietrieertee ettt ettt ettt se e st st s st s 3-17

FUZZY o 3-18

HASPATH. ..ottt ettt ettt ettt et 3-20

IINPATH ..ottt bttt bbbkttt b ettt b bbb e 3-22

IMDATA .ottt ettt sttt ettt skttt be bt ne bbbttt 3-28

IMIINTUS (=) 1ttt ettt ettt sttt s b et s s bt sesaenne 3-30

IMIINIOT ettt bbbttt bbbkt bbbt s bbbttt b et bene 3-31

Narrower Term (NT, NTG, NTP, NTI)ccoccveoieieiieeeeeee ettt 3-32

INDATA ottt ettt ettt sttt sa e 3-34

INEAR (5) ceevetreeieieieirteietetrtst ettt sttt ettt ettt sttt sttt bbbt st b ke sttt eb bt st st ebebe et st bene 3-36

INOT (%) ettt ettt ettt sttt sttt sttt bbbt st be st se bbbt nesaebene 3-40

OR (1)ttt ettt ettt sttt b e 3-41

Preferred Term (PT)cooev ettt sttt st 3-42

Related Term (RT) ..cc.eoiiereieieietei ettt st sttt et ebe b benaens 3-43

SDATA ..ottt ettt ettt ettt sttt 3-44

SOUNAEX (1) c-trteutrteitrtetetet ettt ettt b e st sttt et sttt bbbttt e b e b e b ene 3-47

STEIML (B) c-vventrreneeteeetet ettt ettt ettt ettt sttt ettt ae st et sttt e st et e st et et s be st e be et e e et et et e e e be e se e eseneene 3-48

Stored Query Expression (SQE)......cccccciiiiiiiiiiiiiccicceeeeeeee e 3-49

SYNONYIM (SYN) 1.ttt 3-50

[0 0Ty r=T a1) o I = USRS 3-51

Translation Term (TR)ccccverieiiieieeeere ettt st sae st e s aesseensenseens 3-52

Translation Term Synonym (TRSYN) ... 3-53

TOP Term (TT) o 3-55

WEIGIE (%) 1ot 3-56

WILACATAS (Y0) cevevereeririeerie ettt ettt s b e sttt b et be et seenen 3-58

WWITHIN ottt ettt sttt sttt b et b et seebebesene e 3-60

vii

viii

Special Characters in Oracle Text Queries

Grouping CRATACLETScvcueieiiecie ettt 4-1
ESCAPe CRATACIETSoviiiiiiicce e 4-1

Querying Escape Characters.............oeeioiiioiiiicic e 4-2
Reserved Words and Characters ... 4-2

CTX_ADM Package

MARK _FAILED ..ottt ettt ettt s st sae st s sn et saees 5-2
RECOVER ..ottt ettt ettt et a e saene 5-3
SET_PARAMETERoooiiiiiiiiinineeeeeee ettt e 5-4

CTX_CLS Package

CTX_DDL Package

ADD_ATTR_SECTION ..ottt ettt sae st et se e et eneenesuesaees 7-3
ADD_FIELD_SECTIONcctrirtiiiriiirietetetnentnieeeieeeieeereseeesaese e sessesesaesessesesaesesseessenesseneone 7-4
ADD _INDEX ..ottt se st et a e e 7-7
ADD_MDATA ..ottt ettt et she sttt et et saee 7-9
ADD_MDATA_COLUMNocoiiiniirietneenteenietnietsieesrestsresesiesessesee e sessesessesaesesaesesaenenaene 7-11
ADD_MDATA_SECTION ...c.cctriirteireietetnteeneeeeeeeeerese e see e s sae e e saene 7-12
ADD_NDATA_SECTION ...coociiitiiiiiirintiienietetetetetetee ettt sae e ssesaeseeeeeseenesuesaens 7-13
ADD_SDATA_COLUMN.....cceetriiiieinteinieerteenietnteesteseseest et ses et sessesessesesseseeseseeneseene 7-14
ADD_SDATA_SECTION.....coectriiriiireteteenteeeeeeieeeieeeresee e sae e ae e saene 7-16
ADD_SPECIAL_SECTIONcciioiiiiiiiriirtiieenteteietetetee ettt snetest et ee s enesnesaens 7-18
ADD_STOPCLASS ..ottt sttt ettt st na e e 7-20
ADD_STOP_SECTION ...c.oociriiiriiinieerietnteertee sttt ettt see e seene 7-21
ADD_STOPTHEME ..ottt sttt et sae e 7-23
ADD_STOPWORD ..ottt sttt st ne e s 7-24
ADD_SUB_LEXER ..ottt sttt sttt sne e ene e 7-26
ADD_ZONE_SECTIONoooiiiiiriiniinienentiteteteteteteeeiteie sttt et st see et ettt esesuesaees 7-28
COPY_POLICY ..ttt sttt sttt se et sttt s ae st sa et ne e enenene 7-31
CREATE_INDEX _SETcooiotiiiieieeneeereeentee ettt sttt 7-32
CREATE _POLICY ..ttt sttt ettt ettt sttt ve st ettt et ettt saesnesaesae 7-33
CREATE_PREFERENCEccoociiiiiiiiieincenteenctntctnte ettt 7-35
CREATE_SECTION_GROUPcoiiiieirieireiricenteenteeeeee ettt ene 7-38
CREATE_SHADOW _INDEX......coctntiirinitiieieteieteteteese st s stestesseseeseent et eseesessesaens 7-41
CREATE_STOPLIST ..ottt ettt e 7-43
DROP_INDEX_SET ..ottt sttt 7-45
DROP_POLICY .ottt sttt et ettt ettt st sat e s e st b b e et et e e st enesuesaens 7-46
DROP_PREFERENCEc..cciniiiiiiniiiieinicerteenetntetntei ettt st sse e ne e nene 7-47

DROP_SECTION_GROURPcoviiriiiieinicirieenieentetnietnretsrestsiese e ieeese s ses e sae e senaene 7-48

DROP_SHADOW _INDEXciotiiiriiirieineineenetneeneeeretereseeeee e 7-49
DROP_STOPLIST ..ottt ettt s sae s st ssesaens 7-50
EXCHANGE_SHADOW _INDEX......cocecosieimeineiniinetnietnrestneeseesesessesessesessesessesessenene 7-51
OPTIMIZE _INDEXcoiiiriiiniiiriineerteentee sttt sre et 7-53
POPULATE_PENDINGc.ccctttitiiniintentiteteteteieeeteitee e st sse et saesseseese et et eseenessesaens 7-58
RECREATE_INDEX _ONLINEccccoriiiiniireinencnceneeseteieeseseeeeere e eene 7-59
REMOVE_INDEX ..ottt sae st eene 7-65
REMOVE_MDATA ..ottt ettt s sre st sse sttt e et ene st s sae s ssesnens 7-66
REMOVE_SECTION ..ottt sttt ettt sttt st sne st sre st see s e s neene 7-67
REMOVE_STOPCLASS ..ottt s 7-68
REMOVE_STOPTHEMEcccioiiiiiiiiiiiieieietetetetetee ettt et ene e saens 7-69
REMOVE_STOPWORDocotriiiiiiirienieinieereeeneeenteestei ettt sttt sne st st ene 7-70
REMOVE_SUB_LEXER........ccoeitriiiirinieeneeneeesteesteeseee et sttt eene 7-71
REPLACE_INDEX_METADATA. ...ttt ettt saens 7-72
SET_ATTRIBUTEoiiiiieicncreeretrtetrtetneete ettt ettt e 7-73
SYNC _INDEX....c.oittiieiieineeneereeere sttt sttt sttt s ene 7-74
UNSET_ATTRIBUTE ..ottt sttt st s sa et saens 7-77
UPDATE_POLICY ..ottt st ettt st sae e sa et s e neene 7-78

8 CTX_DOC Package

FILTER oottt s s s sttt ea e saeas 8-3
GIST ettt 8-6
HIGHLIGHT ..ottt ettt s st sa ettt sae et s sae e snens 8-10
TEILTER ..ottt s sttt et s saesa e saens 8-13
MARKIUP ..ottt sttt sttt 8-14
PKENCODE ...ttt ettt sttt bt s e st se ettt eseebe s bt sueenesbenaens 8-19
POLICY _FILTER ..ottt st s ettt sttt s naene 8-20
POLICY _GIST ...ttt sttt st st sttt 8-21
POLICY_HIGHLIGHT ...ttt ettt s sae st seene et et sse s sve e 8-23
POLICY _MARKUDPcoiiiiieinieenteerteenteestee ettt ettt sttt ne st st ene 8-25
POLICY _SNIPPET ..ottt 8-28
POLICY_THEMES ..ottt ettt ettt st sttt et ene et ebe bbb e 8-30
POLICY _TOKENS ..ottt sttt sttt ettt st ne e bbb e eene 8-32
SET_KEY _TYPE ..ottt 8-34
SINIPPET ...ttt ettt et st st s st se ettt ebesnebenaens 8-35
THEMES ...ttt sttt ettt st sttt 8-38
TOKENS ..ottt sttt st s 8-41

9 CTX_OUTPUT Package
ADD_EVENT ...otttiitteseeesseesesssssssesss st sssss sttt 9-2

ADD _TRACE ...ttt ettt ettt st b et sa e saene 9-3

DISABLE_QUERY_STATS ...ttt 9-5
ENABLE_QUERY_STATS ...ttt ettt st 9-6
END_LOG ..ttt ettt ettt ettt a e e 9-7
END_QUERY_LOG ...ttt ettt ne e e 9-8
GET_TRACE_VALUE ..ottt s sae sttt eueenesaesaees 9-9
LOG_TRACES ...ttt sttt bttt et s e 9-10
LOGFILENAME ...ttt 9-11
REMOVE_EVENT ...ttt ettt sttt ne ettt et snesaesae s 9-12
REMOVE_TRACE ...ttt sttt ettt ne e ne st st nesene 9-13
RESET_TRACE ...ttt sttt ettt sttt st 9-14
START _LOG ..ttt sttt ettt ettt st st s n ettt et et enesaesae s 9-15
START_QUERY_LOGcoiciirieinirieircentcenteenietntetrtee ettt st ne st neene 9-16

10 CTX_QUERY Package

11

BROWSE_WORDS........ccooiiiiiiiiiiii e 10-2
COUNT_HITS ...ttt 10-5
EXPLAIN ...t 10-6
HEEEDBACK ..o 10-9
REMOVE_SQEooiirs sttt 10-13
RESULT_SET ...ttt e 10-14
STORE_SQIE ...t 10-20
CTX_REPORT Package
11.1 Procedures in CTX_REPORTccccooiiiiiiiiiiiiiiie s 11-1
11.2 Using the FUNction Versions ... 11-1
DESCRIBE_INDEXcociiiiiiiiiiiiiiiicc et 11-3
DESCRIBE_POLICY ..ottt aeeaes 11-4
CREATE_INDEX_SCRIPTcctriieiiiiririeiiitnieienetserie ettt et 11-5
CREATE_POLICY_SCRIPTccoiiiiiiiiiiiiiiiicciii et 11-6
INDEX_SIZE ...ttt 11-7
INDEX _STATS ..ottt ettt 11-8
QUERY_LOG_SUMMARYcciiiiiiiiiiiiiininiciieice e 11-12
TOKEN_INFO ..ottt 11-16
TOKEN_TYPE ..ottt ettt s 11-18

12 CTX_THES Package

ALTER _PHRASE ..ottt ettt ettt sa e sttt et ettt sne v sae 12-3
ALTER _THESAURUS.ccocctnitniineeretnteenteenietstetsaeeseest ettt st ne st ses e se e s neene 12-5
BT e s 12-6
BTG ettt bbbttt et ettt n b e 12-8
BT et 12-10

CREATE_PHRASE ...ttt ettt 12-14
CREATE_RELATION. ..ottt sttt et ene st st enesaesaesne e seeneennne 12-15
CREATE_THESAURUSooiiiiriiiiiniincrctnetstetsieeereeste et seeiesee s s seee 12-17
CREATE_TRANSLATIONciriiiriiiriiiriieeteeeeeeete ettt e e seene 12-18
DROP_PHRASE ..ottt ettt st st sae st sae sttt s ev e 12-19
DROP_RELATIONootiiirieitrieiinietnetntctnieteretesesteiestesese st sestsse st sse e resesneseesesessensssenenne 12-20
DROP_THESAURUSoooiiriiiriiiniereeretstee ettt ettt eee 12-22
DROP_TRANSLATION.....c.ceottiiteieiiinenteteeestesteiere ettt et et sae v saesae s e neseennenene 12-23
HAS_RELATION ..ottt sttt et sse et sbe e s e e e sae e e e 12-24
INTT e s sttt 12-25
INTIG ettt et st st be et sa e bttt sae b b e 12-27
INTT et s sttt sae b 12-29
INTD e s sttt s 12-31
OUTPUT_STYLE ..ottt ettt s st s st e 12-33
P e et 12-34
R sttt 12-36
SN et b a ettt et e a bt et saeer b e 12-38
SYN ettt ettt et 12-39
THES TT .ttt ettt 12-41
TR ettt e e et bttt et saeer b 12-42
TREYIN ettt ettt ettt e e e 12-44
T e e 12-46
UPDATE_TRANSLATIONoooiiiriiiiientiteteteteeeteteeeese ettt et eve e s saene e 12-48

13 CTX_ULEXER Package
WILDCARD_TAB........ooiiiiveiinrieiisseeemiesseemissseesass oo seessss s ssoeeenns 13-2

14 Oracle Text Utilities

14.1 Thesaurus Loader (CEXIOAd)......cccoeriruiririirieinieiirieiie ettt 14-1
14.1.1 Text LOadiNg......ccoiviiiiiiiiiiiciic s 14-1
14.1.2 CEXI0Ad SYNTAX «.veviiieiii s 14-1
14.1.2.1 Mandatory ATGUMENLScovuviiiviiiriiiiiiiiirr s 14-1
14.1.2.2 Optional ATUMENTSc.couiiiiiiiiiiieieiiccieeee e eeees 14-2
14.1.3 ctxload EXamPLESccccviiiiiiiiiiiiiiic s 14-3
14.1.3.1 Thesaurus Import Example.........cccccccooiiiiiiiiiiiicccccces 14-3
14.1.3.2 Thesaurus Export EXample ... 14-3
14.2 Knowledge Base Extension Compiler (ctXKbtc) ..., 14-3
14.2.1 Knowledge Base Character Set............cccccoeueiiiiiiiiiiiiiniiiiiiiiiicrcncnessccas 14-4
14.2.2 CEXKDEC SYIEAX....eiiiiiicicicccccc e 14-4
14.2.3 ctxkbtc Usage NOEScouiiiiii e 14-4
14.2.4 CEXKDEC LIMItAtIONS ..ovvieieeieiieiieieieietteee ettt ettt ettt e s s e eneeseeneeseenens 14-4
14.2.5 ctxkbtc Constraints on Thesaurus TErmMSccccvvverereirieieieririeneeeeieeseeeeeseereseeieees 14-5

xi

15

Xii

14.2.6 ctxkbtc Constraints on Thesaurus RelationsS.........coovevevvivivveiiciieieieeeeeeeeeeeeeee e 14-5

14.2.7 Extending the Knowledge Base...........cccccooiiiiiiiiiiiiiii, 14-6
14.2.7.1 Example for Extending the Knowledge Basec.cccccoeeecuieiiiicinnccene 14-6
14.2.8 Adding a Language-Specific Knowledge Base............ccooeuiiiiiiiiiiii 14-7
14.2.8.1 Limitations for Adding a Knowledge Baseccccoooiiiiiniiiciiii, 14-7
14.2.9 Order of Precedence for Multiple Thesauriccccoevceeiccceiicecceccccceenenens 14-8
14.2.10 Size Limits for Extended Knowledge Baseccccocevieiiiiniiiniiinnciiiccce, 14-8
14.3 Lexical Compiler (CEXIC) ..o 14-8
14.3.1 SYNEAX OF CEXLC.c..evviiiiiiciiiciccecc e 14-8
14.3.1.1 Mandatory Argumentsccooeeveiiiiniiiini s 14-8
14.3.1.2 Optional ATGUMENLSccceviiiiiiiiiiiiiiii s 14-9
14.3.2 Performance Considerations..........c.cccocccueiiiiciiiiiceieiceeeeeeeeeeeeeee s 14-9
14.3.3 CEXIC USAZE NOES ...t s 14-9
14.3.4 EXQMIPLE...oiiiiiiiiiiiii s 14-9

Oracle Text Alternative Spelling

15.1 Overview of Alternative Spelling Features..........cc.cocooviiiiiiiiiiiiiiec e 15-1
15.1.1 Alternate SPellingccciiiiiiiiiiieeee e 15-2
15.1.2 Base-Letter CONVEISION........ccoviviiiiiiiiiiiiiieiciieie s 15-2
15.1.2.1 Generic Versus Language-Specific Base-Letter Conversions............cccceeveuee.. 15-2
15.1.3 New German SPelling.......c.cccccciiiiiiriiiiieeeceeeee e 15-2
15.2 Overriding Alternative Spelling Features..............ccoooeoiiiiiiiiic 15-3
15.2.1 Overriding Base-Letter Transformations with Alternate Spellingccc.c.......... 15-3
15.3 Alternative Spelling CONVENIONScoccoiuiuiiuiiiiiiiiiececeeeeeee s 15-3
15.3.1 German Alternate Spelling Conventionscccceiiieieiiiiccccc e 15-4
15.3.2 Danish Alternate Spelling Conventions...........c.cooeceiiiiciiiiiccecccec e 15-4
15.3.3 Swedish Alternate Spelling CONVENtioNS.........c.ccccueueeueiciciieeieiccceieeeeeeeeeeenenens 15-4

Oracle Text Result Tables

A1 CTX_QUERY ReSULE TADLES.....cueecvieieericteiie ettt ettt eeve et eve et eeaeeveeveess e veerseveereens A-1
A.1.1 EXPLAIN TaDLE.....cuviieiieiieiieiieieeteeieet ettt ettt ettt ettt sb b be s essessessesseseereeressenss A-1
A1.11 Operation Column Values..........cccccciiiiiiiiiiiniiiiiiiiicees A-2
A11.2 OPTIONS COIUMN ValUES......ccoeirieiiieieieicieeeiieeste sttt sessesassssss e ssessessens A-2
A1.2 HEEEDBACK TabIe.......cviiiieiieiiciiciicieiee ettt sttt essess s v sseevaeveeveenes A-3
A1.21 Operation Column Values..........cccccuciiiiiiiiininiiiiiiiiiceeeas A-3
A1.22 OPTIONS COIUMN ValUES......ccviiriieiiiierieieieieeetieteete st aeseseesassasse e ssessessens A-4
A1.23 CTX_FEEDBACK_TYPE ..ottt ettt a e ss s ssese e vesvesaens A-4
A2 CTX _DOC RESULE TADLESeeiieeiiieeeee ettt ettt et s e e e e e e s saeeseaaeeesaeesennees A-5
A.2.1 FAIEET TADIE 1.ttt ettt ettt ettt et et b e esbesse st esaesaesaaseasensassassensan A-5
A2.2 L5 1] A =1 o] L= RO A-6
A.2.3 Highlight Tablecccccooiiiiiiiiiiiiccc s A-6
A24 Maarkup Tablec.coiiiiiiiiiiiicce s A-6
A.2.5 B TS 0 T =Y o) (ST A-7
A.2.6 TOKEIN TADLE ...ttt ettt ettt ettt e aesbe e b e s ba e st e sbeeaseereensesseenneenis A-7
A3 CTX_THES Result Tables and Data TYPes........ccccceururururirrririiincirireieereeeeeeeeeeeeeeeeeeeeas A-7
A.3.1 EXP_TAB Table TYPe....ccooviieieieieieicieieicecicee s A-7

Oracle Text Supported Document Formats

B.1 About Document Filtering Technologyccoceoiiiiiiniiiic B-1
B.1.1 Latest Updates for Patch Releases..........cccccccuiiiiiiiiiiiiiicicceccecceeeeeeeenes B-1
B.1.2 Restrictions on Format SUPPOIt........ccoiiiiiiiiiiiiiiii B-1
B.1.3 Supported Platforms for AUTO_FILTER Document Filtering Technology B-2
B.1.3.1 Supported Platformsc.ccccceuiiiiiiiiiceceee s B-2
B.1.4 Filtering on PDF Documents and Security Settingscccccooiiieiiiciiiiiicne, B-2
B.15 PDF Filtering Limitationsccoooeueieioiiiieiiiciec s B-3
B.1.6 Environment Variables ... B-3
B.1.7 General LImitationscccceveviieiiiiiiiiiiiiccc s B-3
B.2 Supported Document FOrmats.........ccocueuoiiriiiiiiiic B-4
B.2.1 Word Processing and Desktop Publishing Formats.........c.ccccccceiivniininiiinne B-4
B.2.2 Spreadsheet FOImMatsc.ccoooeiieiiiiiiiiiniiiiiicccc s B-6
B.2.3 Presentation FOrmats...........cocoovviiiiiiiiiiicc s B-6
B.2.4 Database FOrmats........ccooveuiiieiiiiieecieece s B-7
B.2.5 Archive File FOrmat......c.ccoooiiiiiiiiiiiiiiiicc s B-7
B.2.6 Email FOrmatscccccoiiiiiiiiiiiiiiic s B-8
B.2.6.1 MIME SUppOort INOLES ..o B-8
B.2.7 Other FOIMAtscoiviiiiiiiiiiicccc s B-9
B.2.8 Graphic FOrmatsooooiiiieic e B-10
B.2.8.1 Graphics Formats Limitationsc.cccccceeiiiiiiiiiiccccccecceeeeeceeees B-12
B.2.9 Formats No Longer Supported in 11.1.0.7ccccovveiiiiiiiniiiiiiicccecccee B-12

Text Loading Examples for Oracle Text

C.1 SQL INSERT EXamPIe......ccviiiiiiiiiiiiiiiiiiiiiciecice s C-1
Cc2 SQL*Loader EXamplecoiiiiiiiieeci e C-1
C.21 Creating the Table........ccccociiiiiiiiice s C-1
c2z2 Issuing the SQL*Loader Commandcccooueieiiiiiieiiiicieec s C-2
c.221 Example Control File: loaderl.dat ...ttt C-2
c222 Example Data File: 1oader2.datcccocovveviirrnniiiirnircrcereeecseee s C-2
C.3 Structure of ctxload Thesaurus Import Fileccccccovviiiiiiiiii C-3
C.3.1 Alternate Hierarchy Structure ... C-5
C.3.2 Usage Notes for Terms in Import Files.......c.ccccccciiiiiiiiiniccccreccereeenes C-5
C.3.3 Usage Notes for Relationships in Import Files.........ccccccooeiiiiiiiiiiiiii, C-6
C34 Examples of Import Filesccccoooiiiiiiiiiiiiiiiccceees C-7
C.3.4.1 Example 1 (Flat Structure).......ccocccciciiiciciicceecceeeeeeeeeeeeeeeeeeeeeeeeeeeeeees C-7
C.342 Example 2 (Hierarchical) ... C-7
C.3.4.3 EXamPLe 3.....oiiiiiiiiii s C-8

Oracle Text Multilingual Features

D.1 INEFOAUCHON ... s D-1
D.2 INAEXING .. D-1
D.2.1 Multilingual Features for Text Index TyPescccocoeueueiiicieiiiicicicccc e D-1
D.2.11 CONTEXT INAEX TYPE...oviiiiiiiiciciciiicicirircce s D-1
D.21.2 CTXCAT INAEX TYPE...vviiiiiiiicicieicecieiecee e D-2
D.21.3 CTXRULE INA@X TYPE ..ottt D-2

xiii

Xiv

D.2.2 LeXOT TYPOS..c.cviiiiiiiiiieieiete s D-2

D.2.3 Basic Lexer Features ... D-3
D.2.3.1 Theme INAeXINgcccceuiiiiiiiiiiiicecece s D-3
D.23.2 Alternate SPellingccoviriiiiiiiie D-3
D.2.3.3 Base Letter CONVETISIONcccovvviieiiiiiiiiiciiccc s D-3
D.2.3.4 COMPOSILE ... s D-4
D.2.3.5 INAeX StEIMSvviiiiiiiccc D-4
D.2.4 Multi Lexer FEatures ... D-4
D.2.5 World Lexer Features. ... D-4
D.3 QUETYING oo D-6
D.3.1 ABOUT OPerator.....c.ccveieiieieieieieieieeieee s D-6
D.3.2 FUZZY OPETatorccouiviiiiiiiiiiii s D-6
D.3.3 StEmM OPETAtOrocvviiiiiiicicice s D-6
D.4 Supplied StOP LiStS ..o D-6
D.5 KNOWIedge Basec.ccuiiiiiiiiiiiiiicicceceee s D-7
D.5.1 Knowledge Base EXteNSIONcccueviiiiiiiiiicic e D-7
D.6 Multilingual Features MatriXcooieiiiiiiiic e, D-7

Oracle Text Supplied Stoplists

E.1 English Default StOPList.........cooioiuiiiiiici E-1
E.2 Chinese Stoplist (Traditional)........c.ccccceeiiiiiiiirrrre s E-2
E.3 Chinese Stoplist (SImplified) ..o E-2
E.4 Danish (dk) Default Stoplist...........cccocviiiiiiiiiiiniiiiii s E-3
E.5 Dutch (nl) Default StOPLISt.......cccoeueuiuiiiiiiiiiciccicccecce e E-3
E.6 Finnish (sf) Default STOPLiSt.........cccvuiiiiiniiiiiiiiiii s E-4
E.7 French (f) Default STOPLISt........ccooiiiiiiiiiiiiicic s E-5
E.8 German (d) Default StOPLIStccciuiiiiiiiiiccceeeeeee s E-6
E.9 Italian (i) Default StOPLSt........ccccociiiiiiiiiiiiii e E-7
E.10 Portuguese (pt) Default StOPLiStccccrveiiiiiiiiiic e E-7
E.11 Spanish (e) Default StOPLiStccoouviriririiiiiiicrcrrr e E-7
E.12 Swedish (s) Default StOPList........ccccuviiiiiiiiiiiiiiiiici E-8

The Oracle Text Scoring Algorithm

F.1 Scoring Algorithm for Word Queries ..o, F-1
F.1.1 Word Scoring EXample ... F-2
F.1.2 DML and Scoring AIGOTithimc.ccccceuiiiiiiiiiiiiiiiicceeececeeeee s F-2

Oracle Text Views

G.1 CTX_CLASSES ...ttt ettt st st st ae e sae e G-2
G.2 CTX_FILTER_BY COLUMNES.cocectritriitntenieieietentetetereseeeseeieseeessesesaese et saesessenesaesessenees G-2
G.3 CTX_INDEXES ...ttt sttt ettt sttt st bt ettt ettt bt bt saesaeneen G-3
G.4 CTX_INDEX_ERRORS.......ccoretiiireiniinitneeeteieteeeteeete st sae s saene s G-4
G.5 CTX_INDEX_OBJECTS......cctritretrieieieteieteenteenteeneeieseese e et saesesaesesaesesaesesaesessenesseseesenees G-4
G.6 CTX_INDEX_PARTITIONSc.oootiiiiiieintinteniesteteteteteteeeiter et sse vt eee ettt nesresaenes G-4
G.7 CTX_INDEX_SETS.......oot ettt ettt sa et ae e saene e G-5
G.8 CTX_INDEX_SET INDEXESccsiietretmiiirieninieieienteteteeneeeseeieseeeseesesaereseesesaesessesessesessenens G-5

G.9

G.10
G.11
G.12
G.13
G.14
G.15
G.16
G.17
G.18
G.19
G.20
G.21
G.22
G.23
G.24
G.25
G.26
G.27
G.28
G.29
G.30
G.31
G.32
G.33
G.34
G.35
G.36
G.37
G.38
G.39
G.40
G.41
G.42
G.43
G.44
G.45
G.46
G.47
G.48
G.49
G.50
G.51

CTX_INDEX_SUB_LEXERSccovtirtrieiriiieieieeneeenieienteeseere e seeesaeesaesesaesesaesessesesaesessenees G-5
CTX_INDEX_SUB_LEXER_VALUES.ccctoiriiteieiiieeeteteene ettt G-5
CTX_INDEX_VALUES.......ccontriireirereteetete ettt st s saene s G-6
CTX _OBJECTS. ...ttt ettt st sttt ettt et b e b s ebeseese e s e seaenene G-6
CTX_OBJECT_ATTRIBUTESccoootiiritieteieieietetetee ettt sae e saenen G-6
CTX_OBJECT_ATTRIBUTE_LOV ..ottt esaenens G-7
CTX_ORDER_BY_COLUMNES......ccccretmitrteirtetrietntetsieeeseseeieseereseeseseseseesesaesesaesessesessenens G-7
CTX_PARAMETERS ..ottt sttt et sae s nen G-7
CTX_PENDIING......ootiiieiieieeneeerteerteertet sttt ettt en e s ne s e aenenenens G-8
CTX_PREFERENCEScocctriiriinietneintctetetetet ettt ettt ieae s esaesesee e st naesenaenens G-9
CTX_PREFERENCE_VALUES ..ottt sttt ettt G-9
CTX_SECTIONS ...ttt et st sae e ae e saene e G-9
CTX_SECTION_GROUPS ..ottt G-9
CTX_SQES ..ttt ettt et sae s b e st ettt eue bbb enebesaens G-10
CTX_STOPLISTS ..ottt G-10
CTX_STOPWORDSctriinieinieinieerietntet sttt ettt sre st st s et se e sas e eene G-10
CTX_SUB_LEXERS ..ottt ettt s saesae st sse st eneene et sueene b saens G-10
CTX_THESAURI ...ttt G-11
CTX_THES _PHRASES ...ttt st sttt sne st st eene G-11
CTX_TRACE_VALUES ..ottt sttt sttt et et sae s saens G-11
CTX_USER_ FILTER_BY_COLUMNS......ccocectiirinineieeteeeeeeeeeee s G-11
CTX_USER _INDEXES........ccooeotriireirieinetntetntetnieesieesreesre st eee e see e see e e saesesaene G-12
CTX_USER_INDEX_ERRORS........cccertrimtiiiieieieieteietee ettt sttt saens G-13
CTX_USER_INDEX_OBJECTS......coccireinteireireeneeneesreeereseeee e G-13
CTX_USER_INDEX_PARTITIONS.......cccecrteimieireirieireinteereeeneeesaeesaesessenessesessesessenennens G-13
CTX_USER _INDEX_SETSoootiiiiiininiieieteteieteteitee sttt sae st s sttt sseenessesaens G-14
CTX_USER_INDEX_SET _INDEXES........cccocecmiiriinieneneeeeeeeeeeereseee e G-14
CTX_USER_INDEX_SUB_LEXERS......ccccccetriimeinieinieinieereeereeenieeraeseesenesseseeseeesenesnens G-14
CTX_USER_INDEX_SUB_LEXER_VALSccccooiiiiiiiiiiiiiiccceeins G-15
CTX_USER_INDEX_VALUESccocciriiineineereneentetsree ettt eene G-15
CTX_USER_ORDER_BY_COLUMNSccocoiiiiiiiiiiiiiicciee s G-15
CTX_USER_PENDIINGcceectitiiriiriininientitestesteteteteeetee et et sae et sseseesaenseseeneeneenessesaens G-15
CTX_USER_PREFERENCESccocccirtiiiriineeneeenieteret et G-16
CTX_USER_PREFERENCE_VALUESccocecniinininitnentneeneeseeee e G-16
CTX_USER_SECTTIONSceotiiiiriininienientttestesteteteteeeitee st st sae et sse e e emsesteseeneesessesaens G-16
CTX_USER_SECTION_GROUPS.ccoecimeireiniinenteenetereteeee et G-17
CTX_USER _SQES ...ttt sttt sttt et et sa et sttt ne e bbb sae e eene G-17
CTX_USER _STOPLISTS......cctititeirinerientietestesteteteteteitee et et see st s e ettt eseesessesaens G-17
CTX_USER_STOPWORDScoctctiiirteintiieteieenee ettt esae e saesesne e eeneennens G-17
CTX_USER_SUB_LEXERSccortiitriiirieniiirieeneeeeeeieeereeere st aene G-17
CTX_USER_THESAURI ..ottt ettt st s e ettt eneesesse e G-18
CTX_USER_THES _PHRASESccoettiieieeneenerteerret ettt G-18
CTX _VERSION ...ttt sttt sttt ettt et sre st st sa e s s s aesenene G-18

Stopword Transformations in Oracle Text

H.1

H.1.1

Understanding Stopword Transformations ..., H-1
Word Transformations. ... s H-2

XV

H.1.2
H.1.3
H.1.4
H.1.5
H.1.6
H1.7
H.1.8
H.1.9
H.1.10
H.1.11
H.1.12

Index

XVi

AND TransfOrmMationSccccceecvereeriereecieeiesieeeesteeeesteeeesaeeae e essesseessessesssesseessesseensenses H-2
OR TransfOrMAtiONSccieevieviieieitiieetieeete et este et esteereesteereesteesaesbeesaesbeessesseesseseessenseenes H-2
ACCUMulate TranSfOrmationsccceceeievieeeiininirisiesteieieseseseeeseessssssessessessessenses H-2
MINUS TranSfOrMAtIONScccveeveriereerieieesieseestesteesreseesseeeessesseessesseessesssessesssessesssessesses H-3
MNOT TransSfOrmMationsc.ecievverieeieitierese et ettt sreeteseesesreesesreeseessessesseenseeses H-3
NOT TransfOrmMationNScccecuecieiieieiriiriirieteteteteteteseeresessessessessessessessessessesessessessesses H-3
EQUIValence TransSfOrmMatioNsccceeeeevereerieseesieseesteseessesseessessesssesseessesssessesseessesses H-4
NEAR TransfOrmationsccocceeveereeviereecieneetesreetesreessesseessesseessessaessesseessessssssessesssesses H-4
Weight Transformations ...t aeeenes H-4
Threshold TransfOrmMatioNscccceeceeciieiereeierieeeee ettt eee e ae e sseesseessesesseenseens H-5
WITHIN Transformationscccccceeeieeieeieniieeeireeiesre et eae e eae et sseesseereesesseesseens H-5

Audience

Preface

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle Text Reference is intended for application developers or system administrators
who maintain an Oracle Text system in an Oracle environment. To use this document,
you need experience with Oracle Database, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information about Oracle Text, see:

» Oracle Text Application Developer’s Guide

For more information about Oracle Database, see:
» Oracle Database Concepts

» Oracle Database Administrator’s Guide

» Oracle Database Utilities

» Oracle Database Performance Tuning Guide

» Oracle Database SQL Language Reference

xvii

» Oracle Database Reference

» Oracle Database Development Guide

For more information about PL/SQL, see:

» Oracle Database PL/SQL Language Reference

Conventions

xviii

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

What's New in Oracle Text?

The following describes new features of the Oracle Database 11g Release 2 (11.2)
edition of Oracle Text and provides pointers to additional information. Information
about new features from previous releases is also retained to help you migrate to the
current release.

The following sections describe the new features in Oracle Text:
s Oracle Database 11g Release 2 (11.2) New Features in Oracle Text
s Oracle Database 11g Release 1 (11.1) New Features in Oracle Text

Oracle Database 11g Release 2 (11.2) New Features in Oracle Text

= Name matching

Someone accustomed to the spelling rules of one culture can have difficulty
applying those same rules to a name originating from a different culture. Name
matching provides a solution to match proper names that might differ in spelling
due to orthographic variation. It also enables you to search for somewhat
inaccurate data, such as might occur when a record’s first name and surname are
not propertly segmented.

See Also: Oracle Text Application Developer’s Guide for further
information

m Result set interface

A page of search results typically consists of many disparate elements, such as
metadata of the first few documents, per-word hit counts, or total hit counts. In
past releases of Oracle Text, generating these results required several queries and
calls, such as a query on the base table, a call to CTX_QUERY.COUNT_HITS, and so on.
Each call required time to reparse the query and look up index metadata. In this
release, instead of accessing the database to construct bits of the search results, you
can use the result set interface, which is able to produce the various kinds of data
needed for a page of search results all at once, thus improving performance by
sharing overhead. The result set interface can also return data views that are
difficult to express in SQL, such as top N by category queries.

See Also: Oracle Text Application Developer’s Guide for further
information

Xix

Oracle Database 11g Release 1 (11.1) New Features in Oracle Text

XX

On Windows systems, the executable file that you specify for the USER_FILTER
command attribute must now exist in the $0RACLE_HOMES%/ctx/bin directory instead
of $0RACLE_HOME%/bin.

See Also: USER_FILTER on page 2-24

Zero downtime for applications with new incremental indexing and online index
creation.

See Also: "Creating a CONTEXT Index Incrementally with
POPULATE_PENDING" in Oracle Text Application Developer’s Guide

New features for re-creating an index online and finer control for maintenance
processes.

See Also: "Re-Creating an Index" in Oracle Text Application

Developer’s Guide
New Oracle Text Manager in Oracle Enterprise Manager with which you can:
— Monitor health of Oracle Text indexes.
- Modify index settings.

— Generate index-level statistics about disk space, fragmentation, garbage,
frequency of words, and more.

- Synchronize, optimize, and rebuild indexes.
- Diagnose problems, and resume failed operations.

- Manage logs.

See Also: "Text Manager in Oracle Enterprise Manager" in Oracle
Text Application Developer’s Guide

New support for composite domain index for CONTEXT indextype for improved
mixed-query performance.

See Also: "Composite Domain Index (CDI) in Oracle Text" in Oracle
Text Application Developer’s Guide

Improved query performance and scalability.

See Also: "Parallelizing Queries Across Oracle RAC Nodes" in
Oracle Text Application Developer’s Guide

New SDATA section type and SDATA operator that enable range searches on
metadata.

See Also: "SDATA Section" in Oracle Text Application Developer’s
Guide

New user-defined scoring feature, DEFINESCORE and DEFINEMERGE.

See Also: "DEFINESCORE" on page 3-13 and "DEFINEMERGE" on
page 3-12

New values for the INDEX_STEMS attribute of the BASIC_LEXER type to enable better
query performance for stem ($) queries.

See Also: "BASIC_LEXER" on page 2-30

NOPOPULATE option for ALTER INDEX to support incremental indexing.

See Also: "POPULATE | NOPOPULATE" on page 1-46

New limit for the number of partitions in Oracle Text is now the same as the
maximum for Oracle Database.

See Also: "Partitioned Tables and Indexes" in Oracle Text Application
Developer’s Guide

New usage tracking feature.

See Also: "Database Feature Usage Tracking in Oracle Enterprise
Manager" in Oracle Text Application Developer’s Guide

XXi

XXii

1

Oracle Text SQL Statements and Operators

This chapter describes the SQL statements and Oracle Text operators for creating and
managing Oracle Text indexes and performing Oracle Text queries.

The following statements are described in this chapter:

ALTER INDEX

ALTER TABLE: Supported Partitioning Statements
CATSEARCH

CONTAINS

CREATE INDEX

DROP INDEX

MATCHES

MATCH_SCORE

SCORE

Oracle Text SQL Statements and Operators 1-1

ALTER INDEX

ALTER INDEX

Purpose

Note: This section describes the ALTER INDEX statement as it
pertains to managing an Oracle Text domain index.

For a complete description of the ALTER INDEX statement, see Oracle
Database SQL Language Reference.

Use ALTER INDEX to make changes to, or perform maintenance tasks for a CONTEXT,
CTXCAT, or CTXRULE index.

All Index Types
Use ALTER INDEX to perform the following tasks on all Oracle Text index types:

Rename the index or index partition. See "ALTER INDEX RENAME Syntax" on
page 1-4.

Rebuild the index using different preferences. Some restrictions apply for the
CTXCAT index type. See "ALTER INDEX REBUILD Syntax" on page 1-4.

Add stopwords to the index. See "ALTER INDEX REBUILD Syntax" on page 1-4.

CONTEXT and CTXRULE Index Types
Use ALTER INDEX to perform the following tasks on CONTEXT and CTXRULE index types:

Resume a failed index operation (creation/optimization).
Add sections and stop sections to the index.

Replace index metadata.

See Also: "ALTER INDEX REBUILD Syntax" on page 1-4 to learn
more about performing these tasks

Overview of ALTER INDEX Syntax

The syntax for ALTER INDEX is fairly complex. The major divisions are covered in the
following sections:

"ALTER INDEX MODIFY PARTITION Syntax" on page 1-3—use this to modify an
index partition's metadata.

"ALTER INDEX PARAMETERS Syntax" on page 1-3—use this to modify the
parameters of a nonpartitioned index, or to modify all partitions of a local
partitioned index, without rebuilding the index.

"ALTER INDEX RENAME Syntax" on page 1-4—use this to rename an index or
index partition.

"ALTER INDEX REBUILD Syntax" on page 1-4—use this to rebuild an index or
index partition. With this statement, you can also replace index metadata; add
stopwords, sections, and stop sections to an index; and resume a failed operation.

The parameters for ALTER INDEX REBUILD have their own syntax, which is a subset
of the syntax for ALTER INDEX. For example, the ALTER INDEX REBUILD PARAMETERS
statement can take either REPLACE or RESUME as an argument, and ALTER INDEX

1-2 Oracle Text Reference

ALTER INDEX

REBUILD PARAMETERS ('REPLACE') can take several arguments. Valid examples of
ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n

ALTER INDEX REBUILD PARAMETERS ('SYNC memsize')

ALTER INDEX REBUILD PARAMETERS ('REPLACE DATASTORE datastore pref')
ALTER INDEX REBUILD PARAMETERS ('REPLACE WORDLIST wordlist_pref')

ALTER INDEX MODIFY PARTITION Syntax

Use the following syntax to modify the metadata of an index partition:
ALTER INDEX index_name MODIFY PARTITION partition_name PARAMETER (paramstring)

index_name
Specify the name of the index whose partition metadata you want to modify.

partition_name
Specify the name of the index partition whose metadata you want to modify.

paramstring

The only valid argument here is REPLACE METADATA'. This follows the same syntax as
ALTER INDEX REBUILD PARTITION PARAMETERS ('REPLACE METADATA'); see the
REPLACE METADATA subsection of the "TALTER INDEX REBUILD Syntax" section on
page 1-6 for more information. (The two statements are equivalent. ALTER INDEX
MODIFY PARTITION is offered for ease of use, and is the recommended syntax.)

ALTER INDEX PARAMETERS Syntax

Use the following syntax to modify the parameters either of nonpartitioned or local
partitioned indexes, without rebuilding the index. For partitioned indexes, this
statement works at the index level, not at the partition level. This statement changes
information for the entire index, including all partitions.

ALTER INDEX index name PARAMETERS (paramstring)

paramstring
ALTER INDEX PARAMETERS accepts the following arguments for paramstring:

s 'REPLACE METADATA'

Replaces current metadata. See the REPLACE METADATA subsection of the "ALTER
INDEX REBUILD Syntax" section on page 1-6 for more information.

= 'ADD STOPWORD

Dynamically adds a stopword to an index. See the ADD STOPWORD subsection of the
"ALTER INDEX REBUILD Syntax" section on page 1-10 for more information.

= 'ADD FIELD SECTION'

Dynamically adds a field section to an index. See the ADD FIELD subsection of the
"ALTER INDEX REBUILD Syntax" section on page 1-10 for more information.

= 'ADD ZONE SECTION'

Dynamically adds a zone section to an index. See the ADD ZONE subsection of the
"ALTER INDEX REBUILD Syntax" section on page 1-10 for more information.

= 'ADD ATTR SECTION'

Dynamically adds an attribute section to an index. See the ADD ATTR subsection of
the "ALTER INDEX REBUILD Syntax" section on page 1-11 for more information.

Oracle Text SQL Statements and Operators 1-3

ALTER INDEX

Each of the prior statements has an equivalent ALTER INDEX REBUILD PARAMETERS
version. For example, ALTER INDEX PARAMETERS ('REPLACE METADATA') is equivalent
to ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA').However, the ALTER
INDEX PARAMETERS versions work on either partitioned or nonpartitioned indexes,
whereas the ALTER INDEX REBUILD PARAMETERS versions work only on nonpartitioned
indexes.

ALTER INDEX RENAME Syntax

Use the following syntax to rename an index or index partition:

ALTER INDEX [schema.]index name RENAME TO new_index name;
ALTER INDEX [schema.]index_name RENAME PARTITION part_name TO new_part_name;

[schema.]index_name
Specify the name of the index to rename.

new_index_name

Specify the new name for schema. index. The new_index_name parameter can be no
more than 25 bytes, and 21 bytes for a partitioned index. If you specify a name longer
than 25 bytes (or longer than 21 bytes for a partitioned index), then Oracle Text returns
an error and the renamed index is no longer valid.

Note: When new_index_name is more than 25 bytes (21 for local
partitioned index) and less than 30 bytes, Oracle Text renames the
index, even though the system returns an error. To drop the index
and associated tables, you must drop new_index_name with the
DROP INDEX statement and then re-create and drop index_name.

part_name
Specify the name of the index partition to rename.

new_part_name
Specify the new name for partition.

ALTER INDEX REBUILD Syntax

Use ALTER INDEX REBUILD to rebuild an index, rebuild an index partition, resume a
failed operation, replace index metadata, add stopwords to an index, or add sections
and stop sections to an index.

The ALTER INDEX REBUILD syntax has its own subsyntax. That is, its parameters have
their own syntax. For example, the ALTER INDEX REBUILD PARAMETERS statement can
take either REPLACE or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS
('REPLACE') has several arguments it can take.

Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n

ALTER INDEX REBUILD PARAMETERS (SYNC memsize)

ALTER INDEX REBUILD PARAMETERS (REPLACE DATASTORE datastore_pref)
ALTER INDEX REBUILD PARAMETERS (REPLACE WORDLIST wordlist_pref)

This is the syntax for ALTER INDEX REBUILD:

ALTER INDEX [schema.]index [REBUILD] [PARTITION partname] [ONLINE] [PARAMETERS
(paramstring)] [PARALLEL N]J;

1-4 Oracle Text Reference

ALTER INDEX

PARTITION partname
Rebuilds the index partition partname. Only one index partition can be built at a time.

When you rebuild a partition you can specify only RESUME or REPLACE in paramstring.
These operations work only on the partname you specify.

With the REPLACE operation, you can specify only MEMORY and STORAGE for each index
partition.

Adding Partitions To add a partition to the base table, use the ALTER TABLE SQL
statement. When you add a partition to an indexed table, Oracle Text automatically
creates the metadata for the new index partition. The new index partition has the same
name as the new table partition. Change the index partition name with ALTER INDEX
RENAME.

Splitting or Merging Partitions Splitting or merging a table partition with ALTER
TABLE renders the index partitions invalid. You must rebuild them with ALTER INDEX
REBUILD.

[ONLINE]
Enables you to continue to perform updates, insertions, and deletions on a base table.
It does not enable you to query the base table.

Note: You can specify REPLACE or RESUME when rebuilding an
index or an index partition ONLINE.

PARAMETERS (paramstring)
Optionally specify paramstring. If you do not specify paramstring, then Oracle Text
rebuilds the index with existing preference settings.

The syntax for paramstring is as follows:

paramstring =

'REPLACE
[DATASTORE datastore_pref]
[FILTER filter pref]
[LEXER Iexer pref]
[WORDLIST wordlist_pref]
[STORAGE storage_pref]
[STOPLIST stoplist]
[SECTION GROUP section_group]
[MEMORY memsize

[[POPULATE \ NOPOPULATE]

[INDEX SET index set]

[METADATA preference new preferencel]

[METADATA FORMAT COLUMN format_column_name]

[[METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
[[METADATA] TRANSACTIONAL|NONTRANSACTIONAL

RESUME [memory memsize]

OPTIMIZE [token index token | fast | full [maxtime (time | unlimited)]
SYNC [memory memsize]

ADD STOPWORD word [language language]

ADD ZONE SECTION section_name tag tag

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]

ADD ATTR SECTION section_name tag tag@attr

ADD STOP SECTION tag'

Oracle Text SQL Statements and Operators 1-5

ALTER INDEX

REPLACE [optional_preference_list]
Rebuilds an index. You can optionally specify your own preferences, or
system-defined preferences.

You can replace only preferences that are supported for that index type. For instance,
you cannot replace index set for a CONTEXT or CTXRULE index. Similarly, for the CTXCAT
index type, you can replace lexer, wordlist, storage index set, and memory preferences.

The POPULATE parameter is the default and need not be specified. If you want to empty
the index of its contents, then specify NOPOPULATE. Clear an index of its contents when
you must rebuild your index incrementally. The NOPOPULATE choice is available for a
specific partition of the index, and not just for the entire index.

If you are rebuilding a partitioned index using the REPLACE parameter, then you can
specify only STORAGE, MEMORY, and NOPOPULATE.

See Also: Chapter 2, "Oracle Text Indexing Elements" for more
information about creating and setting preferences, including
information about system-defined preferences

REPLACE METADATA preference new_preference

Replaces the existing preference class settings, including SYNC parameters, of the
index with the settings from new_preference. Only index preferences and attributes
are replaced. The index is not rebuilt.

This statement is useful for when you want to replace a preference and its attribute
settings after the index is built, without reindexing all data. Reindexing data can
require significant time and computing resources.

This statement is also useful for changing the SYNC parameter type, which can be
automatic, manual, or on-commit.

The ALTER INDEX REBUILD PARAMETER ('REPLACE METADATA') statement does not
work for a local partitioned index at the global level for the index. You cannot, for
example, use this syntax to change a global preference, such as filter or lexer type,
without rebuilding the index. Use ALTER INDEX PARAMETERS instead to change the
metadata of an index at the global level, including all partitions. See "ALTER INDEX
PARAMETERS Syntax" on page 1-3.

When should I use the METADATA keyword? REPLACE METADATA should be used
only when the change in index metadata will not lead to an inconsistent index, which
can lead to incorrect query results.

For example, use this statement in the following instances:

s To go from a single-language lexer to a multilexer in anticipation of multilingual
data. For an example, see "Replacing Index Metadata: Changing Single-Lexer to
Multilexer" on page 1-13.

s To change the WILDCARD_MAXTERMS setting in BASIC_WORDLIST.

s To change the SYNC parameter type, which can be automatic, manual, or
on-commit.

These changes are safe and will not lead to an inconsistent index that might adversely
affect your query results.

1-6 Oracle Text Reference

ALTER INDEX

Caution:

The REPLACE METADATA statement can result in

inconsistent index data, which can lead to incorrect query results.
As such, Oracle does not recommend using this statement, unless
you carefully consider the effect it will have on the consistency of
your index data and subsequent queries.

There can be many instances when changing metadata can result in inconsistent index
data. For example, Oracle recommends against using the METADATA keyword after
performing the following procedures:

s Changing the USER_DATASTORE procedure to a new PL/SQL stored procedure
that has different output.

s Changing the BASIC_WORDLIST attribute PREFIX_INDEX from NO to YES because
no prefixes have been generated for existing documents. Changing it from YES to

NO is safe.

= Adding or changing BASIC_LEXER printjoin and skipjoin characters, because new
queries with these characters would be lexed differently from how these characters
were lexed at index time.

In these unsafe cases, Oracle recommends rebuilding the index.

REPLACE [METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies SYNC for automatic synchronization of the CONTEXT index when a DML
change has occurred to the base table. You can specify one of the SYNC methods shown

in Table 1-1.

Table 1-1 ALTER INDEX SYNC Methods

SYNC Type

Description

MANUAL

EVERY interval-string

Means no automatic synchronization. This is the default. You
must manually synchronize the index using CTX_DDL.SYNC_
INDEX.

Use MANUAL to disable ON COMMIT and EVERY synchronization.

Automatically synchronize the index at a regular interval
specified by the value of interval-string, which takes the same
syntax as that for scheduler jobs. Automatic synchronization
using EVERY requires that the index creator have CREATE JOB
privileges.

Ensure that interval-string is set to a long enough period so that
any previous synchronization jobs will have completed.
Otherwise, the synchronization job may hang. The interval-string
argument must be enclosed in double quotation marks (”).

See "Enabling Automatic Index Synchronization" on page 1-48
for an example of automatic synchronization syntax.

Oracle Text SQL Statements and Operators 1-7

ALTER INDEX

Table 1-1 (Cont.) ALTER INDEX SYNC Methods

SYNC Type Description

ON COMMIT Synchronize the index immediately after a commit. The commit
does not return until the sync is complete. (Because the
synchronization is performed as a separate transaction, there
may be a time period, usually small, when the data is committed
but index changes are not.)

The operation uses the memory specified with the memory
parameter.

Note that the sync operation has its own transaction context. If
this operation fails, the data transaction still commits. Index
synchronization errors are logged in the CTX_USER_INDEX_
ERRORS view. See "Viewing Index Errors" under CREATE INDEX.

See "Enabling Automatic Index Synchronization" on page 1-48
for an example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync: (ON COMMIT,
EVERY, or MANUAL). The type of sync specified in master parameter strings applies to all
index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. The syntax is:

. EVERY interval_string MEMORY mem_size PARALLEL paradegree ...

ON COMMIT synchronizations can only be executed serially and at the same memory size
as what was specified at index creation.

Note: This command rebuilds the index. When you want to
change the SYNC setting without rebuilding the index, use the
REBUILD REPLACE METADATA SYNC (MANUAL | ON COMMIT)
operation.

REPLACE [METADATA] TRANSACTIONAL | NONTRANSACTIONAL
This parameter enables you to turn the TRANSACTIONAL property on or off. For more
information, see "TRANSACTIONAL" on page 1-47.

Using this parameter only succeeds if there are no rows in the DML pending queue.
Therefore, you may need to sync the index before issuing this command.

To turn on the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS('replace metadata transactional');

or

ALTER INDEX myidx REBUILD PARAMETERS ('replace transactional');

To turn off the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS ('replace metadata nontransactional');

or

ALTER INDEX myidx REBUILD PARAMETERS('replace nontransactional');

1-8 Oracle Text Reference

ALTER INDEX

RESUME [MEMORY memsize]
Resumes a failed index operation. You can optionally specify the amount of memory
to use with memsize.

Note: This ALTER INDEX operation applies only to CONTEXT and
CTXRULE indexes. It does not apply to CTXCAT indexes.

OPTIMIZE [token index_token | fast | full [maxtime (time | unlimited)]

Note: This ALTER INDEX operation will not be supported in future
releases.

To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Optimizes the index. Specify token, fast, or full optimization. You typically
optimize after you synchronize the index.

When you optimize in token mode, Oracle Text optimizes only index_token. Use this
method of optimization to quickly optimize index information for specific words.

When you optimize in fast mode, Oracle Text works on the entire index, compacting
fragmented rows. However, in fast mode, old data is not removed.

When you optimize in full mode, you can optimize the whole index or a portion. This
method compacts rows and removes old data (deleted rows).

Note: Optimizing in full mode runs even when there are no
deleted document rows. This is useful when you must optimize
time-limited batches with the maxtime parameter.

Use the maxtime parameter to specify in minutes the time Oracle Text is to spend on
the optimization operation. Oracle Text starts the optimization where it left off and
optimizes until complete or until the time limit has been reached, whichever comes
first. Specifying a time limit is useful for automating index optimization, where you set
Oracle Text to optimize the index for a specified time on a regular basis.

When you specify maxtime unlimited, the entire index is optimized. This is the
default. When you specify 0 for maxtime, Oracle Text performs minimal optimization.

Log the progress of optimization by writing periodic progress updates to the CTX_
OUTPUT log. An event for CTX_OUTPUT.ADD_EVENT, called CTX_OUTPUT.EVENT_OPT_
PRINT_TOKEN, prints each token as it is being optimized.

Note: This ALTER INDEX operation applies only to CONTEXT and
CTXRULE indexes. It does not apply to CTXCAT indexes.

SYNC [MEMORY memsize]

Note: This ALTER INDEX operation will not be supported in future
releases.

To synchronize your index, use CIX_DDL.SYNC_INDEX.

Oracle Text SQL Statements and Operators 1-9

ALTER INDEX

Synchronizes the index. You can optionally specify the amount of run-time memory to
use with memsize. Synchronize the index when you have DML operations on your
base table.

Note: This ALTER INDEX operation applies only to CONTEXT and
CTXRULE indexes. It does not apply to CTXCAT indexes.

Memory Considerations The memory parameter memsize specifies the amount of
memory Oracle Text uses for the ALTER INDEX operation before flushing the index to
disk. Specifying a large amount of memory improves indexing performance because
there is less I/O and improves query performance and maintenance because there is
less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful if you want to track indexing progress or when run-time memory
is scarce.

ADD STOPWORD word [language /language]
Dynamically adds a stopword word to the index.

Index entries for word that existed before this operation are not deleted. However,
subsequent queries on word are treated as though it has always been a stopword.

When your stoplist is a multilanguage stoplist, you must specify language.

The index is not rebuilt by this statement.

ADD ZONE SECTION section_name tag tag
Dynamically adds the zone section section_name identified by tag to the existing
index.

The added section section_name applies only to documents indexed after this
operation. For the change to take effect, you must manually re-index any existing
documents that contain the tag.

The index is not rebuilt by this statement.

Note: This ALTER INDEX operation applies only to CONTEXT and
CTXRULE indexes. It does not apply to CTXCAT indexes.

See Also: "Notes" on page 1-15

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
Dynamically adds the field section section_name identified by tag to the existing
index.

Optionally specify VISIBLE to make the field sections visible. The default is INVISIBLE.

See Also: CTX_DDL.ADD FIELD_SECTION for more
information on visible and invisible field sections.

The added section section_name applies only to documents indexed after this
operation. For the change to affect previously indexed documents, you must explicitly
re-index the documents that contain the tag.

This statement does not rebuild the index.

1-10 Oracle Text Reference

ALTER INDEX

Note: This ALTER INDEX operation applies only to CONTEXT CTXRULE
indexes. It does not apply to CTXCAT indexes.

See Also: "Notes" on page 1-15

ADD ATTR SECTION section_name tag tag@attr

Dynamically adds an attribute section section_name to the existing index. You must
specify the XML tag and attribute in the form tag@attr. You can add attribute sections
only to XML section groups.

The added attribute section section_name applies only to documents indexed after
this operation. For the change to take effect, you must manually re-index any existing
documents that contain the tag.

The index is not rebuilt by this statement.

Note: This ALTER INDEX operation applies only to CONTEXT CTXRULE
indexes. It does not apply to CTXCAT indexes.

See Also: "Notes" on page 1-15.

ADD STOP SECTION tag

Dynamically adds the stop section identified by tag to the existing index. As stop
sections apply only to automatic sectioning of XML documents, the index must use the
AUTO_SECTION_GROUP section group. The tag you specify must be case sensitive and
unique within the automatic section group or else ALTER INDEX raises an error.

The added stop section tag applies only to documents indexed after this operation.
For the change to affect previously indexed documents, you must explicitly re-index
the documents that contain the tag.

The text within a stop section can always searched.
The number of stop sections you can add is unlimited.

The index is not rebuilt by this statement.

See Also: "Notes" on page 1-15

Note: This ALTER INDEX operation applies only to CONTEXT indexes.
It does not apply to CTXCAT indexes.

PARALLEL n

Using 1, you can optionally specify the parallel degree for parallel indexing. This
parameter is supported only when you use SYNC, REPLACE, and RESUME in
paramstring. The actual degree of parallelism might be smaller depending on your
resources.

Parallel indexing can speed up indexing when you have large amounts of data to
index and when your operating system supports multiple CPUs.

Oracle Text SQL Statements and Operators 1-11

ALTER INDEX

ALTER INDEX Examples

Resuming Failed Index

The following statement resumes the indexing operation on newsindex with 2
megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS ('resume memory 2M');

Rebuilding an Index

The following statement rebuilds the index, replacing the stoplist preference with new_
stop.

ALTER INDEX newsindex REBUILD PARAMETERS ('replace stoplist new_stop');

Rebuilding a Partitioned Index

The following example creates a partitioned text table, populates it, and creates a
partitioned index. It then adds a new partition to the table and rebuilds the index with
ALTER INDEX as follows:

PROMPT create partitioned table and populate it

create table part_tab (a int, b varchar2(40)) partition by range(a)
(partition p_tabl values less than (10),

partition p_tab2 values less than (20),

partition p_tab3 values less than (30));

insert into part_tab values (1, 'Actinidia deliciosa');

insert into part_tab values (8, 'Distictis buccinatoria');

insert into part_tab values (12, 'Actinidia quinata');

insert into part_tab values (18, 'Distictis Rivers');

insert into part_tab values (21, 'pandorea jasminoides Lady Di');
insert into part_tab values (28, 'pandorea rosea');

commit;

PROMPT create partitioned index
create index part_idx on part_tab(b) indextype is ctxsys.context
local (partition p_idxl, partition p_idx2, partition p_idx3);

PROMPT add a partition and populate it

alter table part_tab add partition p_tab4 values less than (40);
insert into part_tab values (32, 'passiflora citrina');

insert into part_tab values (33, 'passiflora alatocaerulea');
commit;

The following statement rebuilds the index in the newly populated partition. In
general, the index partition name for a newly added partition is the same as the table
partition name, unless the name has already been used. In this case, Oracle Text
generates a new name.

alter index part_idx rebuild partition p_tab4;

The following statement queries the table for the two hits in the newly added
partition:

select * from part_tab where contains(b, 'passiflora') >0;

The following statement queries the newly added partition directly:

1-12 Oracle Text Reference

ALTER INDEX

select * from part_tab partition (p_tab4) where contains(b, 'passiflora') >;

Replacing Index Metadata: Changing Single-Lexer to Multilexer

The following example demonstrates how an application can migrate from
single-language documents (English) to multilanguage documents (English and
Spanish) by replacing the index metadata for the lexer.

REM creates a simple table, which stores only English (American) text

create table simple (text varchar2(80));
insert into simple values ('the quick brown fox');
commit;

REM create a simple lexer to lex this English text

begin

ctx_ddl.create_preference('us_lexer', 'basic_lexer');
end;
/

REM create a text index on the simple table
create index simple_idx on simple(text)
indextype is ctxsys.context parameters ('lexer us_lexer');

REM we can query easily
select * from simple where contains(text, 'fox')>0;

REM now suppose we want to start accepting Spanish documents.
REM first we have to extend the table with a language column
alter table simple add (lang varchar2(10) default 'us');

REM now let's create a Spanish lexer,

begin
ctx_ddl.create_preference('e_lexer', 'basic_lexer');
ctx_ddl.set_attribute('e_lexer', 'base_letter', 'ves');

end;

/

REM Then create a multilexer incorporating our English and Spanish lexers.

REM Note that the DEFAULT lexer 1is the exact same lexer, with which we have

REM have already indexed all the documents.

begin
ctx_ddl.create_preference('m lexer', 'multi_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'default', 'us_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'spanish', 'e_lexer');

end;

/

REM next replace our metadata

alter index simple_idx rebuild

parameters ('replace metadata language column lang lexer m_lexer');

REM We are ready for some Spanish data. Note that we could have inserted
REM this BEFORE the alter index, as long as we did not SYNC.

insert into simple values ('el zorro marrón rápido', 'e');
commit;

exec ctx_ddl.sync_index('simple_idx');

REM now query the Spanish data with base lettering:

select * from simple where contains(text, 'rapido')>0;

Oracle Text SQL Statements and Operators 1-13

ALTER INDEX

Optimizing the Index
To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Synchronizing the Index
To synchronize your index, use CTX_DDL.SYNC_INDEX.

Adding a Zone Section

To add to the index the zone section author identified by the tag <author>, enter the
following statement:

ALTER INDEX myindex REBUILD PARAMETERS('add zone section author tag author');

Adding a Stop Section
To add a stop section identified by tag <f1luff> to the index that uses the AUTO_
SECTION_GROUP, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS ('add stop section fluff');

Adding an Attribute Section
Assume that the following text appears in an XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

Assume also that you want to create a separate section for the title attribute and you
want to name the new attribute section booktitle. To do so, enter the following
statement:

ALTER INDEX myindex REBUILD PARAMETERS('add attr section booktitle tag
title@book') ;

Using Flashback Queries

If a Text query is flashed back to a point before an ALTER INDEX statement was issued
on the Text index for which the query is being run, then:

» The query optimizer will not choose the index access path for that given index
because the index is treated according to its creation time with ALTER INDEX.
Therefore, to the query optimizer, the index is perceived not to exist.

= The functional processing of the Text operator will fail with ORA-01466 or
ORA-08176 errors if the ALTER INDEX statement involves re-creation of DR$ index
tables.

To work around this issue, use the DBMS_FLASHBACK package. For example:

EXEC dbms_flashback.enable_at_system_change_number (:scn) ;
SELECT id from documents WHERE CONTAINS (text, 'oracle')>0;
EXEC dbms_flashback.disable;

Note: In previous releases, flashback Text queries using AS OF
predicates with Text operators such as CONTAINS and CATSEARCH are
not supported.

See Also: "Using DBMS_FLASHBACK Package" in Oracle Database
Development Guide

1-14 Oracle Text Reference

ALTER INDEX

Notes
Add Section Constraints
Before altering the index section information, Oracle Text checks the new section
against the existing sections to ensure that all validity constraints are met. These
constraints are the same for adding a section to a section group with the CTX_DDL
PL/SQL package and are as follows:
= You cannot add zone, field, or stop sections to a NULL_SECTION_GROUP.
= You cannot add zone, field, or attribute sections to an automatic section group.
= You cannot add attribute sections to anything other than XML section groups.
= You cannot have the same tag for two different sections.
m Section names for zone, field, and attribute sections cannot intersect.
= You cannot exceed 64 fields per section.
= You cannot add stop sections to basic, HTML, XML, or news section groups.
= SENTENCE and PARAGRAPH are reserved section names.

Related Topics

CTX_DDL.SYNC_INDEX in Chapter 7, "CTX_DDL Package"
CTX_DDL.OPTIMIZE_INDEX in Chapter 7, "CTX_DDL Package"
CREATE INDEX on page 1-36

Oracle Text SQL Statements and Operators 1-15

ALTER TABLE: Supported Partitioning Statements

ALTER TABLE: Supported Partitioning Statements

Note: This section describes the ALTER TABLE statement as it
pertains to adding and modifying a partitioned text table with a
context domain index.

For a complete description of the ALTER TABLE statement, see Oracle
Database SQL Language Reference.

Purpose

Use the ALTER TABLE statement to add, modify, split, merge, exchange, or drop a
partitioned text table with a context domain index. The following sections describe
some of the ALTER TABLE operations.

Modify Partition Syntax

Unusable Local Indexes
ALTER TABLE [schema.]table MODIFY PARTITION partition UNUSABLE LOCAL INDEXES

Marks the index partition corresponding to the given table partition UNUSABLE. You
might mark an index partition unusable before you rebuild the index partition as
described in "Rebuild Unusable Local Indexes".

If the index partition is not marked unusable, then the statement returns without
actually rebuilding the local index partition.

Rebuild Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition REBUILD UNUSABLE LOCAL
INDEXES

Rebuilds the index partition corresponding to the specified table partition that has an
UNUSABLE status.

Note: If the index partition status is already VALID before you
enter this statement, then this statement does not rebuild the index
partition. Do not depend on this statement to rebuild the index
partition unless the index partition status is UNUSABLE.

Add Partition Syntax

ALTER TABLE [schema.]table ADD PARTITION [partition]
VALUES LESS THAN (value_list) [partition_description]

Adds a new partition to the high end of a range-partitioned table.

To add a partition to the beginning or to the middle of the table, use the ALTER TABLE
SPLIT PARTITION statement.

The newly added table partition is always empty, and the context domain index (if
any) status for this partition is always VALID. After issuing DML, if you want to
synchronize or optimize this newly added index partition, then you must look up the
index partition name and enter the ALTER INDEX REBUILD PARTITION statement. For this

1-16 Oracle Text Reference

ALTER TABLE: Supported Partitioning Statements

newly added partition, the index partition name is usually the same as the table
partition name, but if the table partition name is already used by another index
partition, the system assigns a name in the form of SYS_pn.

By querying the USER_IND_PARTITIONS view and comparing the HIGH_VALUE field, you
can determine the index partition name for the newly added partition.

Merge Partition Syntax

ALTER TABLE [schema.]table

MERGE PARTITIONS partitionl, partition2

[INTO PARTITION [new partition] [partition_description]]
[UPDATE GLOBAL INDEXES]

Applies only to a range partition. This statement merges the contents of two adjacent
partitions into a new partition and then drops the original two partitions. If the
resulting partition is non-empty, then the corresponding local domain index partition
is marked UNUSABLE. You can use ALTER TABLE MODIFY PARTITION to rebuild the
partition index.

For a global, nonpartitioned index, if you perform the merge operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the resulting index partition is the same as in the ALTER
TABLE ADD PARTITION statement.

Split Partition Syntax

ALTER TABLE [schema.]table

SPLIT PARTITION partition_name_old

AT (value_list)

[into (partition_description, partition_description)]
[prallel_clause]

[UPDATE GLOBAL INDEXES]

Applies only to range partitions. This statement divides a table partition into two
partitions, thus adding a new partition to the table. The local corresponding index
partitions will be marked UNUSABLE if the corresponding table partitions are
non-empty. Use the ALTER TABLE MODIFY PARTITION statement to rebuild the partition
indexes.

For a global, nonpartitioned index, if you perform the split operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the two resulting index partition is the same as in the
ALTER TABLE ADD PARTITION statement.

Exchange Partition Syntax

ALTER TABLE [schema.]table EXCHANGE PARTITION partition WITH TABLE table
[INCLUDING|EXCLUDING INDEXES}

[WITH|WITHOUT VALIDATION]

[EXCEPTIONS INTO [schema.]table]

[UPDATE GLOBAL INDEXES]

Oracle Text SQL Statements and Operators 1-17

ALTER TABLE: Supported Partitioning Statements

Converts a partition to a nonpartitioned table, and converts a table to a partition of a
partitioned table by exchanging their data segments. Rowids are preserved.

If EXCLUDING INDEXES is specified, all the context indexes corresponding to the
partition and all the indexes on the exchanged table are marked as UNUSABLE. To
rebuild the new index partition in this case, issue an ALTER TABLE MODIFY PARTITION
statement.

If INCLUDING INDEXES is specified, then for every local domain index on the
partitioned table, there must be a nonpartitioned domain index on the nonpartitioned
table. The local index partitions are exchanged with the corresponding regular
indexes.

For a global, nonpartitioned index, if you perform the exchange operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

Field Sections

Field section queries might not work the same way if the nonpartitioned index and
local index use different section IDs for the same field section.

Storage

Storage is not changed. So if the index on the nonpartitioned table $I table was in
tablespace XYZ, then after the exchange partition, it will still be in tablespace XYZ, but
now it is the $I table for an index partition.

Storage preferences are not switched, so if you switch and then rebuild the index, then
the table may be created in a different location.

Restrictions

Both indexes must be equivalent. They must use the same objects and the same
settings for each object. Note that Oracle Text checks only that the indexes are using
the same object. But they should use the same exact everything.

No index object can be partitioned, that is, when the user has used the storage object to
partition the $I, $N tables.

If either index or index partition does not meet all these restrictions an error is raised
and both the index and index partition will be INVALID. You must manually rebuild
both index and index partition using the ALTER INDEX REBUILD statement.

Truncate Partition Syntax

ALTER TABLE [schema.]table TRUNCATE PARTITION [DROP|REUSE STORAGE] [UPDATE GLOBAL
INDEXES]

Removes all rows from a partition in a table. Corresponding CONTEXT index partitions
are also removed.

For a global, nonpartitioned index, if you perform the truncate operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation, the index will be valid.

1-18 Oracle Text Reference

ALTER TABLE: Supported Partitioning Statements

ALTER TABLE Examples

Global Index on Partitioned Table Examples
The following example creates a range-partitioned table with three partitions. Each

partition is populated with two rows. A global, nonpartitioned CONTEXT index is then

created. To demonstrate the UPDATE GLOBAL INDEXES clause, the partitions are split
and merged with an index synchronization.

create table tdrexglb_part(a int, b varchar2(40)) partition by range(a)
(partition pl values less than (10),

partition p2 values less than (20),

partition p3 values less than (30));

insert into tdrexglb_part values (1, 'rowl');
insert into tdrexglb_part values (8, 'row2');
insert into tdrexglb_part values (11, 'rowll');

(
(
(
insert into tdrexglb_part values (18, 'rowl8'
insert into tdrexglb_part values (
insert into tdrexglb_part values (
commit;
create index tdrexglb_parti on tdrexglb_part(b) indextype is ctxsys.context;

create table tdrexglb(a int, b varchar2(40));

insert into tdrexglb values (20, 'newrow20');
commit;

PROMPT make sure query works
select * from tdrexglb_part where contains(b, 'rowl8') >0;

PROMPT split partition
alter table tdrexglb_part split partition p2 at (15) into
(partition p21, partition p22) update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b, 'rowll') >0;
select * from tdrexglb_part where contains(b, 'rowl8') >0;

exec ctx_ddl.sync_index ('tdrexglb_parti')

PROMPT after sync
select * from tdrexglb_part where contains(b, 'rowll') >0;
select * from tdrexglb_part where contains(b, 'rowl8') >0;

PROMPT merge partition
alter table tdrexglb_part merge partitions p22, p3
into partition pnew3 update global indexes;

PROMPT before sync

select * from tdrexglb_part where contains (b, 'rowl8') >0;
select * from tdrexglb_part where contains(b, 'row28') >0;
exec ctx_ddl.sync_index('tdrexglb parti');

PROMPT after sync

select * from tdrexglb_part where contains(b, 'rowl8') >0;
select * from tdrexglb_part where contains (b, 'row28') >0;

Oracle Text SQL Statements and Operators

ALTER TABLE: Supported Partitioning Statements

PROMPT drop partition
alter table tdrexglb_part drop partition pl update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b, 'rowl') >0;
exec ctx_ddl.sync_index('tdrexglb parti');

PROMPT after sync
select * from tdrexglb_part where contains(b, 'rowl') >0;

PROMPT exchange partition
alter table tdrexglb_part exchange partition pnew3 with table
tdrexglb update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains (b, 'newrow20') >0;
select * from tdrexglb_part where contains(b, 'row28') >0;

exec ctx_ddl.sync_index('tdrexglb parti');

PROMPT after sync

select * from tdrexglb_part where contains (b, 'newrow20') >0;
select * from tdrexglb_part where contains (b, 'row28') >0;

PROMPT move table partition

alter table tdrexglb_part move partition p2l update global indexes;
PROMPT before sync

select * from tdrexglb_part where contains(b, 'rowll') >0;

exec ctx_ddl.sync_index('tdrexglb_parti');
PROMPT after sync

select * from tdrexglb_part where contains(b, 'rowll') >0;

PROMPT truncate table partition
alter table tdrexglb_part truncate partition p2l update global indexes;

update global indexes;

1-20 Oracle Text Reference

CATSEARCH

CATSEARCH

Use the CATSEARCH operator to search CTXCAT indexes. Use this operator in the WHERE
clause of a SELECT statement.

The CATSEARCH operator also supports database links. You can identify a remote table
or materialized view by appending @dblink to the end of its name. The dblink must
be a complete or partial name for a database link to the database containing the remote
table or materialized view. (Indexing of remote views is not supported.)

The grammar of this operator is called CTXCAT. You can also use the CONTEXT grammar
if your search criteria require special functionality, such as thesaurus, fuzzy matching,
proximity searching, or stemming. To utilize the CONTEXT grammar, use the Query
Template Specification in the text_query parameter as described in this section.

About Performance

Limitations

Syntax

Use the CATSEARCH operator with a CTXCAT index mainly to improve mixed-query
performance. Specify your text query condition with text_query and your structured
condition with the structured_guery argument.

Internally, Oracle Text uses a combined B-tree index on text and structured columns to
quickly produce results satisfying the query.

If the optimizer chooses to use the functional query invocation, then your query will
fail. The optimizer might choose functional invocation when your structured clause is
highly selective.

The structured_query argument of the CATSEARCH operator must reference columns
used during CREATE INDEX sets; otherwise, error DRG-10845 will be raised. For
example, the error will be raised if you issue a CATSEARCH query on a view created on
top of a table with the CTXCAT index on it, and the name of the logical column on the
view is different from the actual column name on the physical table. The columns
referenced by the structured_guery argument of the CATSEARCH operator must be the
physical column name used during CREATE INDEX sets, not the logical column on the
view.

CATSEARCH (

[schema.]column,

text_query [VARCHAR? | CLOB] ,
structured_query VARCHAR2,

RETURN NUMBER;

[schema.]column
Specifies the text column to be searched on. This column must have a CTXCAT index
associated with it.

text_query
Specify one of the following to define your search in column:

» CATSEARCH Query Operations

s Query Template Specification (for using CONTEXT grammar)

Oracle Text SQL Statements and Operators 1-21

CATSEARCH

CATSEARCH Query Operations
The CATSEARCH operator supports only the following query operations:

Logical AND
Logical R (1)
Logical NOT (-)

(quoted phrases)
Wildcarding

Table 1-2 provides the syntax for these operators.

Table 1-2 CATSEARCH Query Operators

Operation Syntax Description of Operation

Logical AND abc Returns rows that contain a, b, and c.
Logical OR alblc Returns rows that contain a, b, or c.
Logical NOT a-b Returns rows that contain a and not b.
Hyphen withno a-b Hyphen treated as a regular character.
space

nn

For example, if the hyphen is defined as skipjoin,
words such as web-site are treated as the single query
term website.

Likewise, if the hyphen is defined as a printjoin, words
such as web-site are treated as web-site in the CTXCAT
query language.

"abc" Returns rows that contain the phrase "ab c".

For example, entering "Sony CD Player" means return
all rows that contain this sequence of words.

O (AB) I C Parentheses group operations. This query is equivalent
to the CONTAINS query (A &B) | C.

Wildcard term* The wildcard character matches zero or more
characters.

(right and double a*b

truncated) For example, do* matches dog, and gl*s matches glass.

Left truncation not supported.

Note: Oracle recommends that you create a prefix
index if your application uses wildcard searching. Set
prefix indexing with the BASIC_WORDLIST
preference.

The following limitations apply to these operators:

The left-hand side (the column name) must be a column named in at least one of
the indexes of the index set.

The left-hand side must be a plain column name. Functions and expressions are
not allowed.

The right-hand side must be composed of literal values. Functions, expressions,
other columns, and subselects are not allowed.

Multiple criteria can be combined with AND. Note that OR is not supported.

When querying a remote table through a database link, the database link must be
specified for CATSEARCH as well as for the table being queried.

1-22 Oracle Text Reference

CATSEARCH

For example, these expressions are supported:

catsearch(text, 'dog', 'foo > 15')

catsearch(text, 'dog', 'bar = ''SMITH''')
catsearch(text, 'dog', 'foo between 1 and 15')
catsearch(text, 'dog', 'foo = 1 and abc = 123')
catsearch@remote(text, 'dog', 'foo = 1 and abc = 123'")

These expressions are not supported:

catsearch(text, 'dog', 'upper(bar) = ''A''")
catsearch(text, 'dog', 'bar LIKE ''A%''')
catsearch(text, 'dog', 'foo = abc')
catsearch(text, 'dog', 'foo = 1 or abc = 3')

Query Template Specification

Specifies a marked-up string that specifies a query template. Specify one of the
following templates:

= Query rewrite, used to expand a query string into different versions

= Progressive relaxation, used to progressively enter less restrictive versions of a
query to increase recall

= Alternate grammar, used to specify CONTAINS operators (See "CONTEXT Query
Grammar Examples" on page 1-25)

= Alternate language, used to specify alternate query language

= Alternate scoring, used to specify alternate scoring algorithms

See Also: The text_query parameter description for CONTAINS on
page 1-28 for more information about the syntax for these query
templates

structured_query

Specifies the structured conditions and the ORDER BY clause. There must exist an index
for any column you specify. For example, if you specify 'category_id=1 order by
bid_close', you must have an index for 'category_id, bid_close' as specified with
the CTX_DDL.ADD_INDEX package.

With structured_query, you can use standard SQL syntax only with the following
operators:

[] <=

[] >=

[] >

u <

L] IN

s BETWEEN

= AND (to combine two or more clauses)

Note: You cannot use parentheses () in the structured_query
parameter.

Oracle Text SQL Statements and Operators 1-23

CATSEARCH

Examples
1. Create the table.

The following statement creates the table to be indexed:

CREATE TABLE auction (category_id number primary key, title varchar2(20),
bid_close date);

The following table inserts the values into the table:

INSERT INTO auction values
INSERT INTO auction values
INSERT INTO auction values
INSERT INTO auction values

(1, 'Sony CD Player', '20-FEB-2000');

(

(

(
INSERT INTO auction values (

(

(

(

1
2, 'Sony CD Player', '24-FEB-2000");
3, 'Pioneer DVD Player', '25-FEB-2000');
4, 'Sony CD Player', '25-FEB-2000');
5, 'Bose Speaker', '22-FEB-2000');

6, 'Tascam CD Burner', '25-FEB-2000'");

7, 'Nikon digital camera', '22-FEB-2000');
8, 'Canon digital camera', '26-FEB-2000"');

INSERT INTO auction values
INSERT INTO auction values
INSERT INTO auction values

1. Create the CTXCAT index:
The following statements create the CTXCAT index:

begin

ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset', 'bid_close');

end;

/

CREATE INDEX auction_titlex ON auction(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ('index set auction_iset');

1. Query the Table:

A typical query with CATSEARCH might include a structured clause as follows to find all
rows that contain the word camera ordered by bid_close:

SELECT * FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close desc')>
0;

CATEGORY_ID TITLE BID_CLOSE

8 Canon digital camera 26-FEB-00
7 Nikon digital camera 22-FEB-00

The following query finds all rows that contain the phrase Sony CD Player and that
have a bid close date of February 20, 2000:

SELECT * FROM auction WHERE CATSEARCH(title, '"Sony CD Player"',
'bid_close=''20-FEB-00"'"'")> 0;

CATEGORY_ID TITLE BID_CLOSE

1 Sony CD Player 20-FEB-00

The following query finds all rows with the terms Sony and CD and Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'Sony CD Player', 'order by bid_close

desc')> 0;

CATEGORY_ID TITLE BID_CLOSE
4 Sony CD Player 25-FEB-00
2 Sony CD Player 24-FEB-00
1 Sony CD Player 20-FEB-00

1-24 Oracle Text Reference

CATSEARCH

The following query finds all rows with the term CD and not Player:
SELECT * FROM auction WHERE CATSEARCH(title, 'CD - Player', 'order by bid_close

desc')> 0;

CATEGORY_ID TITLE BID_CLOSE

6 Tascam CD Burner 25-FEB-00

The following query finds all rows with the terms CD or DVD or Speaker:

SELECT * FROM auction WHERE CATSEARCH (title, 'CD \ DVD \ Speaker', 'order by
bid_close desc')> 0;

CATEGORY_ID TITLE BID_CLOSE
3 Pioneer DVD Player 25-FEB-00
4 Sony CD Player 25-FEB-00
6 Tascam CD Burner 25-FEB-00
2 Sony CD Player 24-FEB-00
5 Bose Speaker 22-FEB-00
1 Sony CD Player 20-FEB-00

The following query finds all rows that are about audio equipment:

SELECT * FROM auction WHERE CATSEARCH(title, 'ABOUT (audio equipment)', NULL)> 0;

CONTEXT Query Grammar Examples

The following examples show how to specify the CONTEXT grammar in CATSEARCH
queries using the template feature:

PROMPT
PROMPT fuzzy: query = ?test
PROMPT should match all fuzzy variations of test (for example, text)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
<textquery grammar="context">
?test
</textquery>
</query>"',"'"')>0
order by pk;

PROMPT
PROMPT fuzzy: query = !sail
PROMPT should match all soundex variations of bot (for example, sell)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
<textquery grammar="context">
Isail
</textquery>
</query>','")>0
order by pk;

PROMPT

PROMPT theme (ABOUT) query

PROMPT query: about(California)
select pk||' ==> '||text from test
where catsearch(text,

Oracle Text SQL Statements and Operators 1-25

CATSEARCH

'<query>
<textquery grammar="context">
about (California)
</textquery>
</query>',"'")>0
order by pk;

The following example shows a field section search against a CTXCAT index using
CONTEXT grammar by means of a query template in a CATSEARCH query:

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE) ;

insert into BOOKS values(l, '<author>NOAM CHOMSKY</author><subject>CIVIL
RIGHTS</subject><language>ENGLISH</language><publisher>MIT
PRESS</publisher>', '01-NOV-2003');

insert into BOOKS values (2, '<author>NICANOR PARRA</author><subject>POEMS
AND ANTIPOEMS</subject><language>SPANISH</language>
<publisher>VASQUEZ</publisher>', '01-JAN-2001"');

insert into BOOKS values(l, '<author>LUC SANTE</author><subject>XML
DATABASE</subject><language>FRENCH</language><publisher>FREE
PRESS</publisher>', '15-MAY-2002');

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set ('BOOK_INDEX_SET');
exec ctx_ddl.add_index ('BOOKSET', 'PUBDATE') ;

exec ctx_ddl.create_section_group ('BOOK_SECTION_GROUP',

'BASIC_SECTION_GROUP') ;
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP', 'AUTHOR', 'AUTHOR');
exec ctx_ddl.add_field_section ('BOOK_SECTION_GROUP', 'SUBJECT', 'SUBJECT');
exec ctx_ddl.add_field_section ('BOOK_SECTION_GROUP', 'LANGUAGE', 'LANGUAGE') ;
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP', 'PUBLISHER', 'PUBLISHER');

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
parameters ('index set book_index_set section group book_section_group');

-- Use the index

-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH) .

-- We need to use query template with CONTEXT grammar to access field

-- sections with CATSEARCH.

select 1d, info from books
where catsearch(info,
'<query>
<textquery grammar="context">
NOAM within author and english within language
</textquery>
</query>",
'order by pubdate')>0;

Related Topics
"Syntax for CTXCAT Index Type" on page 1-52

1-26 Oracle Text Reference

CATSEARCH

Oracle Text Application Developer’s Guide

Oracle Text SQL Statements and Operators 1-27

CONTAINS

CONTAINS

Syntax

Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the
query expression for a Text query.

The CONTAINS operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote
table or materialized view. (Querying of remote views is not supported.)

CONTAINS returns a relevance score for every row selected. Obtain this score with the
SCORE operator.

The grammar for this operator is called the CONTEXT grammar. You can also use CTXCAT
grammar if your application works better with simpler syntax. To do so, use the Query
Template Specification in the text_query parameter as described in this section.

See Also: "The CONTEXT Grammar" topic in Oracle Text Application
Developer’s Guide

CONTAINS (
[schema.]column,
text_guery [VARCHAR2 | CLOB]
[,1label NUMBER])
RETURN NUMBER;

[schema.]column
Specify the text column to be searched on. This column must have a Text index
associated with it.

text_query
Specify one of the following:

» The query expression that defines your search in column.

= A marked-up document that specifies a query template. Use one of the following
templates:

Query Rewrite Template

Use this template to automatically write different versions of a query before you
submit the query to Oracle Text. This is useful when you need to maximize the recall
of a user query. For example, you can program your application to expand a single
phrase query of 'cat dog' into the following queries:

{cat} {dog}
{cat} ; {dog}
{cat} AND {dog}
{cat} ACCUM {dog}

These queries are submitted as one query and results are returned with no duplication.
In this example, the query returns documents that contain the phrase cat dog as well as
documents in which cat is near dog, and documents that have cat and dog.

This is done with the following template:

<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> cat dog

1-28 Oracle Text Reference

CONTAINS

<progression>
<seg><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seqg>

<seg><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite></seqg>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

((

<seg><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
((
((

The operator TRANSFORM is used to specify the rewrite rules and has the following
syntax (note that it uses double parentheses). The parameters are described in
Table 1-3.

TRANSFORM((terms, prefix, suffix, connector))

Table 1-3 TRANSFORM Parameters

Parameter Description

term Specifies the type of terms to be produced from the original query. Specify
either TOKENS or THEMES.

Specifying THEMES requires an installed knowledge base. A knowledge base
may or may not have been installed with Oracle Text. For more information,
see Oracle Text Application Developer’s Guide.

prefix Specifies the literal string to be prepended to all terms.

suffix Specifies the literal string to be appended to all terms.

connector Specifies the literal string to connect all terms after applying the prefix and
suffix.

Note: An error will be raised if the input Text query string specified
in the Query Rewrite Template with TRANSFORM rules contains any
Oracle Text query operators (such as AND, OR, or SOUNDEX). Also, any
special characters (such as % or $) in the input Text query string must
be preceded by an escape character, or an error is raised.

Query Relaxation Template

Use this template to progressively relax your query. Progressive relaxation is when
you increase recall by progressively issuing less restrictive versions of a query, so that
your application can return an appropriate number of hits to the user.

For example, the query of black pen can be progressively relaxed to:

black pen
black NEAR pen
black AND pen
black ACCUM pen

This is done with the following template

<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg>black pen</seqg>
<seg>black NEAR pen</seq>
<seg>black AND pen</seq>
<seg>black ACCUM pen</seq>

Oracle Text SQL Statements and Operators 1-29

CONTAINS

</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Alternate Grammar Template

Use this template to specify an alternate grammar, such as CONTEXT or CATSEARCH.
Specifying an alternate grammar enables you to enter queries using different syntax
and operators.

For example, with CATSEARCH, enter ABOUT queries using the CONTEXT grammar.
Likewise with CONTAINS, enter logical queries using the simplified CATSEARCH syntax.

The phrase ‘dog cat mouse’ is interpreted as a phrase in CONTAINS. However, with
CATSEARCH, this is equivalent to an AND query of ‘dog AND cat AND mouse’. Specify that
CONTAINS use the alternate grammar with the following template:

<query>
<textquery grammar="CTXCAT">dog cat mouse</textquery>
<score datatype="integer"/>

</query>

Alternate Language Template
Use this template to specify an alternate language:

<query><textquery lang="french">bon soir</textquery></query>

Alternative Scoring Template
Use this template to specify an alternative scoring algorithm.
The following example specifies that the query use the CONTEXT grammar and return

integer scores using the COUNT algorithm. This algorithm returns a score as the number
of query occurrences in the document.

<query>
<textquery grammar="CONTEXT" lang="english"> mustang
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

The following example uses the normalization_expr attribute to add SDATA(price) into
the score returned by the query, and uses it as the final score:

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE (dog, RELEVANCE) and cat
</textquery>
<score algorithm="COUNT" normalization_expr ="doc_score+ SDATA(price)"/>
</query>

The normalization_expr attribute is used only with the alternate scoring template,
and is an arithmetic expression that consists of:

= Arithmetic operators: + - * /. The operator precedence is the same as that for SQL
operator precedence.

= Grouping operators: (). Parentheses can be used to alter the precedence of the
arithmetic operators.

= Absolute function: ABS(n) returns the absolute value of #; where 1 is any
expression that returns a number.

1-30 Oracle Text Reference

CONTAINS

s Logarithmic function: LOG(n): returns the base-10 logarithmic value of 1; where n
is any expression that returns a number.

s Predefined components: The doc_score predefined component can be used to
return the initial query score of a particular document.

= SDATA component: SDATA(name) returns the value of the SDATA with the specified
name as the score.

— Only SDATA with a NUMBER or DATE data type is allowed. An error is raised
otherwise.

- The sdata string and the SDATA name are case-insensitive.

— Because an SDATA section value can be NULL, any expression with NULL SDATA
section value is evaluated as 0. For example: the normalization_expr "doc_
score + SDATA(price)" will be evaluated to 0 if SDATA (price) for a given
document has a NULL value.

= Numeric literals: There are any number literal that conforms to the SQL pattern of
NUMBER literal and is within the range of the double-precision floating-point
(-3.4e38 t0 3.4e38).

= Date literals: Date literals must be enclosed with DATE (). Only the following
format is allowed: YYYY-MM-DD or YYYY-MM-DD HH24:MI:SS. For example:
DATE (2005-11-08).

Consistent with SQL, if no time is specified, then 00:00:00 is assumed.

The normalization_expr attribute overrides the algorithm attribute. That is, if
algorithm is set to COUNT, and the user also specifies normalization_expr, then the
score will not be count, but the calculated score based on the normalization_expr.

If the score (either from algorithm = COUNT or normalization_expr =..)is internally
calculated to be greater than 100, then it will be set to 100.

If the query relaxation template is used, the score will be further normalized in such a
way that documents returned from higher sequences will always have higher scores
than documents returned from sequence(s) below.

DATE Literal Restrictions

Only the minus (-) operator is allowed between date-type data (DATE literals and
date-type SDATA). Using other operators will result in an error. Subtracting two
date-type data will produce a number (float) that represents the difference in number
of days between the two dates. For example, the following expression is allowed:

SDATA (dob) - DATE(2005-11-08)

The following expression is not allowed:
SDATA (dob) + DATE(2005-11-08)
The plus (+) and minus (-) operators are allowed between numeric data and date type

of data. The number operand is interpreted as the number or fraction of days. For
example, the following expression is allowed:

DATE(2005-11-08) + 1 = 9 NOV 2005

The following expression is not allowed:

DATE (2005-11-08)* 3 = ERROR

Oracle Text SQL Statements and Operators 1-31

CONTAINS

Template Attribute Values
Table 1-4 gives the possible values for template attributes.

Table 1-4 Template Attribute Values

Tag Attribute Description Possible Values Meaning

grammar= Specifies the CONTEXT The grammar of the query.
grammar of the CTXCAT
query.

datatype= Specifies the type of ~ INTEGER Returns score as integer
number returned as between 0 and 100.
score.

Returns score as its

FLOAT high-precision floating-point
number between 0 and 100.
algorithm= Specifies the scoring ~ DEFAULT Returns the default.
algorlthm to use. COUNT Returns scores as the
number of occurrences in
the document.
lang= Specifies the Any language The language name.
language name. supported by Oracle

Database. See Oracle
Database Globalization
Support Guide.

Template Grammar Definition

The query template interface is an XML document. Its grammar is defined with the
following XML DTD:

<!ELEMENT query (textquery, score?)>

<!ELEMENT textquery (#PCDATA|progression)*>

<!ELEMENT progression (seq)+>

<!ELEMENT seq (#PCDATA|rewrite)*>

<!ELEMENT rewrite (#PCDATA)>

<!ELEMENT score EMPTY>

<!ATTLIST textquery grammar (context | ctxcat) #IMPLIED>
<!ATTLIST textquery language CDATA #IMPLIED>

<!ATTLIST score datatype (integer | float) "integer">
<IATTLIST score algorithm (default | count) "default">

All tags and attributes values are case-sensitive.

See Also: Chapter 3, "Oracle Text CONTAINS Query Operators"
for more information about the operators in query expressions

label
Optionally, specifies the label that identifies the score generated by the CONTAINS
operator.

Returns

For each row selected, the CONTAINS operator returns a number between 0 and 100 that
indicates how relevant the document row is to the query. The number 0 means that
Oracle Text found no matches in the row.

Note: You must use the SCORE operator with a label to obtain this
number.

1-32 Oracle Text Reference

CONTAINS

Example

The following example searches for all documents in the text column that contain the
word oracle. The score for each row is selected with the SCORE operator using a label of
1:

SELECT SCORE(1l), title from newsindex
WHERE CONTAINS (text, 'oracle', 1) > 0;

The CONTAINS operator must be followed by an expression such as > 0, which specifies
that the score value calculated must be greater than zero for the row to be selected.

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS
clause must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS (text, 'oracle', 1) > 0 ORDER BY SCORE(1l) DESC;

The following example specifies that the query be parsed using the CATSEARCH
grammar:

SELECT id FROM test WHERE CONTAINS (text,
'<query>
<textquery lang="ENGLISH" grammar="CATSEARCH">
cheap pokemon
</textquery>
<score datatype="INTEGER"/>
</query>') > 0;

Grammar Template Example

The following example shows how to use the CTXCAT grammar in a CONTAINS query.
The example creates a CTXCAT and a CONTEXT index on the same table, and compares
the query results.

PROMPT create context and ctxcat indexes, both using theme indexing
PROMPT

create index tdrbgcqglOlx on test(text) indextype is ctxsys.context
parameters ('lexer theme_lexer');

create index tdrbgcglOlcx on test(text) indextype is ctxsys.ctxcat
parameters ('lexer theme_lexer');

PROMPT * %k k% San Diego *kkkkkkkkxk
PROMPT ***** CONTEXT grammar KA AKX KKK KKK
PROMPT ** should be interpreted as phrase query **
select pk||' ==> '||text from test

where contains(text, 'San Diego')>0

order by pk;

PROMPT *k ok k% San Diego khkkkkhkkkkkkx

PROMPT ***** CTXCAT grammar ****x*kxxxix
PROMPT ** should be interpreted as AND query ***

select pk||' ==> '||text from test
where contains(text,
'<query>

<textquery grammar="CTXCAT">San Diego</textquery>
<score datatype="integer"/>

</query>"')>0

order by pk;

PROMPT **#*** Hitlist from CTXCAT index ****xkkxkkx

Oracle Text SQL Statements and Operators 1-33

CONTAINS

select pk||' ==> '||text from test
where catsearch(text, 'San Diego','')>0
order by pk;

Alternate Scoring Query Template Example

The following query template adds price SDATA section (or SDATA filter-by column)
value into the score returned by the query and uses it as the final score:

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE (dog, RELEVANCE) and cat
</textquery>
<score algorithm="COUNT" normalization_expr ="doc_score+SDATA (price)"/>
</query>

Query Relaxation Template Example

The following query template defines a query relaxation sequence. The query of black
pen is entered in sequence as black pen, then black NEAR pen, then black AND pen, and
then black ACCUM pen. Query hits are returned in this sequence with no duplication as
long as the application requires results.

select id from docs where CONTAINS (text, '
<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg>black pen</seqg>
<seg>black NEAR pen</seqg>
<seg>black AND pen</seq>
<seg>black ACCUM pen</seqg>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>"')>0;

Query relaxation is most effective when your application requires the top n hits to a
query, which you can obtain with the DOMAIN_INDEX_ SORT or FIRST_ ROWS hint, which is
being deprecated, in a PL/SQL cursor.

Query Rewrite Example

The following template defines a query rewrite sequence. The query of kukui nut is
rewritten as follows:

kukui} {nut}

kukui} ; {nut}

kukui} AND {nut}
kukui} ACCUM {nut}

select id from docs where CONTAINS (text, '

{
{
{
{

<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
<progression>
<seg><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seqg>
<seg><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite>/seq>
<seg><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite><seq/>
<seg><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite><seq/>
</progression>
</textquery>

1-34 Oracle Text Reference

CONTAINS

Notes

Related Topics

<score datatype="INTEGER" algorithm="COUNT"/>
</query>"')>0;

Querying Multilanguage Tables

With the multilexer preference, you can create indexes from multilanguage tables. At
query time, the multilexer examines the session's language setting and uses the
sublexer preference for that language to parse the query. If the language setting is not
mapped, then the default lexer is used.

When the language setting is mapped, the query is parsed and run as usual. The index
contains tokens from multiple languages, so such a query can return documents in
several languages.

To limit your query to returning documents of a given language, use a structured
clause on the language column.

Query Performance Limitation with a Partitioned Index
Oracle Text supports the CONTEXT indexing and querying of a partitioned text table.

However, for optimal performance when querying a partitioned table with an ORDER
BY SCORE clause, query the partition. If you query the entire table and use an ORDER BY
SCORE clause, the query might not perform optimally unless you include a range
predicate that can limit the query to a single partition.

For example, the following statement queries the partition p_tab4 partition directly:

select * from part_tab partition (p_tab4) where contains (b, 'oracle') > 0 ORDER BY
SCORE DESC;

"Syntax for CONTEXT Index Type" on page 1-37

Chapter 3, "Oracle Text CONTAINS Query Operators"

"The CONTEXT Grammar" topic in Oracle Text Application Developer’s Guide
"SCORE" on page 1-62

Oracle Text SQL Statements and Operators 1-35

CREATE INDEX

CREATE INDEX

Purpose

This section describes the CREATE INDEX statement as it pertains to creating an Oracle
Text domain index and composite domain index.

See Also: "Oracle Database SQL Language Reference for a complete
description of the CREATE INDEX statement

Use CREATE INDEX to create an Oracle Text index. An Oracle Text index is an Oracle
Database domain index or composite domain index of type CONTEXT, CTXCAT,
CTXRULE, or CTXXPATH. A domain index is an application-specific index. A composite
domain index (CDI) is an Oracle Text index that not only indexes and processes a
specified text column, but also indexes and processes FILTER BY and ORDER BY
structured columns, which are specified during index creation.

You must create an appropriate Oracle Text index to enter CONTAINS, CATSEARCH, or
MATCHES queries.

You cannot create an Oracle Text index on an index-organized table.

You can create the following types of Oracle Text indexes.

CONTEXT

A CONTEXT index is the basic type of Oracle Text index. This is an index on a text
column. A CONTEXT index is useful when your source text consists of many large,
coherent documents. Query this index with the CONTAINS operator in the WHERE clause
of a SELECT statement. This index requires manual synchronization after DML. See
"Syntax for CONTEXT Index Type" on page 1-37.

CTXCAT

The CTXCAT index is a combined index on a text column and one or more other
columns. The CTXCAT type is typically used to index small documents or text
fragments, such as item names, prices, and descriptions found in catalogs. Query this
index with the CATSEARCH operator in the WHERE clause of a SELECT statement. This type
of index is optimized for mixed queries. This index is transactional, automatically
updating itself with DML to the base table. See "Syntax for CTXCAT Index Type" on
page 1-52.

CTXRULE

A CTXRULE index is used to build a document classification application. The CTXRULE
index is an index created on a table of queries or a column containing a set of queries,
where the queries serve as rules to define the classification criteria. Query this index
with the MATCHES operator in the WHERE clause of a SELECT statement. See "Syntax for
CTXRULE Index Type" on page 1-54.

CTXXPATH

The CTXPATH index is used to speed up existsNode () queries on an XMLType column.
See "Syntax for CTXXPATH Index Type" on page 1-56.

Required Privileges
You do not need the CTXAPP role to create an Oracle Text index. If you have Oracle
Database grants to create a B-tree index on the text column, you have sufficient

1-36 Oracle Text Reference

CREATE INDEX

privilege to create a text index. The issuing owner, table owner, and index owner can
all be different users, which is consistent with Oracle standards for creating regular
B-tree indexes.

Syntax for CONTEXT Index Type

Uses a CONTEXT index to create an index on a text column. Query this index with the
CONTAINS operator in the WHERE clause of a SELECT statement. This index requires
manual synchronization after DML.

CREATE INDEX [schema.]index ON [schema.]table(txt_column)

INDEXTYPE IS ctxsys.context [ONLINE]

[FILTER BY filter_column[, filter column]...]

[ORDER BY oby_column[desc|asc][, oby_column[descl|asc]]...]
[LOCAL [(PARTITION [partition] [PARAMETERS ('paramstring')]
[, PARTITION [partition] [PARAMETERS ('paramstring')]])]
[PARAMETERS (paramstring)] [PARALLEL n] [UNUSABLE]];

[schema.]index
Specifies the name of the Text index to create.

[schema.]ltable(txt_column)
Specifies the name of the table and column to index. txt_column is the name of the
domain index column on which the CONTAINS () operator will be invoked.

Your table can optionally contain a primary key if you prefer to identify your rows as
such when you use procedures in CTX_DOC. When your table has no primary key,
document services identifies your documents by ROWID.

The column that you specify must be one of the following types: CHAR, VARCHAR,
VARCHAR?, BLOB, CLOB, BFILE, XMLType, or URIType.

The table that you specify can be a partitioned table. If you do not specify the LOCAL
clause, then a global, nonpartitioned index is created.

The DATE, NUMBER, and nested table columns cannot be indexed. Object columns also
cannot be indexed, but their attributes can be indexed, provided that they are atomic
data types.

Attempting to create an index on a Virtual Private Database (VPD) protected table will
fail unless one of the following criteria is true:

= The VPD policy is created such that it does not apply to the INDEX statement type.
= The policy function returns a NULL predicate for the current user.

s The user (or index owner) is SYS.

» The user has the EXEMPT ACCESS POLICY privilege.

Indexes on multiple columns are not supported with the CONTEXT index type. You must
specify only one column in the column list.

Note: With the CTXCAT index type, you can create indexes on text
and structured columns. See "Syntax for CTXCAT Index Type" on
page 1-52

Oracle Text SQL Statements and Operators 1-37

CREATE INDEX

Note: Because a transparent data encryption-enabled column does
not support domain indexes, it cannot be used with Oracle Text.
However, you can create an Oracle Text index on a column in a table
stored in a TDE-enabled tablespace.

ONLINE
Creates the index while enabling DML insertions/updates/deletions on the base table.

During indexing, Oracle Text enqueues DML requests in a pending queue. At the end
of the index creation, Oracle Text locks the base table. During this time, DML is
blocked. You must synchronize the index in order for DML changes to be available.

Limitations
The following limitations apply to using ONLINE:

= At the very beginning or very end of the ONLINE process, DML might fail.

= ONLINE is supported for CONTEXT indexes only.

FILTER BY filter_column

This is the structured indexed column on which a range or equality predicate in the
WHERE clause of a mixed query will operate. You can specify one or more structured
columns for filter_column, on which the relational predicates are expected to be
specified along with the CONTAINS () predicate in a query.

The cost-based optimizer (CBO) will consider pushing down the structured predicates
on these FILTER BY columns with the following relational operators: <, <=, =, >=, >,
between, and LIKE (for VARCHAR?).

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally,
VARCHAR2 and RAW types are supported only if the maximum length is specified and is
limited to no more than 249. The ADT attributes of supported types (CHAR, NUMBER, DATE,
VARCHAR2, or RAW) are also allowed. An error is raised for all other data types.
Expressions, for example, func (cola), and virtual columns are not allowed.

txt_column is allowed in the FILTER BY column list.

DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column

This is the structured indexed column on which a structured ORDER BY mixed query
will be based. A list of structured oby_columns can be specified in the ORDER BY clause
of a CONTAINS () query.

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally,
VARCHAR2 and RAW types are supported only if the maximum length is specified and is
limited to no more than 249. Expressions, for example, func (cola), and virtual
columns are not allowed.

The order of the specified columns matters. The cost-based optimizer will consider
pushing the sort into the composite domain index only if the ORDER BY clause in the
text query contains:

= Entire ordered ORDER BY columns declared by the ORDER BY clause during CREATE
INDEX,

= CBO will consider pushing the sort into the CDI only if the ORDER BY clause in the
text query contains:

1-38 Oracle Text Reference

CREATE INDEX

Entire ordered ORDER BY columns declared by the ORDER BY clause during the CREATE INDEX
statement

Only the prefix of the ordered ORDER BY columns declared by the ORDER BY clause during the
CREATE INDEX statement

The score followed by the prefix of the ordered ORDER BY columns declared by the ORDER BY
clause during the CREATE INDEX statement

The score following the prefix of the ordered ORDER BY columns declared by the ORDER BY clause

during the CREATE INDEX statement
The following example illustrates CBO behavior with regard to ORDER BY columns:

CREATE INDEX foox ON foo (D) INDEXTYPE IS CTXSYS.CONTEXT
FILTER BY B, C
ORDER BY A, B desc;

Consider the following query:

SELECT A, SCORE(1) FROM foo WHERE CONTAINS (D, 'oracle',1)>0
AND C>100 ORDER BY col_list;

Note: If you set NLS_SORT or NLS_COMP parameters (that is, alter
session set NLS_SORT = <some lang>;), then CBO will not push the
sort or related structured predicate into the CDI. This behavior is
consistent with regular B-tree indexes.

CBO will consider pushing the sort into CDI if col_list has the following values:

A

A, B desc

SCORE(1), A
SCORE(1), A, B desc
A, SCORE(1)

A, B desc, SCORE(1)

CBO will not consider to push the sort into CDI if col_list has the following
values:

B

B,A

SCORE (1),
B, SCORE (1
A, B, C

A, B asc (or simply A, B)
(or simply A, B)

B
)

= score followed by the prefix of the ordered ORDER BY columns declared by the
ORDER BY clause during the CREATE INDEX statement.

s The score following the prefix of the ordered ORDER BY columns declared by the
ORDER BY clause during the CREATE INDEX statement.

Expressions, for example, func (cola), are not allowed.
txt_column appearing in the ORDER BY column list is allowed.

DML operations on ORDER BY columns are always transactional.

Oracle Text SQL Statements and Operators 1-39

CREATE INDEX

Limitations
The following limitations apply to FILTER BY and ORDER BY:

s A structured column is allowed in FILTER BY and ORDER BY clauses. However, a
column that is mapped to MDATA in a FILTER BY clause cannot also appear in the
ORDER BY clause. An error will be raised in this case.

s The maximum length for CHAR, VARCHAR2, and RAW columns cannot be greater than
249. Additionally, if the VARCHAR2 or RAW column is mapped to an MDATA column,
then the specified maximum length cannot exceed 64 and 32 bytes, respectively.
(Note that MDATA does not support CHAR data types. If a FILTER BY column of CHAR
data type is mapped to an MDATA section, then an error will be raised during the
CREATE INDEX statement.)

s The sum of the numbers for INDEXED_COLUMN, FILTER BY columns, and ORDER BY
columns cannot be greater than 32.

Note:

= As with concatenated B-tree indexes or bitmap indexes,
performance degradation may occur in DML as the number of
FILTER BY and ORDER BY columns increases.

= Mapping a FILTER BY column to MDATA is not recommended if the
FILTER BY column contains sequential values or has very high
cardinality. Doing so can result in a very long and narrow $I table
and reduced $X performance. An example is a column of type
DATE. For columns of this type, mapping to SDATA is
recommended.

Note: An index table with the name DR$indextable$s is created to
store FILTER BY and ORDER BY columns that are mapped to SDATA
sections. If nothing is mapped to an SDATA section, then the $S table
will not be created.

$S table contains the following columns:
m SDATA ID number is the internal SDATA section ID.

m SDATA LAST number, the last document ID, which is analogous to
token_last.

= SDATA DATA RAW(2000), the compressed SDATA values. Note that if
$S is created on a tablespace with 4K database block size, then it
will be defined as RAW (1500).

Restriction: For performance reasons, $S table must be created on a
tablespace with db block size >= 4K without overflow segment and
without PCTTHRESHOLD clause. If $S is created on a tablespace with db
block size < 4K, or is created with an overflow segment or with a
PCTTHRESHOLD clause, then appropriate errors will be raised during the
CREATE INDEX statement.

Restrictions on exporting and importing text tables with composite domain index
created with FILTER BY and/or ORDER BY clauses are as follows:

1-40 Oracle Text Reference

CREATE INDEX

Regular exp and imp will not support exporting and importing of composite
domain index. Doing so will lead to the following error: EXP-00113: Feature
Composite Domain Index is unsupported.

To export a text table with composite domain index, you must use Data Pump
Export and Import utilities (invoked with the expdp and impdp commands,
respectively), or DBMS_DATAPUMP PL/SQL package.

See Also: ADD_SDATA_COLUMN in Chapter 7, "CTX_DDL
Package"

Limitations of using ALTER INDEX and ALTER TABLE with FILTER BY and ORDER BY
columns of the composite domain index, which are imposed by Extensible Indexing
Framework in Oracle Database:

(These limitations are imposed by Extensible Indexing Framework in Oracle
Database.)

Using ALTER INDEX to add or drop FILTER BY and ORDER BY columns is currently
not supported. You must re-create the index to add or drop FILTER BY or ORDER BY
columns.

To use ALTER TABLE MODIFY COLUMN to modify the datatype of a column that has the
composite domain index built on it, you must first drop the composite domain
index before modifying the column.

To use ALTER TABLE DROP COLUMN to drop a column that is part of the composite
domain index, you must first drop the composite domain index before dropping
the index column.

The following limitations apply to FILTER BY and ORDER BY when used with PL/SQL
packages:

Mapping FILTER BY columns to sections is optional. If section mapping does not
exist for a FILTER BY column, then it is mapped to an SDATA section by default. The
section name assumes the name of the FILTER BY column.

If a section group is not specified during the CREATE INDEX clause of a composite
domain index, then system default section group settings are used. An SDATA
section is created for each of the FILTER BY and ORDER BY columns.

Note: Because a section name does not allow certain special
characters and is case-insensitive, if the column name is case-sensitive
or contains special characters, then an error will be raised. To work
around this problem, you must map the column to an MDATA or SDATA
section before creating the index. See CTX_DDL.ADD_MDATA _
COLUMN or CTX_DDL.ADD_SDATA_COLUMN.

An error is raised if a column that is mapped to an MDATA section also appears in
the ORDER BY column clause.

Column section names are unique to their section group. That is, you cannot have
an MDATA column section named FOO if you already have an MDATA column section
named FOO. Nor can you have a field section named F00 if you already have an
SDATA column section named FOO. This is true whether it is implicitly created (by
CREATE INDEX for FILTER BY or ORDER BY clauses) or explicitly created (by CTX_
DDL.ADD_SDATA_COLUMN).

Oracle Text SQL Statements and Operators 1-41

CREATE INDEX

= One section name can be mapped to only one FILTER BY column, and vice versa.
Mapping a section to more than one column, or mapping a column to more than
one section is not allowed.

s Column sections can be added to any type of section group, including the NULL
section group.

= If asection group with sections added by the CTX_DDL . ADD_MDATA_COLUMN or CTX_
DDL.ADD_SDATA_ COLUMN packages is specified for a CREATE INDEX statement without
a FILTER BY clause, then the mapped column sections will be ignored. However,
the index will still get created without those column sections. The same is true for
a FILTER BY clause that does not contain mapped columns in the specified section

group.
See Also: CTX_DDL.ADD_SDATA_COLUMN

LOCAL [(PARTITION [partition] [PARAMETERS('paramstring')]
Specifies a local partitioned context index on a partitioned table. The partitioned table
must be partitioned by range. Hash, composite, and list partitions are not supported.

You can specify the list of index partition names with partition_name. If you do not
specify a partition name, then the system assigns one. The order of the index partition
list must correspond to the table partition order.

The PARAMETERS clause associated with each partition specifies the parameters string
specific to that partition. You can only specify sync (manual | every | on commit), memory
and storage for each index partition.

The PARAMETERS clause also supports the POPULATE and NOPOPULATE arguments. See
"POPULATE | NOPOPULATE" on page 1-46.

Query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_PARTITIONS to
find out index partition information, such as index partition name, and index partition
status.

See Also: "Creating a Local Partitioned Index" on page 1-49

Query Performance Limitation with Partitioned Index

For optimal performance when querying a partitioned index with an ORDER BY SCORE
clause, query the partition. If you query the entire table and use an ORDER BY SCORE
clause, the query might not perform optimally unless you include a range predicate
that can limit the query to the fewest number of partitions, which is optimally a single
partition.

See Also: "Query Performance Limitation with a Partitioned
Index" on page 1-35

PARALLEL n

Optionally specifies the parallel degree for parallel indexing. The actual degree of
parallelism might be smaller depending on your resources. You can use this parameter
on nonpartitioned tables. However, creating a nonpartitioned index in parallel does
not turn on parallel query processing. Parallel indexing is supported for creating a
local partitioned index.

The indexing memory size specified in the parameter clause applies to each parallel
slave. For example, if indexing memory size is specified in the parameter clause as
500M and parallel degree is specified as 2, then you must ensure that there is at least
1GB of memory available for indexing.

1-42 Oracle Text Reference

CREATE INDEX

See Also:

"Parallel Indexing" on page 1-50
"Creating a Local Partitioned Index in Parallel" on page 1-50

The "Performance Tuning" chapter in Oracle Text Application Developer’s
Guide

Performance

Parallel indexing can speed up indexing when you have large amounts of data to
index and when your operating system supports multiple CPUs.

Note: Using PARALLEL to create a local partitioned index that
enables parallel queries. (Creating a nonpartitioned index in
parallel does not turn on parallel query processing.)

Parallel querying degrades query throughput especially on heavily
loaded systems. Because of this, Oracle recommends that you
disable parallel querying after creating a local index. To do so, use
the ALTER INDEX NOPARALLEL statement.

For more information on parallel querying, see the "Performance
Tuning" chapter in Oracle Text Application Developer’s Guide.

Limitations
Parallel indexing is supported only for the CONTEXT index type.

UNUSABLE
Creates an unusable index. This creates index metadata only and exits immediately.

You might create an unusable index when you need to create a local partitioned index
in parallel.

See Also: "Creating a Local Partitioned Index in Parallel” on
page 1-50

PARAMETERS(paramstring)
Optionally specify indexing parameters in paramstring. You can specify preferences
owned by another user using the user.preference notation.

The syntax for paramstring is as follows:

paramstring =

' [DATASTORE datastore_pref]
[FILTER filter pref]
[CHARSET COLUMN charset_column_name]
[FORMAT COLUMN format_column_name]

[LEXER lexer pref]
[LANGUAGE COLUMN language column_name]

[WORDLIST wordlist_pref]

[STORAGE storage pref]

[STOPLIST stoplist]

[SECTION GROUP section_group]

[MEMORY memsize]

[POPULATE | NOPOPULATE]

[SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
[TRANSACTIONAL] '

Oracle Text SQL Statements and Operators 1-43

CREATE INDEX

Create datastore, filter, lexer, wordlist, and storage preferences with CTX_
DDL.CREATE_PREFERENCE and then specify them in the paramstring.

Note: When you specify no paramstring, Oracle Text uses the
system defaults.

For more information about these defaults, see "Default Index
Parameters" on page 2-76.

DATASTORE datastore_pref
Specifies the name of your datastore preference. Use the datastore preference to
specify where your text is stored.See "Datastore Types" on page 2-2.

FILTER filter_pref
Specifies the name of your filter preference. Use the filter preference to specify how to
filter formatted documents to plain text or HTML. See "Filter Types" on page 2-16.

CHARSET COLUMN charset_column_name

Specifies the name of the character set column. This column must be in the same table
as the text column, and it must be of type CHAR, VARCHAR, or VARCHAR2. Use this column
to specify the document character set for conversion to the database character set. The
value is case-insensitive. You must specify a globalization support character set string,

such as JA16EUC.

When the document is plain text or HTML, the AUTO_FILTER and CHARSET filters use
this column to convert the document character set to the database character set for
indexing.

Use this column when you have plain text or HTML documents with different
character sets or in a character set different from the database character set.

Setting NLS_LENGTH_SEMANTICS parameter to CHAR is not supported at the database
level. This parameter is supported for the following columns:

s The CHARSET COLUMN, for example:

VARCHAR2 <size> CHAR
CHAR <size> CHAR

s Anindex created on a VARCHAR2 and CHAR column
m VARCHAR2 and CHAR columns for FILTER BY and ORDER BY clauses of CREATE INDEX

= FORMAT COLUMN

Note:

Documents are not marked for re-indexing when only the character set
column changes. The indexed column must be updated to flag the re-index.

The NL'S_LENGTH_SEMANTICS = CHAR parameter is supported at the column
level only, and is not supported at the database level, as described in this
section.

FORMAT COLUMN format_column_name
Specifies the name of the format column. The format column must be in the same table
as the text column and it must be CHAR, VARCHAR, or VARCHAR2 type.

1-44 Oracle Text Reference

CREATE INDEX

FORMAT COLUMN determines how a document is filtered, or, in the case of the IGNORE
value, if it is to be indexed.

AUTO_FILTER uses the format column when filtering documents. Use this column with
heterogeneous document sets to optionally bypass filtering for plain text or HTML
documents.

In the format column, you can specify one of the following options:

s TEXT
= BINARY
= IGNORE

The TEXT option indicates that the document is either plain text or HTML. When TEXT
is specified, the document is not filtered, but may have the character set converted.

The BINARY option indicates that the document is a format supported by the AUTO_
FILTER object other than plain text or HIML, for example PDF. BINARY is the default, if
the format column entry cannot be mapped.

The IGNORE option indicates that the row is to be ignored during indexing. Use this
value when you need to bypass rows that contain data incompatible with text
indexing such as image data, or rows in languages that you do not want to process.
The difference between documents with TEXT and IGNORE format column types is that
the former are indexed but ignored by the filter, while the latter are not indexed at all.
Thus, IGNORE can be used with any filter type.

Note: Documents are not marked for re-indexing when only the
format column changes. The indexed column must be updated to
flag the re-index.

LEXER lexer_pref

Specifies the name of your lexer or multilexer preference. Use the lexer preference to
identify the language of your text and how text is tokenized for indexing. See "Lexer
Types" on page 2-30.

LANGUAGE COLUMN Janguage_column_name
Specifies the name of the language column when using a multi-lexer preference. See
"MULTI_LEXER" on page 2-37.

This column must exist in the base table. It cannot be the same column as the indexed
column. Only the first 30 bytes of the language column are examined for language
identification.

Note: Documents are not marked for re-indexing when only the
language column changes. The indexed column must be updated to
flag the re-index.

WORDLIST wordlist_pref

Specifies the name of your wordlist preference. Use the wordlist preference to enable
features such as fuzzy, stemming, and prefix indexing for better wildcard searching.
See "Wordlist Type" on page 2-57.

STORAGE storage pref
Specifies the name of your storage preference for the Text index. Use the storage
preference to specify how the index tables are stored. See "Storage Types" on page 2-64.

Oracle Text SQL Statements and Operators 1-45

CREATE INDEX

STOPLIST stoplist
Specifies the name of your stoplist. Use stoplist to identify words that are not to be
indexed. See CTX_DDL.CREATE_STOPLIST.

SECTION GROUP section_group
Specifies the name of your section group. Use section groups to create searchable
sections in structured documents. See CTX_DDL.CREATE_SECTION_GROUP.

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is
as follows:

memsize = number[K|M|G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

The value you specify for memsize must be between 1M and the value of MAX_INDEX
MEMORY in the CTX_PARAMETERS view. To specify a memory size larger than the MAX_
INDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_PARAMETER to
be larger than or equal to memsize.

The default is the value specified for DEFAULT_INDEX_MEMORY in CTX_PARAMETERS.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing
before flushing the index to disk. Specifying a large amount memory improves
indexing performance because there are fewer I/O operations and improves query
performance and maintenance, because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

POPULATE | NOPOPULATE
Specifies whether an index should be empty or populated. The default is POPULATE.

Note: POPULATE | NOPOPULATE is the only option whose default
value cannot be set with CTX_ADM.SET_PARAMETER.

This option is not valid with CTXXPATH indexes.

Empty indexes are populated by updates or inserts to the base table. You might create
an empty index when you need to create your index incrementally or to selectively
index documents in the base table. You might also create an empty index when you
require only theme and Gist output from a document set.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)

Specifies SYNC for automatic synchronization of the CONTEXT index when there are
inserts, updates or deletes to the base table. You can specify one of the following SYNC
methods:

Table 1-5 SYNC Types

SYNC Type Description

MANUAL Provides no automatic synchronization. This is the default. You
must manually synchronize the index with CTX_DDL. SYNC_
INDEX.

1-46 Oracle Text Reference

CREATE INDEX

Table 1-5 (Cont.) SYNC Types

SYNC Type Description

EVERY "interval-string” Automatically synchronizes the index at a regular interval
specified by the value of interval-string, which takes the same
syntax as that for scheduler jobs. Automatic synchronization
using EVERY requires that the index creator have CREATE JOB
privileges.

Ensure that inferval-string is set to a long enough period that any
previous sync jobs will have completed; otherwise, the sync job
might hang. interval-string must be enclosed in double quotes,
and any single quote within interval-string must be preceded by
the escape character with another single quote.

See "Enabling Automatic Index Synchronization" on page 1-48
for an example of automatic sync syntax.

ON COMMIT Synchronizes the index immediately after a commit transaction.
The commit transaction does not return until the sync is
complete. (Because the synchronization is performed as a
separate transaction, there may be a period, usually small, when
the data is committed but index changes are not.)

The operation uses the memory specified with the memory
parameter.

Note that the sync operation has its own transaction context. If
this operation fails, the data transaction is still commited. Index
synchronization errors are logged in the CTX_USER_INDEX_
ERRORS view. See "Viewing Index Errors" on page 1-52.

See "Enabling Automatic Index Synchronization" on page 1-48
for an example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT,
EVERY, or MANUAL). The type of sync specified in master parameter strings applies to all
index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

. EVERY interval_string MEMORY mem size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same
memory size that was specified at index creation.

See Also: Oracle Database Administrator’s Guide for information
about job scheduling

TRANSACTIONAL

Specifies that documents can be searched immediately after they are inserted or
updated. If a text index is created with TRANSACTIONAL enabled, then, in addition to
processing the synchronized rowids already in the index, the CONTAINS operator will
process unsynchronized rowids as well. Oracle Text does in-memory indexing of
unsynchronized rowids and processes the query against the in-memory index.

TRANSACTIONAL is an index-level parameter and does not apply at the partition level.

You must still synchronize your text indexes from time to time (with CTX_DDL. SYNC_
INDEX) to bring pending rowids into the index. Query performance degrades as the
number of unsynchronized rowids increases. For that reason, Oracle recommends
setting up your index to use automatic synchronization with the EVERY parameter. (See
"SYNC (MANUAL | EVERY "interval-string”" | ON COMMIT)" on page 1-46.)

Oracle Text SQL Statements and Operators 1-47

CREATE INDEX

Transactional querying for indexes that have been created with the TRANSACTIONAL
parameter can be turned on and off (for the duration of a user session) with the
PL/SQL variable CTX_QUERY.disable_transactional_query. This is useful, for
example, if you find that querying is slow due to the presence of too many pending
rowids. Here is an example of setting this session variable:

exec ctx_query.disable_transactional_guery := TRUE;

If the index uses AUTO_FILTER, queries involving unsynchronized rowids will require
filtering of unsynchronized documents.

CREATE INDEX: CONTEXT Index Examples

The following sections give examples of creating a CONTEXT index.

Creating CONTEXT Index Using Default Preferences
The following example creates a CONTEXT index called myindex on the docs column in
mytable. Default preferences are used.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context;

See Also:
» Oracle Text Application Developer’s Guide

= For more information about default settings, see "Default Index
Parameters" on page 2-76

Creating CONTEXT Index with Custom Preferences

The following example creates a CONTEXT index called myindex on the docs column in
mytable. The index is created with a custom lexer preference called my_lexer and a
custom stoplist called my_stop.

This example also assumes that the preference and stoplist were previously created
with CTX_DDL.CREATE_PREFERENCE for my_lexer, and CTX_DDL.CREATE_
STOPLIST for my_stop. Default preferences are used for the unspecified preferences.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
PARAMETERS ('LEXER my_lexer STOPLIST my_stop');

Any user can use any preference. To specify preferences that exist in another user's
schema, add the user name to the preference name. The following example assumes
that the preferences my_lexer and my_stop exist in the schema that belongs to user
kenny:

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
PARAMETERS (' LEXER kenny.my_lexer STOPLIST kenny.my_stop');

Enabling Automatic Index Synchronization

You can create your index and specify that the index be synchronized at regular
intervals for insertions, updates and deletions to the base table. To do so, create the
index with the SYNC (EVERY "interval-string") parameter.

To use job scheduling, you must log in as a user who has DBA privileges and then
grant CREATE JOB privileges.

The following example creates an index and schedules three synchronization jobs for
three index partitions. The first partition uses ON COMMIT synchronization. The other
two partitions are synchronized by jobs that are scheduled to be executed every
Monday at 3 PM.

1-48 Oracle Text Reference

CREATE INDEX

CONNECT system/manager
GRANT CREATE JOB TO dr_test

CREATE INDEX tdrmauto02x ON tdrmauto02 (text)

INDEXTYPE IS CTXSYS.CONTEXT local

(PARTITION tdrm02x_il PARAMETERS ('

MEMORY 20m SYNC(ON COMMIT) '),

PARTITION tdrm02x_i2,

PARTITION tdrm02x_i3) PARAMETERS ('

SYNC (EVERY "NEXT_DAY (TRUNC (SYSDATE), ''MONDAY'') + 15/24")
")

See Oracle Database Administrator’s Guide for information about job scheduling syntax.

Creating CONTEXT Index with Multilexer Preference

The multilexer preference decides which lexer to use for each row based on a language
column. This is a character column in the table that stores the language of the
document in the text column. For example, create the table globaldoc to hold
documents of different languages:

CREATE TABLE globaldoc (
doc_id NUMBER PRIMARY KEY,
lang VARCHAR2 (10),
text CLOB

)i

Assume that global_lexer is a multilexer preference you created. To index the
global_doc table, specify the multilexer preference and the name of the language
column as follows:

CREATE INDEX globalx ON globaldoc(text) INDEXTYPE IS ctxsys.context PARAMETERS
('LEXER global_lexer LANGUAGE COLUMN lang');

See Also: "MULTI_LEXER" on page 2-37 for more information
about creating multilexer preferences

Creating a Local Partitioned Index

The following example creates a text table that is partitioned into three, populates it,
and then creates a partitioned index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b varchar2(40)) PARTITION BY RANGE(a)
(partition p_tabl values less than (10),

partition p_tab2 values less than (20),

partition p_tab3 values less than (30));

PROMPT create partitioned index
CREATE INDEX part_idx on part_tab(b) INDEXTYPE IS CTXSYS.CONTEXT
LOCAL (partition p_idx1l, partition p_idx2, partition p_idx3);

Note: The limit for the number of partitions in Oracle Text is the
same as the maximum number of partitions per table in Oracle
Database.

Oracle Text SQL Statements and Operators 1-49

CREATE INDEX

Using FILTER BY and ORDER BY Clauses

The following example creates an index on table docs and orders the documents by
author's publishing date.

First, create the table:

CREATE TABLE docs (
docid NUMBER,
pub_date DATE,
author VARCHAR2 (30),
category VARCHAR2 (30),
document CLOB

)i

Create the index with FILTER BY and ORDER BY clauses:

CREATE INDEX doc_idx on docs(document) indextype is ctxsys.context
FILTER BY category, author
ORDER BY pub_date desc, docid
PARAMETERS ('memory 500M');

Parallel Indexing
Parallel indexing can improve index performance when you have multiple CPUs.

To create an index in parallel, use the PARALLEL clause with a parallel degree. This
example uses a parallel degree of 3:

CREATE INDEX myindex ON mytab(pk) INDEXTYPE IS ctxsys.context PARALLEL 3;

Creating a Local Partitioned Index in Parallel

Creating a local partitioned index in parallel can improve performance when you have
multiple CPUs. With partitioned tables, you can divide the work. You can create a local
partitioned index in parallel in two ways:

s Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX statement. In
this case, the maximum parallel degree is limited to the number of partitions you
have. See "Parallelism with CREATE INDEX" on page 1-50.

s Create an unusable index first, then run the DBMS_PCLXUTIL.BUILD_PART INDEX
utility. This method can result in a higher degree of parallelism, especially if you
have more CPUs than partitions. See "Parallelism with DBMS_PCLUTIL.BUILD_
PART_INDEX" on page 1-51.

If you attempt to create a local partitioned index in parallel, and the attempt fails, you
may see the following error message:

ORA-29953: error in the execution of the ODCIIndexCreate routine for one or more

of the index partitions

To determine the specific reason why the index creation failed, query the CTX_USER_
INDEX_ERRORS view.

Parallelism with CREATE INDEX

You can achieve local index parallelism by using the PARALLEL and LOCAL clauses in the
CREATE INDEX statement. In this case, the maximum parallel degree is limited to the
number of partitions that you have.

The following example creates a table with three partitions, populates them, and then
creates the local indexes in parallel with a degree of 2:

create table part_tab3 (id number primary key, text varchar2(100))

1-50 Oracle Text Reference

CREATE INDEX

partition by range(id)

(partition pl values less than (1000),
partition p2 values less than (2000),
partition p3 values less than (3000));

begin
for i in 0..2999
loop
insert into part_tab3 values (i, 'oracle');
end loop;
end;
/

create index part_tab3x on part_tab3 (text)

indextype is ctxsys.context local (partition part_tabxl,
partition part_tabx2,
partition part_tabx3)

parallel 2;

Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX

You can achieve local index parallelism by first creating an unusable CONTEXT index,
and then running the DBMS_PCLUTIL.BUILD_PART INDEX utility. This method can result
in a higher degree of parallelism, especially when you have more CPUs than
partitions.

In this example, the base table has three partitions. We create a local partitioned
unusable index first, then run DBMS_PCLUTIL.BUILD_PART INDEX, which builds the 3
partitions in parallel (referred to as inter-partition parallelism). Also, inside each
partition, index creation proceeds in parallel (called intra-partition parallelism) with a
parallel degree of 2. Therefore, the total parallel degree is 6 (3 times 2).

create table part_tab3 (id number primary key, text varchar2(100))
partition by range(id)

(partition pl values less than (1000),

partition p2 values less than (2000),

partition p3 values less than (3000));

begin
for i in 0..2999
loop
insert into part_tab3 values (i, 'oracle');
end loop;
end;
/

create index part_tab3x on part_tab3 (text)

indextype is ctxsys.context local (partition part_tabxl,
partition part_tabx2,
partition part_tabx3)

unusable;

exec dbms_pclxutil.build_part_index(jobs_per_batch=>3,
procs_per_job=>2,
tab_name=>'PART_TAB3',
idx_name=>'PART TAB3X',
force_opt=>TRUE) ;

Oracle Text SQL Statements and Operators 1-51

CREATE INDEX

Viewing Index Errors

After a CREATE INDEX or ALTER INDEX operation, you can view index errors with Oracle
Text views. To view errors on your indexes, query the CTX_USER_INDEX_ERRORS
view. To view errors on all indexes as CTXSYS, query the CTX_INDEX_ERRORS view.

For example, to view the most recent errors on your indexes, enter the following
statement:

SELECT err_timestamp, err_text FROM ctx_user_index_errors
ORDER BY err_timestamp DESC;

Deleting Index Errors
To clear the index error view, enter the following statement:

DELETE FROM ctx_user_index_errors;

Syntax for CTXCAT Index Type

Combines an index on a text column and one or more other columns. Query this index
with the CATSEARCH operator in the WHERE clause of a SELECT statement. This type of
index is optimized for mixed queries. This index is transactional, automatically
updating itself with DML to the base table.

CREATE INDEX [schema.]index on [schema.]table(column) INDEXTYPE IS ctxsys.ctxcat
[PARAMETERS

('[index set index_ set]

[lexer lexer pref]

[storage storage pref]

[stoplist stoplist]

[section group sectiongroup_pref

[wordlist wordlist_pref]

[memory memsize]');

[schema.]table(column)
Specifies the name of the table and column to index.

The column that you specify when you create a CTXCAT index must be of type CHAR or
VARCHAR2. No other types are supported for CTXCAT.

Attempting to create an index on a Virtual Private Database (VPD) protected table will
fail unless one of the following options is true:

s The VPD policy is created such that it does not apply to INDEX statement type,
which is the default

s The policy function returns a null predicate for the current user.
» The user (index owner) is SYS.

» The user has the EXEMPT ACCESS POLICY privilege.

Supported CTXCAT Preferences

index set index_set

Specifies the index set preference to create the CTXCAT index. Index set preferences
name the columns that make up your subindexes. Any column that is named in an
index set column list cannot have a NULL value in any row of the base table, or else you
get an error.

Always ensure that your columns have non-null values before and after indexing.

See "Creating a CTXCAT Index" on page 1-53.

1-52 Oracle Text Reference

CREATE INDEX

Index Performance and Size Considerations

Although a CTXCAT index offers query performance benefits, creating this type of index
has its costs. The time that it takes Oracle Text to create a CTXCAT index depends on the
total size of the index.

The total size of a CTXCAT index is directly related to:

= Total text to be indexed

= Number of component indexes in the index set

= Number of columns in the base table that make up the component indexes

Having many component indexes in your index set also degrades DML performance
because more indexes must be updated.

Because of these added costs in creating a CTXCAT index, you should carefully consider
the query performance benefit that each component index gives your application
before adding it to your index set.

See Also: Oracle Text Application Developer’s Guide for more
information about creating CTXCAT indexes and the benefits

Other CTXCAT Preferences
When you create an index of type CTXCAT, you can use the supported index
preferences listed in Table 1-6 in the parameters string.

Table 1-6 Supported CTXCAT Index Preferences

Preference Class Supported Types

Datastore This preference class is not supported for CTXCAT.
Filter This preference class is not supported for CTXCAT.
Lexer BASIC_LEXER (index_themes attribute not supported)

CHINESE_LEXER
CHINESE_VGRAM_LEXER
JAPANESE_LEXER
JAPANESE_VGRAM_LEXER
KOREAN_MORPH_LEXER

Wordlist BASIC_WORDLIST

Storage BASIC_STORAGE

Stoplist Supports single language stoplists only (BASIC_STOPLIST type).
Section Group Only Field Section is supported for CTXCAT.

Unsupported Preferences and Parameters

When you create a CTXCAT index, you cannot specify datastore and filter preferences.
For section group preferences, only the field section preference is supported. You also
cannot specify language, format, or charset columns as with a CONTEXT index.

Creating a CTXCAT Index

This section gives a brief example for creating a CTXCAT index. For a more complete
example, see Oracle Text Application Developer’s Guide.

Consider a table called AUCTION with the following schema:

Oracle Text SQL Statements and Operators 1-53

CREATE INDEX

create table auction(
item_id number,

title varchar2(100),
category_id number,
price number,
bid_close date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on price. Results must be sorted based on bid_close. This
means that an index to support good response time for the structured and sorting
criteria is required.

You can create a catalog index to support the different types of structured queries a
user might enter. For structured queries, a CTXCAT index improves query performance
over a context index.

To create the indexes, first, create the index set preference, next, optionally, add the
storage preference, and, finally, add the required indexes to it:

begin

ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset', 'bid_close');
ctx_ddl.add_index('auction_iset', 'price, bid_close');
end;

Optionally, create the storage preference:

begin
ctx_ddl.create_preference('auction_st_pref', 'BASIC_STORAGE');
ctx_ddl.set_attribute('auction_st_pref', 'I_TABLE_CLAUSE',
'tablespace TEXT storage (initial 5M)');
ctx_ddl.set_attribute('auction_st_pref', 'I_ROWID_INDEX_CLAUSE',
'tablespace TEXT storage (initial 5M)');
ctx_ddl.set_attribute('auction_st_pref', 'I_INDEX CLAUSE',
'tablespace TEXT storage (initial 5M) compress 2');
end;
/

Then, create the CTXCAT index with the CREATE INDEX statement as follows:

create index auction_titlex on AUCTION(title) indextype is CTXSYS.CTXCAT
parameters ('index set auction_iset storage auction_st_pref');

Querying a CTXCAT Index
To query the title column for the word pokemon, enter regular and mixed queries as
follows:

select * from AUCTION where CATSEARCH(title, 'pokemon',NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'price < 50 order by
bid_close desc')> 0;

See Also: Oracle Text Application Developer’s Guide for a complete
CTXCAT example

Syntax for CTXRULE Index Type

The CTXRULE type is an index on a column containing a set of queries. Query this index
with the MATCHES operator in the WHERE clause of a SELECT statement.

CREATE INDEX [schema.]index on [schema.]table(rule col) INDEXTYPE IS
ctxsys.ctxrule
[PARAMETERS ('[lexer lexer_pref] [storage storage_pref]

1-54 Oracle Text Reference

CREATE INDEX

[section group section_pref] [wordlist wordlist_pref]
[classifier classifier_pref]');
[PARALLEL n];

[schema.]table(column)
Specifies the name of the table and rule column to index. The rules can be query
compatible strings, query template strings, or binary support vector machine rules.

The column you specify when you create a CTXRULE index must be VARCHAR2, CLOB or
BLOB. No other types are supported for the CTXRULE type.

Attempting to create an index on a Virtual Private Database (VPD) protected table will
fail unless one of the following is true:

s The VPD policy does not have the INDEX statement type turned on (which is the
default).

s The policy function returns a null predicate for the current user.
» The user (index owner) is SYS.

» The user has the EXEMPT ACCESS POLICY privilege.

lexer_pref
Specifies the lexer preference to be used for processing queries and later for the
documents to be classified with the MATCHES function.

With both classifiers SVN_CLASSFIER and RULE_CLASSIFIER, you can use the BASIC_
LEXER, CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexer. (See "Classifier
Types" on page 2-68 and "Lexer Types" on page 2-30.)

For processing queries, these lexers support the following operators: ABOUT, STEM, AND,
NEAR, NOT, OR, and WITHIN.

The thesaural operators (BT*, NT*, PT, RT, SYN, TR, TRSYS, TT, and so on) are supported.
However, these operators are expanded using a snapshot of the thesaurus at index
time, not when the MATCHES function is entered. This means that if you change your
thesaurus after you index, you must re-index your query set.

storage_pref
Specify the storage preference for the index on the queries.Use the storage preference
to specify how the index tables are stored. See "Storage Types" on page 2-64.

section group

Specify the section group. This parameter does not affect the queries. It applies to
sections in the documents to be classified. The following section groups are supported
for the CTXRULE index type:

s BASIC_SECTION_GROUP

s HTML_SECTION_GROUP

s XML_SECTION_GROUP

s AUTO_SECTION_GROUP

See "Section Group Types" on page 2-66.

CTXRULE does not support special sections. It also does not support NDATA sections.

wordlist_pref
Specifies the wordlist preferences. This is used to enable stemming operations on
query terms. See Wordlist Type on page 2-57.

Oracle Text SQL Statements and Operators 1-55

CREATE INDEX

classifier_pref
Specifies the classifier preference. See "Classifier Types" on page 2-68. You must use the
same preference name you specify with CTX_CLS.TRAIN.

Example for Creating a CTXRULE Index

See Oracle Text Application Developer’s Guide for a complete example of using the
CTXRULE index type in a document routing application.

Syntax for CTXXPATH Index Type

This indextype if provided only for backward compatibility. Create a CTXXPATH index
when you need to speed up existsNode () queries on an XMLType column.

CREATE INDEX [schema.]index on [schema.]table(XMLType column) INDEXTYPE IS
ctxsys.CTXXPATH
[PARAMETERS (' [storage storage_pref]

[memory memsizel]')];

[schema.]table(column)
Specifies the name of the table and column to index.

The column you specify when you create a CTXXPATH index must be XMLType. No other
types are supported for the CTXXPATH index.

storage_pref
Specifies the storage preference for the index on the queries.

Use the storage preference to specify how the index tables are stored. See "Storage
Types" on page 2-64 in Chapter 2, "Oracle Text Indexing Elements".

memory memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize
is as follows:

memsize = number[M|G|K]

M stands for megabytes, G stands for gigabytes, and K stands for kilobytes.

The value you specify for memsize must be between 1M and the value of MAX_INDEX
MEMORY in the CTX_PARAMETERS view. To specify a memory size larger than the MAX_
INDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_PARAMETER to
be larger than or equal to memsize.

The default is the value specified for DEFAULT_INDEX_MEMORY in CTX_PARAMETERS.

CTXXPATH Examples

Index creation on an XMLType column:

CREATE INDEX xml_index ON xml_tab(col_xml) indextype is ctxsys.CTXXPATH;

Or

CREATE INDEX xml_index ON xml_tab(col_xml) indextype is ctxsys.CTXXPATH
PARAMETERS ('storage my_storage memory 40M');

Querying the table with existsNode:

select xml_id from xml_tab x where
x.col_xml.existsnode('/book/chapter[@title="XML"]"') > 0;

1-56 Oracle Text Reference

CREATE INDEX

See Also: Oracle XML DB Developer’s Guide for information about
using the CTXXPATH index type

Related Topics
CTX_DDL.CREATE_PREFERENCE

CTX_DDL.CREATE_STOPLIST
CTX_DDL.CREATE_SECTION_GROUP
"ALTER INDEX" on page 1-2
"CATSEARCH" on page 1-21

Oracle Text SQL Statements and Operators 1-57

DROP INDEX

DROP INDEX

Note: This section describes the DROP INDEX statement as it
pertains to dropping a Text domain index.

For a complete description of the DROP INDEX statement, see Oracle
Database SQL Language Reference.

Purpose
Use DROP INDEX to drop a specified Text index.

Syntax

DROP INDEX [schema.]index [forcel;

[force]
Optionally forces the index to be dropped. Use the force option when Oracle Text
cannot determine the state of the index, such as when an indexing operation fails.

Oracle recommends against using this option by default. Use it only when a regular
call to DROP INDEX fails.

Example

The following example drops an index named doc_index in the current user's database
schema:

DROP INDEX doc_index;

Related Topics
"ALTER INDEX" on page 1-2

"CREATE INDEX" on page 1-36

1-58 Oracle Text Reference

MATCHES

MATCHES

Limitation

Syntax

Use the MATCHES operator to find all rows in a query table that match a given
document. The document must be a plain text, HTML, or XML document.

The MATCHES operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote
table or materialized view. (Querying of remote views is not supported.)

This operator requires a CTXRULE index on your set of queries.

When the SVM_CLASSIFIER classifier type is used, MATCHES returns a score in the
range 0 to 100; a higher number indicates a greater confidence in the match. Use the
label parameter and MATCH_SCORE to obtain this number. Then use the matching score
to apply a category-specific threshold to a particular category.

If the SVM_CLASSIFIER type is not used, then this operator returns either 100 (the
document matches the criteria) or 0 (the document does not match).

If the optimizer chooses to use the functional query invocation with a MATCHES query,
your query will fail.

MATCHES (

[schema.]column,

document VARCHAR2 or CLOB
[,label INTEGER])

RETURN NUMBER;

column
Specifies the column containing the indexed query set.

document
Specifies the document to be classified. The document can be plain text, HTML, or
XML. Binary formats are not supported.

label
Optionally specifies the label that identifies the score generated by the MATCHES
operator. Use this label with MATCH_SCORE.

Matches Example

The following example creates a table querytable, and populates it with classification
names and associated rules. It then creates a CTXRULE index.

The example enters the MATCHES query with a document string to be classified. The
SELECT statement returns all rows (queries) that are satisfied by the document:

create table querytable (classification varchar2(64), text varchar2(4000));

insert into querytable values ('common names', 'smith OR jones OR brown');
insert into querytable values ('countries', 'United States OR Great Britain OR
France');

insert into querytable values ('Oracle DB', 'oracle NEAR database');

create index query_rule on querytable(text) indextype is ctxsys.ctxrule;

Oracle Text SQL Statements and Operators 1-59

MATCHES

SELECT classification FROM querytable WHERE MATCHES (text, 'Smith is a common name
in the United States') > 0;

CLASSIFICATION

common names
countries

Related Topics
"MATCH_SCORE" on page 1-61

"Syntax for CTXRULE Index Type" on page 1-54
CTX_CLS.TRAIN on page 6-2

Oracle Text Application Developer’s Guide contains extended examples of simple and
supervised classification, which make use of the MATCHES operator.

1-60 Oracle Text Reference

MATCH_SCORE

MATCH_SCORE

Syntax

Example

Related Topics

Use the MATCH_SCORE operator in a statement to return scores produced by a MATCHES
query.

The MATCH_SCORE operator also supports database links. You can identify a remote
table or materialized view by appending @dblink to the end of its name. The dblink

must be a complete or partial name for a database link to the database containing the
remote table or materialized view. (Querying of remote views is not supported.)

When the SVM_CLASSIFIER classifier type is used, this operator returns a score in the
range 0 to 100. Use the matching score to apply a category-specific threshold to a
particular category.

If the SVM_CLASSIFIER classifier is not used, then this operator returns either 100 (the
document matches the criteria) or 0 (the document does not match).

MATCH_SCORE (label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to
identify the MATCHES clause that returns this score.

To get the matching score, use:

select cat_id, match_score(l) from training result where matches(profile,
text,1)>0;

"MATCHES" on page 1-59

Oracle Text SQL Statements and Operators 1-61

SCORE

SCORE

Syntax

Example

Related Topics

Use the SCORE operator in a SELECT statement to return the score values produced by a
CONTAINS query. The SCORE operator can be used in a SELECT, ORDER BY, or GROUP BY
clause.

The SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote
table or materialized view. (Querying of remote views is not supported.)

SCORE (label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to
identify the CONTAINS clause that returns this score.

Single CONTAINS

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS
clause must reference the score label value as in the following example:

SELECT SCORE(1l), title from newsindex
WHERE CONTAINS (text, 'oracle', 1) > 0 ORDER BY SCORE(1l) DESC;

Multiple CONTAINS

Assume that a news database stores and indexes the title and body of news articles
separately. The following query returns all the documents that include the words
Oracle in their title and java in their body. The articles are sorted by the scores for the
first CONTAINS (Oracle) and then by the scores for the second CONTAINS (java).

SELECT title, body, SCORE(10), SCORE(20)

FROM news

WHERE CONTAINS (news.title, 'Oracle', 10) > 0 OR
CONTAINS (news.body, 'java', 20) > 0

ORDER BY SCORE(10), SCORE(20);

"CONTAINS" on page 1-28
Appendix F, "The Oracle Text Scoring Algorithm"

1-62 Oracle Text Reference

2

Oracle Text Indexing Elements

Oracle Text provides indexing elements for creating Oracle Text indexes and for
specifying indexing preferences. This chapter describes the indexing elements that you
can use to create an Oracle Text index.

The following topics are discussed in this chapter:
n Overview

= Datastore Types

» Filter Types

s Lexer Types

= Wordlist Type

= Storage Types

= Section Group Types

» Classifier Types

n Cluster Types

= Stoplists

= System-Defined Preferences

= System Parameters

2.1 Overview

When you use the CREATE INDEX statement to create an index or the ALTER INDEX
statement to manage an index, you can optionally specify indexing preferences,
stoplists, and section groups in the parameter string.

Specifying a preference, stoplist, or section group answers one of the following
questions about the way Oracle Text indexes text:

Preference Class Answers the Question

Datastore How are your documents stored?

Filter How can the documents be converted to plain text?
Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?
Storage How should the index tables be stored?

Oracle Text Indexing Elements 2-1

Datastore Types

Preference Class Answers the Question
Stop List What words or themes are not to be indexed?
Section Group Is querying within sections enabled, and how are the document

sections defined?

This chapter describes how to set each preference. Enable an option by creating a
preference with one of the types described in this chapter.

For example, to specify that your documents are stored in external files, you can create
a datastore preference called mydatastore using the FILE_DATASTORE type. Specify
mydatastore as the datastore preference in the parameter clause of the CREATE INDEX
statement.

2.1.1 Creating Preferences

To create a datastore, lexer, filter, classifier, wordlist, or storage preference, use the
CTX_DDL.CREATE_PREFERENCEprocedure and specify one of the types described
in this chapter. For some types, you can also set attributes with the CTX_DDL.SET_
ATTRIBUTE procedure.

An indexing type names a class of indexing objects that you can use to create an index
preference. A type, therefore, is an abstract ID, while a preference is an entity that
corresponds to a type. Many system-defined preferences have the same name as types
(for example, BASIC_LEXER), but exact correspondence is not guaranteed. For example,
the DEFAULT_DATASTORE preference uses the DIRECT_DATASTORE type, and there is no
system preference corresponding to the CHARSET_FILTER type. Be careful in assuming
the existence or nature of either indexing types or system preferences.

You specify indexing preferences with the CREATE INDEX and ALTER INDEX statements.
Indexing preferences determine how your index is created. For example, lexer
preferences indicate the language of the text to be indexed. You can create and specify
your own user-defined preferences, or you can use system-defined preferences.

To create a stoplist, use the CTX_DDL.CREATE_STOPLIST procedure. Add stopwords
to a stoplist with CTX_DDL.ADD_STOPWORD.

To create section groups, use CTX_DDL.CREATE_SECTION_GROUP and specify a
section group type. Add sections to section groups with the CTX_DDL.ADD_ZONE_
SECTION or CTX_DDL.ADD_FIELD_SECTION procedures.

2.2 Datastore Types

Use the datastore types to specify how your text is stored. To create a datastore
preference, you must use one of the datastore types described in Table 2-1.

Table 2-1 Datastore Types

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in the text column. Each row is
indexed as a single document.

MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one column.
Columns are concatenated to create a virtual document,
one for each row.

2-2 Oracle Text Reference

Datastore Types

Table 2-1 (Cont.) Datastore Types

Datastore Type Use When

DETAIL_DATASTORE Data is stored internally in the text column. Document
consists of one or more rows stored in a text column in a
detail table, with header information stored in a master

table.
FILE_DATASTORE Data is stored externally in operating system files. File
names are stored in the text column, one for each row.
NESTED_DATASTORE Data is stored in a nested table.
URL_DATASTORE Data is stored externally in files located on an intranet or

the Internet. Uniform Resource Locators (URLs) are stored
in the text column.

USER_DATASTORE Documents are synthesized at index time by a user-defined
stored procedure.

2.2.1 DIRECT_DATASTORE

Use the DIRECT_DATASTORE type for text stored directly in the text column, one
document for each row. The DIRECT_DATASTORE type has no attributes.

The following column types are supported: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB,
BFILE, XMLType, and URIType.

Note: If your column is a BFILE, then the index owner must have
read permission on all directories used by the BFILEs.

2.2.1.1 DIRECT_DATASTORE CLOB Example

The following example creates a table with a CLOB column to store text data. It then
populates two rows with text data and indexes the table using the system-defined
preﬁﬂenceCTXSYS.DEFAULT_DATASTORE

create table mytable(id number primary key, docs clob);
insert into mytable values (111555, 'this text will be indexed');

insert into mytable values (111556, 'this is a direct_datastore example');
commit;

create index myindex on mytable (docs)
indextype is ctxsys.context
parameters ('DATASTORE CTXSYS.DEFAULT_DATASTORE') ;

2.2.2 MULTI_COLUMN_DATASTORE

Use the MULTI_COLUMN_DATASTORE datastore when your text is stored in more than one
column. During indexing, the system concatenates the text columns, tags the column
text, and indexes the text as a single document. The XML-like tagging is optional. You
can also set the system to filter and concatenate binary columns.

The data store MULTI_COLUMN_DATASTORE has the attributes shown in Table 2-2.

Oracle Text Indexing Elements 2-3

Datastore Types

Table 2-2 MULTI_COLUMN_DATASTORE Attributes

Attribute Attribute Value

columns Specify a comma-delimited list of columns to be concatenated during
indexing. You can also specify any allowed expression for the SELECT
statement column list for the base table. This includes expressions,
PL/SQL functions, column aliases, and so on.

The NUMBER and DATE column types are supported. They are converted to
text before indexing using the default format mask. The TO_CHAR
function can be used in the column list for formatting.

The RAW and BLOB columns are directly concatenated as binary data.

The LONG, LONG RAW, NCHAR, and NCLOB data types, nested table columns,
and collections are not supported.

The column list is limited to 500 bytes.

filter Specify a comma-delimited list of Y/N flags. Each flag corresponds to a
column in the COLUMNS list and denotes whether to filter the column
using the AUTO_FILTER.

Specify one of the following allowed values:

Y: Column is to be filtered with AUTO_FILTER

N or no value: Column is not to be filtered (default)
delimiter Specify the delimiter that separates column text as follows:

COLUMN_NAME_TAG: Column text is set off by XML-like open and close
tags (default).

NEWLINE: Column text is separated with a newline.

2.2.2.1 Indexing and DML

To index, you must create a dummy column to specify in the CREATE INDEX statement.
This column's contents are not made part of the virtual document, unless its name is
specified in the columns attribute.

The index is synchronized only when the dummy column is updated. You can create
triggers to propagate changes if needed.

2.2.2.2 MULTI_COLUMN_DATASTORE Restriction

You cannot create a multicolumn datastore with XMLType columns. MULTI_COLUMN_
DATA_STORE does not support XMLType. You can create a CONTEXT index with an
XMLType column, as described in Chapter 1, "Oracle Text SQL Statements and
Operators".

2.2.2.3 MULTI_COLUMN_DATASTORE Example

The following example creates a multicolumn datastore preference called my_multi
with three text columns:

begin

ctx_ddl.create_preference('my multi', 'MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('my_multi', 'columns', 'columnl, column2, column3');
end;

2.2.2.4 MULTI_COLUMN_DATASTORE Filter Example

The following example creates a multicolumn datastore preference and denotes that
the bar column is to be filtered with the AUTO_FILTER.

ctx_ddl.create_preference('MY_MULTI', 'MULTI_COLUMN_DATASTORE') ;

2-4 Oracle Text Reference

Datastore Types

ctx_ddl.set_attribute('MY_MULTI', 'COLUMNS', 'foo,bar');
ctx_ddl.set_attribute('MY_MULTI','FILTER', 'N,Y');

The multicolumn datastore fetches the content of the foo and bar columns, filters bar,
then composes the compound document as:

<FOO>

foo contents

</FO0>

<BAR>

bar filtered contents (probably originally HTML)
</BAR>

The N flags do not need not be specified, and there does not need to be a flag for every
column. Only the Y flags must be need to be specified, with commas to denote to
which column they apply. For instance:

ctx_ddl.create_preference('MY_MULTI', 'MULTI_COLUMN_DATASTORE') ;
ctx_ddl.set_attribute('MY_MULTI', 'COLUMNS', 'foo,bar,zoo,jar');
ctx_ddl.set_attribute('MY_MULTI','FILTER',',,Y');

This filters only the column zoo.

2.2.2.5 Tagging Behavior

During indexing, the system creates a virtual document for each row. The virtual
document is composed of the contents of the columns concatenated in the listing order
with column name tags automatically added. For example:

create table mc(id number primary key, name varchar2(10), address varchar2(80));
insert into mc values(l, 'John Smith', '123 Main Street');

exec ctx_ddl.create_preference('mymds', 'MULTI_COLUMN_DATASTORE');
exec ctx_ddl.set_attibute('mymds', 'columns', 'name, address');

This produces the following virtual text for indexing:

<NAME>

John Smith
</NAME>
<ADDRESS>

123 Main Street
</ADDRESS>

The system indexes the text between the tags, ignoring the tags themselves.

2.2.2.6 Indexing Columns as Sections

To index the tags as sections, you can optionally create field sections with BASIC_
SECTION_GROUP

Note: No section group is created when you use the MULTI_
COLUMN_DATASTORE. To create sections for these tags, you must
create a section group.

When you use expressions or functions, the tag is composed of the first 30 characters
of the expression unless a column alias is used.

For example, if your expression is as follows:

Oracle Text Indexing Elements 2-5

Datastore Types

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17');

then it produces the following virtual text:

<4 + 17>
21
</4 + 17>

If your expression is as follows:

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17 coll');

then it produces the following virtual text:

<coll>
21
<coll>

The tags are in uppercase unless the column name or column alias is in lowercase and
surrounded by double quotation marks. For example:

exec ctx_ddl.set_attibute('mymds', 'COLUMNS', 'foo');

This produces the following virtual text:

<F00>

content of foo

</F00>

For lowercase tags, use the following:

exec ctx_ddl.set_attibute('mymds', 'COLUMNS', 'foo "foo"');

This expression produces:

<foo>
content of foo
</foo>

2.2.3 DETAIL_DATASTORE

Use the DETAIL_DATASTORE type for text stored directly in the database in detail tables,
with the indexed text column located in the master table.

The DETAIL_DATASTORE type has the attributes described in Table 2-3.

Table 2-3 DETAIL_DATASTORE Attributes

Attribute Attribute Value
binary Specify TRUE for Oracle Text to add no newline character after each detail
row.

Specify FALSE for Oracle Text to add a newline character (\n) after each
detail row automatically.

detail_table Specify the name of the detail table (OWNER. TABLE if necessary).
detail_key Specify the name of the detail table foreign key column.
detail_lineno Specify the name of the detail table sequence column.
detail_text Specify the name of the detail table text column.

2-6 Oracle Text Reference

Datastore Types

2.2.3.1 Synchronizing Master/Detail Indexes

Changes to the detail table do not trigger re-indexing when you synchronize the index.
Only changes to the indexed column in the master table triggers a re-index when you
synchronize the index.

You can create triggers on the detail table to propagate changes to the indexed column
in the master table row.

2.2.3.2 Example Master/Detail Tables

This example illustrates how master and detail tables are related to each other.

2.2.3.2.1 Master Table Example Master tables define the documents in a master/detail
relationship. Assign an identifying number to each document. The following table is
an example master table, called my_master:

Column Name Column Type Description

article_id NUMBER Document ID, unique for each document
(primary key)

author VARCHAR?2 (30) Author of document

title VARCHAR?2 (50) Title of document

body CHAR (1) Dummy column to specify in CREATE INDEX

Note: Your master table must include a primary key column when
you use the DETAIL_DATASTORE type.

2.2.3.2.2 Detail Table Example Detail tables contain the text for a document, whose
content is usually stored across a number of rows. The following detail table my_
detail is related to the master table my_master with the article_id column. This
column identifies the master document to which each detail row (sub-document)
belongs.

Column Name Column Type Description
article_id NUMBER Document ID that relates to master table
seq NUMBER Sequence of document in the master document

defined by article_id

text VARCHAR2 Document text

2.2.3.2.3 Detail Table Example Attributes In this example, the DETAIL_DATASTORE
attributes have the following values:

Attribute Attribute Value
binary TRUE
detail_table my_detail
detail_key article_id
detail_lineno seq
detail_text text

Oracle Text Indexing Elements 2-7

Datastore Types

Use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE.
Use CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference as described
earlier. The following example shows how this is done:

begin

ctx_ddl.create_preference('my_detail_pref', 'DETAIL_DATASTORE');
ctx_ddl.set_attribute('my_detail_pref', 'binary', 'true');
ctx_ddl.set_attribute('my_detail_pref', 'detail_table', 'my_detail');
ctx_ddl.set_attribute('my_detail pref', 'detail_key', ‘'article_id');
ctx_ddl.set_attribute('my_detail pref', 'detail_lineno', 'seq');
ctx_ddl.set_attribute('my_detail_pref', 'detail_text',6 'text');

end;

2.2.3.2.4 Master/Detail Index Example To index the document defined in this
master/detail relationship, specify a column in the master table using the CREATE
INDEX statement. The column you specify must be one of the allowed types.

This example uses the body column, whose function is to enable the creation of the
master/detail index and to improve readability of the code. The my_detail_pref
preference is set to DETAIL_DATASTORE with the required attributes:

CREATE INDEX myindex on my_master (body) indextype is ctxsys.context
parameters ('datastore my_detail_pref');

In this example, you can also specify the title or author column to create the index.
However, if you do so, changes to these columns will trigger a re-index operation.

2.2.4 FILE_DATASTORE

The FILE_DATASTORE type is used for text stored in files accessed through the local file
system.

Note: The FILE_DATASTORE type may not work with certain types
of remote-mounted file systems.

The FILE_DATASTORE type has the attributes described Table 2—4.

Table 2-4 FILE_DATASTORE Attributes

Attribute Attribute Value
path pathl:path2:pathn
filename_charset name

path

Specifies the full directory path name of the files stored externally in a file system.
When you specify the full directory path as such, you need to include only file names
in your text column.

You can specify multiple paths for the path attribute, with each path separated by a
colon (:) on UNIX and semicolon(;) on Windows. File names are stored in the text
column in the text table.

If you do not specify a path for external files with this attribute, then Oracle Text
requires that the path be included in the file names stored in the text column.

2-8 Oracle Text Reference

Datastore Types

filename_charset

Specifies a valid Oracle character set name (maximum length 30 characters) to be used
by the file datastore for converting file names. In general, the Oracle database can use
a different character set than the operating system. This can lead to problems in
finding files (which may raise DRG-11513 errors) when the indexed column contains
characters that are not convertible to the operating system character set. By default, the
file datastore will convert the file name to WE8ISO8859p1 for ASCII platforms or
WESEBCDIC1047 for EBCDIC platforms.

However, this may not be sufficient for applications with multibyte character sets for
both the database and the operating system, because neither WE8ISO8859p1 nor
WESEBCDIC1047 supports multibyte characters. The attribute filename_charset
rectifies this problem. If specified, then the datastore will convert from the database
character set to the specified character set rather than to ISO8859 or EBCDIC.

If the filename_charset attribute is the same as the database character set, then the
file name is used as is. If filename_charset is not a valid character set, then the error
"DRG-10763: value %s is not a valid character set" is raised.

2.2.4.1 PATH Attribute Limitations
The PATH attribute has the following limitations:

= If you specify a PATH attribute, then you can only use a simple file name in the
indexed column. You cannot combine the PATH attribute with a path as part of the
file name. If the files exist in multiple folders or directories, you must leave the
PATH attribute unset, and include the full file name, with PATH, in the indexed
column.

= On Windows systems, the files must be located on a local drive. They cannot be on
a remote drive, whether the remote drive is mapped to a local drive letter.

2.2.4.2 FILE_DATASTORE and Security

File and URL datastores enable access to files on the actual database disk. This may be
undesirable when security is an issue since any user can browse the file system that is
accessible to the Oracle user. The FILE_ACCESS_ROLE system parameter can be used to
set the name of a database role that is authorized to create an index using FILE or URL
datastores. If set, any user attempting to create an index using FILE or URL datastores
must have this role, or the index creation will fail. Only SYS can set FILE_ACCESS_ROLE,
and an error will be raised if any other user tries to modify it. If FILE_ACCESS_ROLE is
left at the default of NULL, access is disallowed. Thus, by default, users are not able to
create indexes that use the file or URL datastores. Users can, if desired, set FILE_
ACCESS_ROLE to PUBLIC if they want to preserve the behavior from earlier releases.

For example, the following statement sets the name of the database role:
ctx_adm.set_parameter ('FILE_ACCESS_ROLE', 'TOPCAT') ;
where TOPCAT is the role that is authorized to create an index on a file or URL

datastore. The CREATE INDEX operation will fail when a user that does not have an
authorized role tries to create an index on a file or URL datastore. For example:

CREATE INDEX myindex ON mydocument (TEXT) INDEXTYPE IS ctxsys.context
PARAMETERS (' DATASTORE ctxsys.file_datastore')

In this case, if the user does not have the role TOPCAT, then index creation will fail
and return an error. For users who have the TOPCAT role, the index creation will
proceed normally.

Oracle Text Indexing Elements 2-9

Datastore Types

The authorized role name is checked any time the datastore is accessed. This includes
index creation, index sync, and calls to document services, such as CTX_
DOC.HIGHLIGHT.

2.2.4.3 FILE_DATASTORE Example

This example creates a file datastore preference called COMMON_DIR that has a path of
/mydocs:

begin
ctx_ddl.create_preference('COMMON_DIR', 'FILE_DATASTORE') ;
ctx_ddl.set_attribute('COMMON_DIR', 'PATH', '/mydocs');
end;

When you populate the table mytable, you need only insert file names. The path
attribute tells the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values (111555, 'first.txt');

insert into mytable values (111556, 'second.txt');

commit;

Create the index as follows:

create index myindex on mytable(docs)
indextype is ctxsys.context
parameters ('datastore COMMON_DIR');

2.2.5 URL_DATASTORE

Use the URL_DATASTORE type for text stored:
= In files on the World Wide Web (accessed through HTTP or FTP)
= Infiles in the local file system (accessed through the file protocol)

Store each URL in a single text field.

2.2.5.1 URL Syntax

The syntax of a URL you store in a text field is as follows (with brackets indicating
optional parameters):

[URL:]<access_scheme>: //<host_name> [:<port_number>]/[<url_path>]

The access_scheme string can be either ftp, http, or file. For example:

http://mymachine.example.com/home.html

Note: The login:password@ syntax within the URL is supported
only for the ftp access scheme.

Because this syntax is partially compliant with the RFC 1738 specification, the
following restriction holds for the URL syntax: The URL must contain only printable
ASCII characters. Non-printable ASCII characters and multibyte characters must be
escaped with the %xx notation, where xx is the hexadecimal representation of the
special character.

2-10 Oracle Text Reference

Datastore Types

2.2.5.2 URL_DATASTORE Attributes
URL_DATASTORE has the following attributes:

Table 2-5 URL_DATASTORE Attributes

Attribute Attribute Value

timeout The value of this attribute is ignored. This is provided for backward
compatibility.

maxthreads The value of this attribute is ignored. URL_DATASTORE is
single-threaded. This is provided for backward compatibility.

urlsize The value of this attribute is ignored. This is provided for backward
compatibility.

maxurls The value of this attribute is ignored. This is provided for backward
compatibility.

maxdocsize The value of this attribute is ignored. This is provided for backward
compatibility.

http_proxy Specify the host name of http proxy server. Optionally specify port

number with a colon in the form hostname:port.

ftp_proxy Specify the host name of ftp proxy server. Optionally specify port
number with a colon in the form hostname:port.

no_proxy Specify the domain for no proxy server. Use a comma separated
string of up to 16 domain names.

timeout
The value of this attribute is ignored. This is provided for backward compatibility.

maxthreads
The value of this attribute is ignored. URL_DATASTORE is single-threaded. This is
provided for backward compatibility.

urlsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxdocsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxurls
The value of this attribute is ignored. This is provided for backward compatibility.

http_proxy

Specify the fully qualified name of the host machine that serves as the HTTP proxy
(gateway) for the machine on which Oracle Text is installed. You can optionally specify
port number with a colon in the form hostname:port.

You must set this attribute if the machine is in an intranet that requires authentication
through a proxy server to access Web files located outside the firewall.

ftp_proxy

Specify the fully qualified name of the host machine that serves as the FTP proxy
(gateway) for the server on which Oracle Text is installed. You can optionally specify a
port number with a colon in the form hostname:port.

This attribute must be set if the machine is in an intranet that requires authentication
through a proxy server to access Web files located outside the firewall.

Oracle Text Indexing Elements 2-11

Datastore Types

no_proxy

Specify a string of domains (up to sixteen, separated by commas) that are found in
most, if not all, of the machines in your intranet. When one of the domains is
encountered in a host name, no request is sent to the server(s) specified for ftp_proxy
and http_proxy. Instead, the request is processed directly by the host machine
identified in the URL.

For example, if the string us.example.com, uk.example.com is entered for no_proxy, any
URL requests to machines that contain either of these domains in their host names are
not processed by your proxy server(s).

2.2.5.3 URL_DATASTORE and Security

For a discussion of how to control file access security for file and URL datastores, refer
to "FILE_DATASTORE and Security" on page 2-9.

2.2.5.4 URL_DATASTORE Example

This example creates a URL_DATASTORE preference called URL_PREF for which the http_
proxy, no_proxy, and timeout attributes are set. The defaults are used for the attributes
that are not set.

begin
ctx_ddl.create_preference('URL_PREF', 'URL_DATASTORE') ;
ctx_ddl.set_attribute('URL_PREF', 'HTTP_PROXY', 'www-proxy.example.com') ;
ctx_ddl.set_attribute('URL_PREF', 'NO_PROXY', 'example.com') ;
ctx_ddl.set_attribute ('URL_PREF', 'Timeout', '300"');

end;

Create the table and insert values into it:

create table urls(id number primary key, docs varchar2(2000));
insert into urls values(111555, 'http://context.example.com');
insert into urls values (111556, 'http://www.sun.com') ;

commit;

To create the index, specify URL_PREF as the datastore:

create index datastores_text on urls (docs)
indextype 1s ctxsys.context
parameters ('Datastore URL_PREF');

2.2.6 USER_DATASTORE

Use the USER_DATASTORE type to define stored procedures that synthesize documents
during indexing. For example, a user procedure might synthesize author, date, and
text columns into one document to have the author and date information be part of the
indexed text.

USER_DATASTORE has the following attributes:

Table 2-6 USER_DATASTORE Attributes

Attribute Attribute Value

procedure Specify the procedure that synthesizes the document to be indexed.

This procedure can be owned by any user and must be executable by the
index owner.

2-12 Oracle Text Reference

Datastore Types

Table 2-6 (Cont.) USER_DATASTORE Attributes
Attribute Attribute Value

output_type Specify the data type of the second argument to procedure. Valid values are
CLOB, BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2. The default is CLOB.

When you specify CLOB_LOC, BLOB_LOC, you indicate that no temporary
CLOB or BLOB is needed, because your procedure copies a locator to the
IN/OUT second parameter.

procedure

Specify the name of the procedure that synthesizes the document to be indexed. This
specification must be in the form PROCEDURENAME or PACKAGENAME . PROCEDURENAME. You
can also specify the schema owner name.

The procedure you specify must have two arguments defined as follows:
procedure (r IN ROWID, c¢ IN OUT NOCOPY output_type)
The first argument r must be of type ROWID. The second argument ¢ must be of type

output_type. NOCOPY is a compiler hint that instructs Oracle Text to pass parameter c
by reference if possible.

Note: The procedure name and its arguments can be named
anything. The arguments r and c are used in this example for
simplicity.

The stored procedure is called once for each row indexed. Given the rowid of the
current row, procedure must write the text of the document into its second argument,
whose type you specify with output_type.

2.2.6.1 Constraints

The following constraints apply to procedure:

= It can be owned by any user, but the user must have database permissions to
execute procedure correctly

= It must be executable by the index owner

s It must not enter DDL or transaction control statements, like COMMIT

2.2.6.2 Editing Procedure after Indexing

When you change or edit the stored procedure, indexes based on it will not be notified,
so you must manually re-create such indexes. So if the stored procedure makes use of
other columns, and those column values change, the row will not be re-indexed. The
row is re-indexed only when the indexed column changes.

output_type
Specify the datatype of the second argument to procedure. You can use either CLOB,
BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2.

2.2.6.3 USER_DATASTORE with CLOB Example

Consider a table in which the author, title, and text fields are separate, as in the
articles table defined as follows:

create table articles(
id number,

Oracle Text Indexing Elements 2-13

Datastore Types

author varchar2(80),
title varchar2 (120),
text clob);

The author and title fields are to be part of the indexed document text. Assume user
appowner writes a stored procedure with the user datastore interface that synthesizes a
document from the text, author, and title fields:

create procedure myproc(rid in rowid, tlob in out clob nocopy) is

begin

for ¢l in (select author, title, text from articles

where rowid = rid)

loop
dbms_lob.writeappend(tlob, length(cl.title), cl.title);
dbms_lob.writeappend(tlob, length(cl.author), cl.author);
dbms_lob.writeappend(tlob, length(cl.text), cl.text);

end loop;

end;

This procedure takes in a rowid and a temporary CLOB locator, and concatenates all the
article's columns into the temporary CLOB. The for loop executes only once.

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference('myud', 'user_datastore')
ctx_ddl.set_attribute('myud', 'procedure', 'myproc'
ctx_ddl.set_attribute('myud', 'output_type', 'CLOB'
end;

)i
)i
When appowner creates the index on articles (text) using this preference, the
indexing operation sees author and title in the document text.

2.2.6.4 USER_DATASTORE with BLOB_LOC Example
The following procedure might be used with OUTPUT_TYPE BLOB_LOC:

procedure myds (rid in rowid, dataout in out nocopy blob)
is
1_dtype varchar2 (10);
1_pk number ;
begin
select dtype, pk into 1_dtype, 1_pk from mytable where rowid = rid;
if (1_dtype = 'MOVIE') then
select movie_data into dataout from movietab where fk = 1_pk;
elsif (1_dtype = 'SOUND') then
select sound_data into dataout from soundtab where fk
end if;
end;

1_pk;

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference('myud', 'user_datastore');
ctx_ddl.set_attribute('myud', 'procedure', 'myproc');
ctx_ddl.set_attribute('myud', 'output_type', 'blob_loc');
end;

2.2.7 NESTED_DATASTORE

Use the nested datastore type to index documents stored as rows in a nested table.

2-14 Oracle Text Reference

Datastore Types

Table 2-7 NESTED_DATASTORE Attributes

Attribute Attribute Value

nested_column Specify the name of the nested table column.This attribute is required.
Specify only the column name. Do not specify schema owner or
containing table name.

nested_type Specify the type of nested table. This attribute is required. You must
provide owner name and type.

nested_lineno Specify the name of the attribute in the nested table that orders the lines.
This is like DETAIL_LINENO in detail datastore. This attribute is required.

nested_text Specify the name of the column in the nested table type that contains
the text of the line. This is like DETAIL_TEXT in detail datastore. This
attribute is required. LONG column types are not supported as nested
table text columns.

binary Specify FALSE for Oracle Text to automatically insert a newline character
when synthesizing the document text. If you specify TRUE, Oracle Text
does not do this. This attribute is not required. The default is FALSE.

When using the nested table datastore, you must index a dummy column, because the
extensible indexing framework disallows indexing the nested table column. See the
example.

DML on the nested table is not automatically propagated to the dummy column used
for indexing. For DML on the nested table to be propagated to the dummy column,
your application code or trigger must explicitly update the dummy column.

Filter defaults for the index are based on the type of the nested_text column.

During validation, Oracle Text checks that the type exists and that the attributes you
specify for nested_lineno and nested_text exist in the nested table type. Oracle Text
does not check that the named nested table column exists in the indexed table.

2.2.7.1 NESTED_DATASTORE Example

This section shows an example of using the NESTED_DATASTORE type to index
documents stored as rows in a nested table.

2.2.7.1.1 Create the Nested Table The following code creates a nested table and a storage
table mytab for the nested table:

create type nt_rec as object (

1no number, -- line number

ltxt varchar2(80) -- text of line
)i

create type nt_tab as table of nt_rec;

create table mytab (
id number primary key, -- primary key
dummy char (1), -- dummy column for indexing
doc nt_tab -- nested table

)

nested table doc store as myntab;

22.7.1.2 Insert Values into Nested Table The following code inserts values into the nested
table for the parent row with ID equal to 1.

insert into mytab values (1, null, nt_tab());
insert into table(select doc from mytab where id=1) values (1, 'the dog');
insert into table(select doc from mytab where id=1) values (2, 'sat on mat ');

Oracle Text Indexing Elements 2-15

Filter Types

commit;

2.2.7.1.3 Create Nested Table Preferences The following code sets the preferences and
attributes for the NESTED_DATASTORE according to the definitions of the nested table
type nt_tab and the parent table mytab:

begin

-- create nested datastore pref
ctx_ddl.create_preference('ntds', 'nested_datastore');

-- nest tab column in main table
ctx_ddl.set_attribute('ntds', 'nested_column', 'doc');

-- nested table type
ctx_ddl.set_attribute('ntds', 'nested_type', 'scott.nt_tab');

-- lineno column in nested table
ctx_ddl.set_attribute('ntds', 'nested_lineno', 'lno');

--text column in nested table
ctx_ddl.set_attribute('ntds', 'nested_text', 'ltxt');
end;

22.7.1.4 Create Index on Nested Table The following code creates the index using the
nested table datastore:

create index myidx on mytab(dummy) -- index dummy column, not nest table
indextype 1s ctxsys.context parameters ('datastore ntds');

2.2.7.1.5 Query Nested Datastore The following select statement queries the index built
from a nested table:

select * from mytab where contains(dummy, 'dog and mat')>0;
-- returns document 1, because it has dog in line 1 and mat in line 2.

2.3 Filter Types

Use the filter types to create preferences that determine how text is filtered for
indexing. Filters enable word processor documents, formatted documents, plain text,
HTML, and XML documents to be indexed.

For formatted documents, Oracle Text stores documents in their native format and
uses filters to build interim plain text or HTML versions of the documents. Oracle Text
indexes the words derived from the plain text or HTML version of the formatted
document.

To create a filter preference, you must use one of the following types:

Table 2-8 Filter Types

Filter When Used

CHARSET_FILTER Character set converting filter.

AUTO_FILTER Auto filter for filtering formatted documents.

NULL_FILTER No filtering required. Use for indexing plain text, HTML, or XML
documents.

MAIL_FILTER Use the MAIL_FILTER to transform RFC-822, RFC-2045 messages in

to text that can be indexed.

USER_FILTER User-defined external filter to be used for custom filtering.

2-16 Oracle Text Reference

Filter Types

Table 2-8 (Cont.) Filter Types

Filter

When Used

PROCEDURE_FILTER

User-defined stored procedure filter to be used for custom filtering.

2.3.1 CHARSET_FILTER

Use the CHARSET FILTER to convert documents from a non-database character set to
the character set used by the database.

CHARSET_FILTER has the attribute described in Table 2-9.

Table 2-9 CHARSET_FILTER Attributes

Attribute

Attribute Value

charset

Specify the Globalization Support name of source character set.

If you specify UTF16AUTO, then this filter automatically detects the if the
character set is UTF16 big- or little-endian.

Specify JAAUTO for Japanese character set auto-detection. This filter
automatically detects the custom character specification in JA16EUC or
JA16S]JIS and converts to the database character set. This filter is useful in
Japanese when your data files have mixed character sets.

JAAUTO can only be specified on a database whose character set is
JA16EUC, JA16S]IS, or UTFS.

Specify AUTO to have CHARSET_FILTER automatically detect and convert
character sets that Oracle Database supports, as shown in Table 2-10.

When the charset column or attribute is set to AUTO, the CHARSET_FILTER
automatically detects the document character set and converts the document from the
detected character set to the database character set. CHARSET_FILTER can detect the
supported character sets shown in Table 2-10.

Table 2-10 Character Sets Supported for CHARSET_FILTER Auto-detection

Character Set

AL16UTF16
AL32UTF8
ARBISO8859P6
ARSMSWIN1256
CL8ISO8859P5
CL8KOI8R
CL8MSWIN1251
EE8ISO8859P2
EESMSWIN1250
EL8ISO8859r7
ELSMSWIN1253

JA16EUC
JA16S]IS
KO16KSC5601
THSTISASCII
WESISO8859P1
WESISO8859P9
WESMSWIN1252
ZHS16CGB231280
ZHS32GB18030
ZHT16BIG5
WESMSWIN1252

See Also:

Oracle Database Globalization Support Guide for more

information about the supported globalization character sets

Oracle Text Indexing Elements 2-17

Filter Types

2.3.1.1 UTF-16 Big- and Little-Endian Detection

If your character set is UTF-16, then you can specify UTF16AUTO to automatically
detect big- or little-endian data. Oracle Text does so by examining the first two bytes of
the document row.

If the first two bytes are OxFE, OxFF, the document is recognized as big-endian and the
remainder of the document minus those two bytes is passed on for indexing.

If the first two bytes are OxFF, OXFE, the document is recognized as little-endian and
the remainder of the document minus those two bytes is passed on for indexing.

If the first two bytes are anything else, the document is assumed to be big-endian and
the whole document including the first two bytes is passed on for indexing.

2.3.1.2 Indexing Mixed-Character Set Columns

A mixed character set column is one that stores documents of different character sets.
For example, a text table might store some documents in WESISO8859P1 and others in
UTFS.

To index a table of documents in different character sets, you must create your base
table with a character set column. In this column, specify the document character set
on a per-row basis. To index the documents, Oracle Text converts the documents into
the database character set.

Character set conversion works with the CHARSET FILTER. When the charset column is
NULL or not recognized, Oracle Text assumes the source character set is the one
specified in the charset attribute.

Note: Character set conversion also works with the AUTO_FILTER
when the document format column is set to TEXT.

2.3.1.21 Indexing Mixed-Character Set Example For example, create the table with a
charset column:

create table hdocs (
id number primary key,
fmt varchar2(10),
cset varchar2 (20),
text varchar2 (80)

)i

Create a preference for this filter:

begin

cxt_ddl.create_preference('cs_filter', 'CHARSET FILTER');
ctx_ddl.set_attribute('cs_filter', 'charset', 'UTF8');
end;

/

Insert plain-text documents and name the character set:

insert into hdocs values(l, 'text', 'WEBIS08859P1', '/docs/iso.txt');
insert into hdocs values (2, 'text', 'UTF8', '/docs/utf8.txt');
commit;

Create the index and name the charset column:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ('datastore ctxsys.file_datastore

2-18 Oracle Text Reference

Filter Types

filter cs_filter
format column fmt
charset column cset');

2.3.2 AUTO_FILTER

The AUTO_FILTER is a universal filter that filters most document formats, including
PDF and Microsoft Word documents. Use it for indexing both single-format and
mixed-format columns. This filter automatically bypasses plain text, HTML, XHTML,
SGML, and XML documents.

See Also: Appendix B, "Oracle Text Supported Document
Formats", for a list of the formats supported by AUTO_FILTER, and to
learn more about how to set up your environment

Note: The AUTO_FILTER replaces the INSO_FILTER, which has been
deprecated. While every effort has been made to ensure maximal
backward compatibility between the two filters, so that applications
using INSO_FILTER will continue to work without modification, some
differences may arise. Users should therefore use AUTO_FILTER in their
new programs and, when possible, replace instances of INSO_FILTER,
and any system preferences or constants that make use of it, in older
applications.

The AUTO_FILTER preference has the following attributes:

Table 2-11 AUTO_FILTER Attributes

Attribute Attribute Value

timeout Specify the AUTO_FILTER timeout in seconds. Use a number between 0
and 42,949,672. Default is 120. Setting this value to 0 disables the
feature.

How this wait period is used depends on how you set timeout_type.

This feature is disabled for rows for which the corresponding charset
and format column cause the AUTO_FILTER to bypass the row, such as
when format is marked TEXT.

Use this feature to prevent the Oracle Text indexing operation from
waiting indefinitely on a hanging filter operation.

timeout_type Specify either HEURISTIC or FIXED. Default is HEURISTIC.

Specify HEURISTIC for Oracle Text to check every TIMEOUT seconds if
output from Outside In HTML Export has increased. The operation
terminates for the document if output has not increased. An error is
recorded in the CTX_USER_INDEX_ERRORS view and Oracle Text moves
to the next document row to be indexed.

Specify FIXED to terminate the Outside In HTML Export processing
after TIMEOUT seconds regardless of whether filtering was progressing
normally or just hanging. This value is useful when indexing
throughput is more important than taking the time to successfully
filter large documents.

output_formatting Setting this attribute has no effect on filter performance or filter
output. It is maintained for backward compatibility.

Oracle Text Indexing Elements 2-19

Filter Types

2.3.2.1 Indexing Formatted Documents

To index a text column containing formatted documents such as Microsoft Word, use
the AUTO_FILTER. This filter automatically detects the document format. Use the
CTXSYS.AUTO_FILTER system-defined preference in the parameter clause as follows:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ('datastore ctxsys.file_datastore
filter ctxsys.auto_filter');

Note: The CTXSYS.AUTO_FILTER replaces CTXSYS.INSO_FILTER, which
has been deprecated. Programs making use of CTXSYS.INSO_FILTER
should still work. New programs should use CTXSYS.AUTO_FILTER.

2.3.2.2 Explicitly Bypassing Plain Text or HTML in Mixed Format Columns

A mixed-format column is a text column containing more than one document format,
such as a column that contains Microsoft Word, PDF, plain text, and HTML
documents.

The AUTO_FILTER can index mixed-format columns, automatically bypassing plain
text, HTML, and XML documents. However, if you prefer not to depend on the
built-in bypass mechanism, you can explicitly tag your rows as text and cause the
AUTO_FILTER to ignore the row and not process the document in any way.

The format column in the base table enables you to specify the type of document
contained in the text column. You can specify the following document types: TEXT,
BINARY, and IGNORE. During indexing, the AUTO_FILTER ignores any document typed
TEXT, assuming the charset column is not specified. (The difference between a
document with a TEXT format column type and one with an IGNORE type is that the
TEXT document is indexed, but ignored by the filter, while the IGNORE document is not
indexed at all. Use IGNORE to overlook documents such as image files, or documents in
a language that you do not want to index. IGNORE can be used with any filter type.)

To set up the AUTO_FILTER bypass mechanism, you must create a format column in
your base table.

For example:

create table hdocs (

id number primary key,

fmt varchar2(10),

text varchar?2 (80)
)i
Assuming you are indexing mostly Word documents, you specify BINARY in the format
column to filter the Word documents. Alternatively, to have the AUTO_FILTER ignore an
HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning
one format as BINARY and the other TEXT:

insert into hdocs values(l, 'binary', '/docs/myword.doc');
insert in hdocs values (2, 'text', '/docs/index.html');
commit;

To create the index, use CREATE INDEX and specify the format column name in the
parameter string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ('datastore ctxsys.file_datastore
filter ctxsys.auto_filter

2-20 Oracle Text Reference

Filter Types

format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

Note: You need not specify the format column in CREATE INDEX
when using the AUTO_FILTER.

2.3.2.3 Character Set Conversion With AUTO_FILTER

The AUTO_FILTER converts documents to the database character set when the
document format column is set to TEXT. In this case, the AUTO_FILTER looks at the
charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is
passed through without any character set conversion.

Note: You need not specify the charset column when using the
AUTO_FILTER.

If you do specify the charset column and do not specify the format column, the AUTO_
FILTER works like the CHARSET_FILTER, except that in this case there is no Japanese
character set auto-detection.

See Also: "CHARSET_FILTER" on page 2-17.

2.3.3 NULL_FILTER

Use the NULL_FILTER type when plain text or HTML is to be indexed and no filtering
needs to be performed. NULL_FILTER has no attributes.

2.3.3.1 Indexing HTML Documents

If your document set is entirely HTML, Oracle recommends that you use the NULL_
FILTER in your filter preference.

For example, to index an HTML document set, specify the system-defined preferences
for NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter
section group ctxsys.html_section_group');

See Also: For more information on section groups and indexing
HTML documents, see "Section Group Types" on page 2-66.

2.3.4 MAIL_FILTER

Use MAIL_FILTER to transform RFC-822, RFC-2045 messages into indexable text. The
following limitations apply to the input:

= Documents must be US-ASCII
= Lines must not be longer than 1024 bytes
= Documents must be syntactically valid with regard to RFC-822.

Behavior for invalid input is not defined. Some deviations may be robustly handled by
the filter without error. Others may result in a fetch-time or filter-time error.

Oracle Text Indexing Elements 2-21

Filter Types

The MAIL_FILTER has the following attributes:

Table 2-12 MAIL_FILTER Attributes

Attribute

Attribute Value

INDEX_FIELDS

AUTO_FILTER_TIMEOUT

AUTO_FILTER_OUTPUT_
FORMATTING

PART FIELD_STYLE

Specify a colon-separated list of fields to preserve in the output.
These fields are transformed to tag markup. For example, if
INDEX_FIELDS is set to "FROM":

From: Scott Tiger
becomes:
<FROM>Scott Tiger</FROM>

Only top-level fields are transformed in this way.

Specify a timeout value for the AUTO_FILTER filtering invoked by
the mail filter. Default is 60. (Replaces the INSO_TIMEOUT
attribute and is backward compatible with INSO_TIMEOUT.)

Specify either TRUE or FALSE. Default is TRUE.

This attribute replaces the previous INSO_OUTPUT_FORMATTING
attribute. However, it has no effect in the current release.

Specify how fields occurring in lower-level parts and identified
by the INDEX_FIELDS attribute should be transformed. The fields
of the top-level message part identified by INDEX_FIELDS are
always transformed to tag markup (see the previous description
of INDEX_FIELDS); PART_FIELD_STYLE controls the transformation
of subsequent parts; for example, attached e-mails.

Possible values include IGNORE (the default), in which the part
fields are not included for indexing; TAG, in which the part field
names are transformed to tags, as occurs with top-level part
fields; FIELD, in which the part field names are preserved as
fields, not as tags; and TEXT, in which the part field names are
eliminated and only the field content is preserved for indexing.
See "Mail_Filter Example" on page 2-24 for an example of how
PART_FIELD_STYLE works.

2.3.4.1 Filter Behavior

This filter behaves in the following way for each document:

s Read and remove header fields

= Decode message body if needed, depending on Content-transfer-encoding field

= Take action depending on the Content-Type field value and the user-specified
behavior specified in a mail filter configuration file. (See "About the Mail Filter
Configuration File" on page 2-23.) The possible actions are:

= produce the body in the output text (INCLUDE). If no character set is
encountered in the INCLUDE parts in the Content-Type header field, then
Oracle defaults to the value specified in the character set column in the base
table. Name your populated character set column in the parameter string of
the CREATE INDEX command.

= AUTO_FILTER the body contents (AUTO_FILTER directive).

= remove the body contents from the output text (IGNORE)

= If nobehavior is specified for the type in the configuration file, then the defaults

are as follows:

= text/*: produce body in the output text

2-22 Oracle Text Reference

Filter Types

= application/*: AUTO_FILTER the body contents
= image/* audio/*, video/*, model/*: ignore

= Multipart messages are parsed, and the mail filter applied recursively to each part.
Each part is appended to the output.

= All text produced will be charset-converted to the database character set, if
needed.

2.3.4.2 About the Mail Filter Configuration File

The MAIL_FILTER filter makes use of a mail filter configuration file, which contains
directives specifying how a mail document should be filtered. The mail filter
configuration file is a editable text file. Here you can override default behavior for each
Content-Type. The configuration file also contains IANA-to-Oracle Globalization
Support character set name mappings.

The location of the file must be in ORACLE_HOME/ctx/config. The name of the file to use
is stored in the new system parameter MAIL_FILTER_CONFIG_FILE. On install, this is set
to drmailfl.txt, which has useful default contents.

Oracle recommends that you create your own mail filter configuration files to avoid
overwrite by the installation of a new version or patch set. The mail filter
configuration file should be in the database character set.

2.3.42.1 Mail File Configuration File Structure The file has two sections, BEHAVIOR and
CHARSETS. Indicate the start of the behavior section as follows:

[behavior]

Each line following starts with a mime type, then whitespace, then behavior
specification. The MIME type can be a full TYPE/SUBTYPE or just TYPE, which will apply
to all subtypes of that type. TYPE/SUBTYPE specification overrides TYPE specification,
which overrides default behavior. Behavior can be INCLUDE, AUTO_FILTER, or IGNORE
(see "Filter Behavior" on page 2-22 for definitions). For instance:

application/zip IGNORE
application/msword AUTO_FILTER
model IGNORE

You cannot specify behavior for "multipart” or "message" types. If you do, such lines
are ignored. Duplicate specification for a type replaces earlier specifications.

Comments can be included in the mail configuration file by starting lines with the #
symbol.

The charset mapping section begins with

[charsets]

Lines consist of an IANA name, then whitespace, then an Oracle Globalization
Support charset name, like:

US-ASCII UST7ASCI
IS0-8859-1 WE8IS08859P1

This file is the only way the mail filter gets the mappings. There are no defaults.

When you change the configuration file, the changes affect only the documents
indexed after that point. You must flush the shared pool after changing the file.

Oracle Text Indexing Elements 2-23

Filter Types

2.3.4.3 Mail_Filter Example

Suppose there is an e-mail with the following form, in which other e-mails with
different subject lines are attached to this e-mail:

To: somebody@someplace
Subject: mainheader
Content-Type: multipart/mixed

Content-Type: text/plain
X-Ref: some_value
Subject: subheader 1

Content-Type: text/plain
X-Control: blah blah blah
Subject: subheader 2

Set INDEX_FIELDS to be "Subject" and, initially, PART_FIELD_STYLE to IGNORE.

CTX_DDL.CREATE_PREFERENCE ('my_mail_filt', 'mail_filter');

CTX_DDL_SET ATTRIBUTE (my mail_filt', 'INDEX_FILES', 'subject');
CTX_DDL.SET ATTRIBUTE ('my mail filt', 'PART FIELD_STYLE', 'ignore');
Now when the index is created, the file will be indexed as follows:

<SUBJECT>mainheader</SUBJECT>

If PART FIELD_STYLE is instead set to TAG, this becomes:

<SUBJECT>mainheader</SUBJECT>
<SUBJECT>subheaderl</SUBJECT>
<SUBJECT>subheader2</SUBJECT>
If PART_FIELD_STYLE is set to FIELD instead, this is the result:

<SUBJECT>mainheader<SUBJECT>

SUBJECT: subheaderl

SUBJECT: subheader?2

Finally, if PART_FIELD_STYLE is instead set to TEXT, then the result is:

<SUBJECT>mainheader</SUBJECT>
subheaderl
subheader2

2.3.5 USER_FILTER

Use the USER_FILTER type to specify an external filter for filtering documents in a
column. USER_FILTER has the following attribute:

Table 2-13 USER_FILTER Attribute

Attribute Attribute Value

command Specify the name of the filter executable.

2-24 Oracle Text Reference

Filter Types

CAUTION: The USER_FILTER type introduces the potential for
security threats. A database user granted the CTXAPP role could
potentially use USER_FILTER to load a malicious application.
Therefore, the DBA must safeguard against any combination of
input and output file parameters that would enable the named filter
executable to compromise system security.

command

Specify the executable for the single external filter that is used to filter all text stored in
a column. If more than one document format is stored in the column, then the external
filter specified for command must recognize and handle all such formats.

The executable that you specify must exist in the $ORACLE_HOME/ctx/bin directory on
UNIX, and in the $0RACLE_HOME%/ctx/bin directory on Windows.

You must create your user-filter command with two parameters:
s The first parameter is the name of the input file to be read.
s The second parameter is the name of the output file to be written to.

If all the document formats are supported by AUTO_FILTER, then use AUTO_FILTER
instead of USER_FILTER, unless additional tasks besides filtering are required for the
documents.

2.3.5.1 Using USER_FILTER with Charset and Format Columns

USER_FILTER bypasses documents that do not need to be filtered. Its behavior is
sensitive to the values of the format and charset columns. In addition, USER_FILTER
performs character set conversion according to the charset column values.

2.3.5.2 Explicitly Bypassing Plain Text or HTML in Mixed Format Columns

A mixed-format column is a text column containing more than one document format,
such as a column that contains Microsoft Word, PDF, plain text, and HTML
documents.

The USER_FILTER executable can index mixed-format columns, automatically
bypassing textual documents. However, if you prefer not to depend on the built-in
bypass mechanism, you can explicitly tag your rows as text and cause the USER_FILTER
executable to ignore the row and not process the document in any way.

The format column in the base table enables you to specify the type of document
contained in the text column. You can specify the following document types: TEXT,
BINARY, and IGNORE. During indexing, the USER_FILTER executable ignores any
document typed TEXT, assuming the charset column is not specified. (The difference
between a document with a TEXT format column type and one with an IGNORE type is
that the TEXT document is indexed, but ignored by the filter, while the IGNORE
document is not indexed at all. Use IGNORE to overlook documents such as image files,
or documents in a language that you do not want to index. IGNORE can be used with
any filter type.

To set up the USER_FILTER bypass mechanism, you must create a format column in
your base table. For example:

create table hdocs (
id number primary key,
fmt varchar2(10),
text varchar2(80)

Oracle Text Indexing Elements 2-25

Filter Types

)i

Assuming you are indexing mostly Word documents, you specify BINARY in the format
column to filter the Word documents. Alternatively, to have the USER_FILTER
executable ignore an HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning
one format as BINARY and the other TEXT:

insert into hdocs values(l, 'binary', '/docs/myword.doc');
insert into hdocs values(2, 'text', '/docs/index.html');
commit;

Assuming that this file is named upcase.pl, create the filter preference as follows:

ctx_ddl.create_preference
(
preference_name => 'USER_FILTER_PREF',
object_name => 'USER_FILTER'
)

ctx_ddl.set_attribute ('USER_FILTER_PREF', 'COMMAND', 'upcase.pl');

To create the index, use CREATE INDEX and specify the format column name in the
parameter string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ('datastore ctxsys.file_datastore
filter 'USER_FILTER_PREF'
format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

2.3.5.3 Character Set Conversion with USER_FILTER

The USER_FILTER executable converts documents to the database character set when
the document format column is set to TEXT. In this case, the USER_FILTER executable
looks at the charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is
passed through without any character set conversion.

If you do specify the charset column and do not specify the format column, the USER_
FILTER executable works like the CHARSET_FILTER, except that in this case, there is no
Japanese character set auto-detection. See "CHARSET_FILTER" on page 2-17 for more
information regarding CHARSET_FILTER.

2.3.5.4 User Filter Example

The following example shows a Perl script to be used as the user filter. This script
converts the input text file specified in the first argument to uppercase and writes the
output to the location specified in the second argument.

#!/usr/local/bin/perl

open (IN, SARGVI[0]);
open (OUT, ">".SARGV[1]);

while (<IN>)

{
tr/a-z/A-7/;
print OUT;

2-26 Oracle Text Reference

Filter Types

close (IN);
close (OUT);

Assuming that this file is named upcase.pl, create the filter preference as follows:

begin
ctx_ddl.create_preference
(
preference_name => 'USER_FILTER_PREF',
object_name => 'USER_FILTER'
)
ctx_ddl.set_attribute
('USER_FILTER_PREF', 'COMMAND', 'upcase.pl');
end;

Create the index in SQL*Plus as follows:

create index user_filter_idx on user_filter (docs)
indextype is ctxsys.context
parameters ('FILTER USER_FILTER_PREF');

2.3.6 PROCEDURE_FILTER

Use the PROCEDURE_FILTER type to filter your documents with a stored procedure. The
stored procedure is called each time a document needs to be filtered.

Table 2-14 lists the attributes for PROCEDURE_FILTER.

Table 2-14 PROCEDURE_FILTER Attributes

Attribute Purpose Allowable Values
procedure Name of the filter Any procedure. The procedure can be a
stored procedure. PL/SQL stored procedure.
input_type Type of input argument VARCHAR2, BLOB, CLOB, FILE
for stored procedure.
output_type Type of output VARCHAR2, CLOB, FILE
argument for stored
procedure.
rowid_parameter Include rowid TRUE/FALSE
parameter?
format_parameter Include format TRUE/FALSE
parameter?
charset_parameter Include charset TRUE/FALSE
parameter?
procedure

Specify the name of the stored procedure to use for filtering. The procedure can be a
PL/SQL stored procedure. The procedure can be a safe callout, or call a safe callout.

With the rowid_parameter, format_parameter, and charset_parameter set to FALSE,
the procedure can have one of the following signatures:

PROCEDURE (IN BLOB, IN OUT NOCOPY CLOB)
PROCEDURE (IN CLOB, IN OUT NOCOPY CLOB)
PROCEDURE (IN VARCHAR, IN OUT NOCOPY CLOB)
PROCEDURE (IN BLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE (IN CLOB, IN OUT NOCOPY VARCHAR2)

Oracle Text Indexing Elements 2-27

Filter Types

PROCEDURE (IN VARCHAR2, IN OUT NOCOPY VARCHAR2)
PROCEDURE (IN BLOB, IN VARCHAR2)

PROCEDURE (IN CLOB, IN VARCHAR2)

PROCEDURE (IN VARCHAR2, IN VARCHAR2)

The first argument is the content of the unfiltered row, output by the datastore. The
second argument is for the procedure to pass back the filtered document text.

The procedure attribute is mandatory and has no default.

input_type

Sppeci;y)(cie type of the input argument of the filter procedure. You can specify one of
the following types:

Type Description

procedure Name of the filter stored procedure.

input_type Type of input argument for stored procedure.

output_type Type of output argument for stored procedure.

rowid_parameter Include rowid parameter?

The input_type attribute is not mandatory. If not specified, then BLOB is the default.

output_type
Specify the type of output argument of the filter procedure. You can specify one of the

following types:

Type Description

CLOB The output argument is IN OUT NOCOPY CLOB. Your procedure must
write the filtered content to the CLOB passed in.

VARCHAR2 The output argument is IN OUT NOCOPY VARCHAR2. Your procedure must
write the filtered content to the VARCHAR2 variable passed in.

FILE The output argument must be IN VARCHAR2. On entering the filter

procedure, the output argument is the name of a temporary file. The
filter procedure must write the filtered contents to this named file.

Using a FILE output type is useful only when the procedure is a safe
callout, which can write to the file.

The output_type attribute is not mandatory. If not specified, then CLOB is the default.

rowid_ parameter
When you specify TRUE, the rowid of the document to be filtered is passed as the first
parameter, before the input and output parameters.

For example, with INPUT_TYPE BLOB, OUTPUT_TYPE CLOB, and ROWID_PARAMETER TRUE,
the filter procedure must have the signature as follows:

procedure (in rowid, in blob, in out nocopy clob)

This attribute is useful for when your procedure requires data from other columns or
tables. This attribute is not mandatory. The default is FALSE.

2-28 Oracle Text Reference

Filter Types

format_parameter

When you specify TRUE, the value of the format column of the document being filtered
is passed to the filter procedure before input and output parameters, but after the
rowid parameter, if enabled.

Specify the name of the format column at index time in the parameters string, using
the keyword ' format column <columnname>'.The parameter type must be IN
VARCHAR2.

The format column value can be read by means of the rowid parameter, but this
attribute enables a single filter to work on multiple table structures, because the format
attribute is abstracted and does not require the knowledge of the name of the table or
format column.

FORMAT_PARAMETERis not mandatory. The default is FALSE.

charset_parameter

When you specify TRUE, the value of the charset column of the document being filtered
is passed to the filter procedure before input and output parameters, but after the
rowid and format parameter, if enabled.

Specify the name of the charset column at index time in the parameters string, using
the keyword 'charset column <columnname>'.The parameter type must be IN
VARCHAR2.

CHARSET_PARAMETERattribute is not mandatory. The default is FALSE.

2.3.6.1 Parameter Order

ROWID_PARAMETER, FORMAT_PARAMETER, and CHARSET_PARAMETERare all independent.
The order is rowid, the format, then charset. However, the filter procedure is passed
only the minimum parameters required.

For example, assume that INPUT_TYPE is BLOB and OUTPUT_TYPE is CLOB. If your filter
procedure requires all parameters, then the procedure signature must be:

(id IN ROWID, format IN VARCHAR2, charset IN VARCHAR2, input IN BLOB, output IN
OUT NOCOPY CLOB)
If your procedure requires only the ROWID, then the procedure signature must be:

(id IN ROWID, input IN BLOB, ouput IN OUT NOCOPY CLOB)

2.3.6.2 Procedure Filter Execute Requirements

To create an index using a PROCEDURE_FILTER preference, the index owner must have
execute permission on the procedure.

2.3.6.3 Error Handling

The filter procedure can raise any errors needed through the normal PL/SQL raise_
application_error facility. These errors are propagated to the CTX_USER_INDEX_
ERRORS view or reported to the user, depending on how the filter is invoked.

2.3.6.4 Procedure Filter Preference Example

Consider a filter procedure CTXSYS.NORMALIZE that you define with the following
signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

Oracle Text Indexing Elements 2-29

Lexer Types

To use this procedure as your filter, set up your filter preference as follows:

begin
ctx_ddl.create_preference('myfilt', 'procedure_filter');
ctx_ddl.set_attribute('myfilt', 'procedure', 'normalize');

ctx_ddl.set_attribute('myfilt', 'input_type', 'clob');
ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('myfilt', 'rowid_parameter',6 'TRUE');
ctx_ddl.set_attribute('myfilt', 'charset_parameter', 'TRUE');
end;

2.4 Lexer Types

Use the lexer preference to specify the language of the text to be indexed. To create a
lexer preference, you must use one of the lexer types described in Table 2-15.

Table 2-15 Lexer Types

Type Description

BASIC_LEXER Lexer for extracting tokens from text in languages, such as
English and most western European languages that use white
space delimited words.

MULTI_LEXER Lexer for indexing tables containing documents of different
languages such as English, German, and Japanese.

CHINESE_VGRAM_LEXER Lexer for extracting tokens from Chinese text.

CHINESE_LEXER Lexer for extracting tokens from Chinese text. This lexer offers
benefits over the CHINESE_VGRAM lexer:

s Generates a smaller index
= Better query response time

= Generates real world tokens resulting in better query
precision

= Supports stop words

JAPANESE_VGRAM_ Lexer for extracting tokens from Japanese text.
LEXER
JAPANESE_LEXER Lexer for extracting tokens from Japanese text. This lexer offers

the following advantages over the JAPANESE_VGRAM lexer:

= Generates smaller index

= Better query response time

= Generates real world tokens resulting in better precision
KOREAN_MORPH_LEXER Lexer for extracting tokens from Korean text.
USER_LEXER Lexer you create to index a particular language.

WORLD_LEXER Lexer for indexing tables containing documents of different
languages; autodetects languages in a document.

2.4.1 BASIC_LEXER

Use the BASIC_LEXER type to identify tokens for creating Text indexes for English and
all other supported whitespace-delimited languages.

The BASIC_LEXER also enables base-letter conversion, composite word indexing,
case-sensitive indexing and alternate spelling for whitespace-delimited languages that
have extended character sets.

In English and French, you can use the BASIC_LEXER to enable theme indexing.

2-30 Oracle Text Reference

Lexer Types

Note: Any processing that the lexer does to tokens before
indexing (for example, removal of characters, and base-letter
conversion) are also performed on query terms at query time. This
ensures that the query terms match the form of the tokens in the

Text index.

BASIC_LEXER supports any database character set.

BASIC_LEXER has the attributes shown in Table 2-16.

Table 2-16 BASIC_LEXER Attributes

Attribute Attribute Value
continuation characters
numgroup characters
numjoin characters
printjoins characters
punctuations characters
skipjoins characters
startjoins non alphanumeric characters that occur at the beginning of a token
(string)
endjoins non alphanumeric characters that occur at the end of a token (string)
whitespace characters (string)
newline NEWLINE (\n)
CARRIAGE_RETURN (\r)
base_letter NO (disabled)
YES (enabled)
base_letter_type GENERIC (default)
SPECIFIC
override_base_letter TRUE
FALSE (default)
mixed_case NO (disabled)
YES (enabled)

composite

index_stems

DEFAULT (no composite word indexing, default)
GERMAN (German composite word indexing)
DUTCH (Dutch composite word indexing)

0 NONE

1 ENGLISH

2 DERIVATIONAL

3 DUTCH

4 FRENCH

5 GERMAN

6 ITALIAN

7 SPANISH

Oracle Text Indexing Elements 2-31

Lexer Types

Table 2-16 (Cont.) BASIC LEXER Attributes

Attribute Attribute Value
index_themes YES (enabled)
NO (disabled, default)
NO (disabled, default)
index_text YES (enabled, default
NO (disabled)
prove_themes YES (enabled, default)
NO (disabled)
theme_language AUTO (default)

(any Globalization Support language)
alternate_spelling GERMAN (German alternate spelling)
DANISH (Danish alternate spelling)
SWEDISH (Swedish alternate spelling)
NONE (No alternate spelling, default)

new_german_spelling YES
NO (default)

continuation

Specify the characters that indicate a word continues on the next line and should be
indexed as a single token. The most common continuation characters are hyphen -
and backslash "\'".

numgroup
Specify a single character that, when it appears in a string of digits, indicates that the
digits are groupings within a larger single unit.

For example, comma ',' might be defined as a numgroup character because it often
indicates a grouping of thousands when it appears in a string of digits.

numjoin
Specify the characters that, when they appear in a string of digits, cause Oracle Text to
index the string of digits as a single unit or word.

For example, period "' can be defined as numjoin characters because it often serves as
decimal points when it appears in a string of digits.

Note: The default values for numjoin and numgroup are
determined by the globalization support initialization parameters
that are specified for the database.

In general, a value need not be specified for either numjoin or
numgroup when creating a lexer preference for BASIC_LEXER.

printjoins

Specify the non alphanumeric characters that, when they appear anywhere in a word
(beginning, middle, or end), are processed as alphanumeric and included with the
token in the Text index. This includes printjoins that occur consecutively.

2-32 Oracle Text Reference

Lexer Types

For example, if the hyphen '-' and underscore '_' characters are defined as printjoins,
terms such as pseudo-intellectual and _file_ are stored in the Text index as
pseudo-intellectual and _file_.

Note: If aprintjoins character is also defined as a punctuations
character, the character is only processed as an alphanumeric
character if the character immediately following it is a standard
alphanumeric character or has been defined as a printjoins or
skipjoins character.

punctuations

Specify a list of non-alphanumeric characters that, when they appear at the end of a
word, indicate the end of a sentence. The defaults are period '.', question mark '?', and
exclamation point '!'.

Characters that are defined as punctuations are removed from a token before text
indexing. However, if a punctuations character is also defined as a printjoins
character, then the character is removed only when it is the last character in the token.

For example, if the period (.) is defined as both a printjoins and a punctuations
character, then the following transformations take place during indexing and querying
as well:

Token Indexed Token
.doc .doc

dog.doc dog.doc
dog..doc dog..doc

dog. dog

dog... dog..

In addition, BASIC_LEXER use punctuations characters in conjunction with newline
and whitespace characters to determine sentence and paragraph delimiters for
sentence/paragraph searching.

skipjoins

Specify the non-alphanumeric characters that, when they appear within a word,
identify the word as a single token; however, the characters are not stored with the
token in the Text index.

For example, if the hyphen character '-' is defined as a skipjoins, then the word
pseudo-intellectual is stored in the Text index as pseudointellectual.

Note: Printjoins and skipjoins are mutually exclusive. The
same characters cannot be specified for both attributes.

startjoins/endjoins

For startjoins, specify the characters that when encountered as the first character in a
token explicitly identify the start of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the Text index entry
for the token. In addition, the first startjoins character in a string of startjoins
characters implicitly ends the previous token.

Oracle Text Indexing Elements 2-33

Lexer Types

For endjoins, specify the characters that when encountered as the last character in a
token explicitly identify the end of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the Text index entry
for the token.

The following rules apply to both startjoins and endjoins:

s The characters specified for startjoins/endjoins cannot occur in any of the other
attributes for BASIC_LEXER.

» startjoins/endjoins characters can occur only at the beginning or end of tokens

Printjoins differ from endjoins and startjoins in that position does not matter. For
example, $35 will be indexed as one token if $ is a startjoin or a printjoin, but as
two tokens if it is defined as an endjoin.

whitespace

Specify the characters that are treated as blank spaces between tokens. BASIC_LEXER
uses whitespace characters in conjunction with punctuations and newline characters
to identify character strings that serve as sentence delimiters for sentence and
paragraph searching.

The predefined default values for whitespace are space and tab. These values cannot
be changed. Specifying characters as whitespace characters adds to these defaults.

newline

Specify the characters that indicate the end of a line of text. BASIC_LEXER uses newline
characters in conjunction with punctuations and whitespace characters to identify
character strings that serve as paragraph delimiters for sentence and paragraph
searching.

The only valid values for newline are NEWLINE and CARRIAGE_RETURN (for carriage
returns). The default is NEWLINE.

base_letter

Specify whether characters that have diacritical marks (umlauts, cedillas, acute
accents, and so on) are converted to their base form before being stored in the Text
index. The default is NO (base-letter conversion disabled). For more information on
base-letter conversions and base_letter_type, see Base-Letter Conversion on

page 15-2.

base_letter_type
Specify GENERIC or SPECIFIC.

The GENERIC value is the default and means that base letter transformation uses one
transformation table that applies to all languages. For more information on base-letter
conversions and base_letter_type, see "Base-Letter Conversion" on page 15-2.

override_base_letter

When base_letter is enabled at the same time as alternate_spelling, itis
sometimes necessary to override base_letter to prevent unexpected results from
serial transformations. See "Overriding Base-Letter Transformations with Alternate
Spelling" on page 15-3. Default is FALSE.

mixed_case

Specify whether the lexer leaves the tokens exactly as they appear in the text or
converts the tokens to all uppercase. The default is NO (tokens are converted to all
uppercase).

2-34 Oracle Text Reference

Lexer Types

Note: Oracle Text ensures that word queries match the case
sensitivity of the index being queried. As a result, if you enable case
sensitivity for your Text index, queries against the index are always
case sensitive.

composite
Specify whether composite word indexing is disabled or enabled for either GERMAN or
DUTCH text. The default is DEFAULT (composite word indexing disabled).

Words that are usually one entry in a German dictionary are not split into composite
stems, while words that aren't dictionary entries are split into composite stems.

To retrieve the indexed composite stems, you must enter a stem query, such as
$bahnhof. The language of the wordlist stemmer must match the language of the
composite stems.

2.4.1.1 Stemming User-Dictionaries

You can create a user-dictionary for your own language to customize how words are
decomposed. These dictionaries are shown in Table 2-17.

Table 2-17 Stemming User-Dictionaries

Dictionary Stemmer
$ORACLE_HOME/ctx/data/frlx/drfr.dct French
SORACLE_HOME/ctx/data/delx/drde.dct German
$ORACLE_HOME/ctx/data/nllx/drnl.dct Dutch
SORACLE_HOME/ctx/data/itlx/drit.dct Italian
SORACLE_HOME/ctx/data/eslx/dres.dct Spanish
SORACLE_HOME/ctx/data/enlx/dren.dct English and Derivational

Stemming user-dictionaries are not supported for languages other than those listed in
Table 2-17.

The format for the user dictionary is as follows:

output term <tab> input term

The individual parts of the decomposed word must be separated by the # character.
The following example entries are for the German word Hauptbahnhof:

Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhofes<tab>Haupt#Bahnhof
Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhoefe<tab>Haupt#Bahnhof

index_themes

Specify YES to index theme information in English or French. This makes ABOUT queries
more precise. The index_themes and index_text attributes cannot both be NO. The
default is YES.

You can set this parameter to TRUE for any index type, including CTXCAT. To enter an
ABOUT query with CATSEARCH, use the query template with CONTEXT grammar.

Oracle Text Indexing Elements 2-35

Lexer Types

Note: index_themes requires an installed knowledge base. A
knowledge base may or may not have been installed with Oracle Text.
For more information on knowledge bases, see Oracle Text Application
Developer’s Guide.

prove_themes

Specify YES to prove themes. Theme proving attempts to find related themes in a
document. When no related themes are found, parent themes are eliminated from the
document.

While theme proving is acceptable for large documents, short text descriptions with a
few words rarely prove parent themes, resulting in poor recall performance with ABOUT
queries.

Theme proving results in higher precision and less recall (less rows returned) for ABOUT
queries. For higher recall in ABOUT queries and possibly less precision, you can disable
theme proving. Default is YES.

The prove_themes attribute is supported for CONTEXT and CTXRULE indexes.

theme_language
Specify which knowledge base to use for theme generation when index_themes is set
to YES. When index_themes is NO, setting this parameter has no effect on anything.

Specify any globalization support language or AUTO. You must have a knowledge base
for the language you specify. This release provides a knowledge base in only English
and French. In other languages, you can create your own knowledge base.

See Also: "Adding a Language-Specific Knowledge Base" on
page 14-7 in Chapter 14, "Oracle Text Utilities".

The default is AUTO, which instructs the system to set this parameter according to the
language of the environment.

index_stems
Specify the stemmer to use for stem indexing. Choose one of the following stemmers:

NONE GERMAN
DERIVATIONAL ITALIAN
DUTCH NORWEGIAN
ENGLISH SPANISH
FRENCH SWEDISH

Tokens are stemmed to a single base form at index time in addition to the normal
forms. Indexing stems enables better query performance for stem ($) queries, such as
$computed.

index_text
Specify YES to index word information. The index_themes and index_text attributes cannot
both be NO.

The default is NO.

2-36 Oracle Text Reference

Lexer Types

alternate_spelling

Specify either GERMAN, DANISH, or SWEDISH to enable the alternate spelling in one of
these languages. Enabling alternate spelling enables you to query a word in any of its
alternate forms.

Alternate spelling is off by default; however, in the language-specific scripts that
Oracle provides in admin/defaults (drdefd.sql for German, drdefdk.sql for Danish,
and drdefs.sql for Swedish), alternate spelling is turned on. If your installation uses
these scripts, then alternate spelling is on. However, you can specify NONE for no
alternate spelling. For more information about the alternate spelling conventions
Oracle Text uses, see Alternate Spelling on page 15-2.

new_german_spelling

Specify whether the queries using the BASIC_LEXER return both traditional and
reformed (new) spellings of German words. If new_german_spelling is set to YES, then
both traditional and new forms of words are indexed. If it is set to NO, then the word
will be indexed only as it as provided in the query. The default is NO.

See Also: "New German Spelling” on page 15-2

2.4.1.2 BASIC_LEXER Example

The following example sets printjoin characters and disables theme indexing with the
BASIC_LEXER:

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');

ctx_ddl.set_attribute ('mylex', 'index_themes', 'NO');
ctx_ddl.set_attribute ('mylex', 'index_text', 'YES');
end;

To create the index with no theme indexing and with printjoin characters set as
described, enter the following statement:

create index myindex on mytable (docs)
indextype 1s ctxsys.context
parameters ('LEXER mylex');

2.4.2 MULTI_LEXER

Use MULTI_LEXER to index text columns that contain documents of different languages.
For example, use this lexer to index a text column that stores English, German, and
Japanese documents.

This lexer has no attributes.

You must have a language column in your base table. To index multi-language tables,
specify the language column when you create the index.

Create a multi-lexer preference with CTX_DDL.CREATE_PREFERENCE. Add
language-specific lexers to the multi-lexer preference with the CTX_DDL.ADD_SUB_LEXER
procedure.

During indexing, the MULTI_LEXER examines each row's language column value and
switches in the language-specific lexer to process the document.

The WORLD_LEXER lexer also performs multi-language indexing, but without the need
for separate language columns (that is, it has automatic language detection). For more
on WORLD_LEXER, see "WORLD_LEXER" on page 2-56.

Oracle Text Indexing Elements 2-37

Lexer Types

2.4.2.1 Multi-language Stoplists

When you use the MULTI_LEXER, you can also use a multi-language stoplist for
indexing.

See Also: "Multi-Language Stoplists" on page 2-72.

2.4.2.2 MULTI_LEXER Example

Create the multi-language table with a primary key, a text column, and a language
column as follows:

create table globaldoc (
doc_id number primary key,
lang varchar2(3),
text clob

)i

Assume that the table holds mostly English documents, with the occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers,
one for English, one for German, and one for Japanese:

ctx_ddl.create_preference('english_lexer', 'basic_lexer');
ctx_ddl.set_attribute('english_lexer', 'index_themes', 'yes');
ctx_ddl.set_attribute('english_lexer', 'theme_language', 'english');

ctx_ddl.create_preference('german_lexer', 'basic_lexer');
ctx_ddl.set_attribute('german_lexer', 'composite', 'german');
ctx_ddl.set_attribute('german_lexer', 'mixed_case', 'yes');
ctx_ddl.set_attribute('german_lexer', 'alternate_spelling', 'german');

ctx_ddl.create_preference('japanese_lexer', 'japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default
using CTX_DDL.ADD_SUB_LEXER:
ctx_ddl.add_sub_lexer('global_lexer', 'default', 'english_lexer');

Now add the German and Japanese lexers in their respective languages with CTX_
DDL.ADD_SUB_LEXER procedure. Also assume that the language column is

expressed in the standard ISO 639-2 language codes, so add those as alternative
values.

ctx_ddl.add_sub_lexer('global_lexer', 'german', 'german_lexer', 'ger');
ctx_ddl.add_sub_lexer('global_lexer', 'japanese', 'japanese_lexer', 'jpn');

Now create the index globalx, specifying the multi-lexer preference and the language
column in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

2.4.2.3 Querying Multi-Language Tables

At query time, the multi-lexer examines the language setting and uses the sub-lexer
preference for that language to parse the query.

If the language is not set, then the default lexer is used. Otherwise, the query is parsed
and run as usual. The index contains tokens from multiple languages, so such a query

2-38 Oracle Text Reference

Lexer Types

can return documents in several languages. To limit your query to a given language,
use a structured clause on the language column.

2.4.3 CHINESE_VGRAM_LEXER

The CHINESE_VGRAM_LEXER type identifies tokens in Chinese text for creating Text
indexes.

2.4.3.1 CHINESE_VGRAM_LEXER Attribute
The CHINESE_VGRAM_LEXER has the following attribute:

Table 2-18 CHINESE_VGRAM_LEXER Attributes

Attribute Attribute Value

mixed_case ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO
(default).

2.4.3.2 Character Sets

You can use this lexer if your database uses one of the following character sets:

s AL32UTEF8

s ZHS16CGB231280
s ZHS16GBK

= ZHS32GB18030

= ZHT32EUC

= ZHTI16BIG5

s ZHT32TRIS

= ZHT16HKSCS

s ZHT16MSWIN950
= UTF8

2.44 CHINESE_LEXER

The CHINESE_LEXER type identifies tokens in traditional and simplified Chinese text for
creating Oracle Text indexes.

This lexer offers the following benefits over the CHINESE_VGRAM_LEXER:
= generates a smaller index

= better query response time

= generates real word tokens resulting in better query precision

= supports stop words

Because the CHINESE_LEXER uses a different algorithm to generate tokens, indexing
time is longer than with CHINESE_VGRAM_LEXER.

You can use this lexer if your database character is one of the Chinese or Unicode
character sets supported by Oracle.

Oracle Text Indexing Elements 2-39

Lexer Types

2.44.1 CHINESE_LEXER Attribute
The CHINESE_LEXER has the following attribute:

Table 2-19 CHINESE_LEXER Attributes

Attribute Attribute Value

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and NO
(default).

2.4.4.2 Customizing the Chinese Lexicon

You can modify the existing lexicon (dictionary) used by the Chinese lexer, or create
your own Chinese lexicon, with the ctxlc command.

See Also: "Lexical Compiler (ctxlc)" on page 14-8 in Chapter 14,
"Oracle Text Utilities"

2.45 JAPANESE _VGRAM_LEXER

The JAPANESE_VGRAM_LEXER type identifies tokens in Japanese for creating Text
indexes. This lexer supports the stem ($) operator.

2.4.5.1 JAPANESE_VGRAM_LEXER Attributes

This lexer has the following attributes:

Table 2-20 JAPANESE_VGRAM_LEXER Attributes

Attribute Attribute Value

delimiter Specify whether to consider certain Japanese blank characters,
such as a full-width forward slash or a full-width middle dot.
ALL considers these characters, while NONE ignores them. Default
is NONE.

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and NO
(default).

2.4.5.2 JAPANESE_VGRAM_LEXER Character Sets

You can use this lexer if your database uses one of the following character sets:

x JAL6SJIS
= JAI6EUC
« UTF8

= AL32UTFS

= JAI6EUCTILDE
= JAI6EUCYEN

= JAI16SJISTILDE
= JAI16SJISYEN

2.4.6 JAPANESE_LEXER

The JAPANESE_LEXER type identifies tokens in Japanese for creating Text indexes. This
lexer supports the stem ($) operator.

2-40 Oracle Text Reference

Lexer Types

This lexer offers the following benefits over the JAPANESE_VGRAM_LEXER:
= generates a smaller index

= better query response time

= generates real word tokens resulting in better query precision

Because the JAPANESE_LEXER uses a new algorithm to generate tokens, indexing time is
longer than with JAPANESE_VGRAM_LEXER.

2.4.6.1 Customizing the Japanese Lexicon

You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create
your own Japanese lexicon, with the ctxlc command.

See Also: "Lexical Compiler (ctxlc)" on page 14-8 in Chapter 14,
"Oracle Text Utilities"

2.4.6.2 JAPANESE_LEXER Attributes

This lexer has the following attributes:

Table 2-21 JAPANESE_LEXER Attributes
Attribute Attribute Value

delimiter Specify NONE or ALL to ignore certain Japanese blank characters,
such as a full-width forward slash or a full-width middle dot.
Default is NONE.

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and NO
(default).

2.4.6.3 JAPANESE LEXER Character Sets
The JAPANESE_LEXER supports the following character sets:

» JAI6SJIS

= JAI6EUC
» UTFS

= AL32UTF8

= JAI6EUCTILDE
= JAI6EUCYEN

= JAI16SJISTILDE
= JAI16SJISYEN

2.4.6.4 Japanese Lexer Example

When you specify JAPANESE_LEXER for creating text index, the JAPANESE_LEXER
resolves a sentence into words.

For example, the following compound word (natural language institute)

BAXSENE

Oracle Text Indexing Elements 2-41

Lexer Types

is indexed as three tokens:

15%‘?'§§‘?1M_11

To resolve a sentence into words, the internal dictionary is referenced. When a word
cannot be found in the internal dictionary, Oracle Text uses the JAPANESE_VGRAM_LEXER
to resolve it.

T

2.47 KOREAN_MORPH_LEXER

The KOREAN_MORPH_LEXER type identifies tokens in Korean text for creating Oracle Text
indexes.

2.4.7.1 Supplied Dictionaries
The KOREAN_MORPH_LEXER uses four dictionaries:

Table 2-22 KOREAN_MORPH_LEXER Dictionaries

Dictionary File

System SORACLE_HOME/ctx/data/kolx/drk2sdic.dat
Grammar $ORACLE_HOME/ctx/data/kolx/drk2gram.dat
Stopword $ORACLE_HOME/ctx/data/kolx/drk2xdic.dat
User-defined $ORACLE_HOME/ctx/data/kolx/drk2udic.dat

The grammar, user-defined, and stopword dictionaries should be written using the
KSC 5601 or MSWIN949 character sets. You can modify these dictionaries using the
defined rules. The system dictionary must not be modified.

You can add unregistered words to the user-defined dictionary file. The rules for
specifying new words are in the file.

2.4.7.2 Supported Character Sets

You can use KOREAN_MORPH_LEXER if your database uses one of the following character
sets:

. KO16KSC5601

. KO16MSWIN949
» UTF8

» AL32UTEFS8

The KOREAN_MORPH_LEXER enables mixed-case searches.

2.4.7.3 Unicode Support
The KOREAN_MORPH_LEXER supports:

s Words in non-KSC5601 Korean characters defined in Unicode

= Supplementary characters

See Also: For information on supplementary characters, see the
Oracle Database Globalization Support Guide

2-42 Oracle Text Reference

Lexer Types

Some Korean documents may have non-KSC5601 characters in them. As the KOREAN_
MORPH_LEXER can recognize all possible 11,172 Korean (Hangul) characters, such
documents can also be interpreted by using the UTF8 or AL32UTEFS8 character sets.

Use the AL32UTF8 character set for your database to extract surrogate characters. By
default, the KOREAN_MORPH_LEXER extracts all series of surrogate characters in a
document as one token for each series.

24.7.3.1 Limitations on Korean Unicode Support For conversion Hanja to Hangul
(Korean), the KOREAN_MORPH_LEXER supports only the 4888 Hanja characters defined in
KSC5601.

2.4.7.4 KOREAN_MORPH_LEXER Attributes
When you use the KOREAN_MORPH_LEXER, you can specify the following attributes:

Table 2-23 KOREAN_MORPH_LEXER Attributes

Attribute Attribute Value

verb_adjective Specify TRUE or FALSE to index verbs, adjectives, and adverbs.
Default is FALSE.

one_char_word Specify TRUE or FALSE to index one syllable. Default is FALSE.

number Specify TRUE or FALSE to index number. Default is FALSE.

user_dic Specify TRUE or FALSE to index user dictionary. Default is TRUE.

stop_dic Specify TRUE of FALSE to use stop-word dictionary. Default is TRUE.

The stop-word dictionary belongs to KOREAN_MORPH_LEXER.

composite Specify indexing style of composite noun.
Specify COMPOSITE_ONLY to index only composite nouns.
Specify NGRAM to index all noun components of a composite noun.

Specify COMPONENT_WORD to index single noun components of
composite nouns as well as the composite noun itself. Default is
COMPONENT_WORD.

The following example describes the difference between NGRAM and
COMPONENT_WORD.

morpheme Specify TRUE or FALSE for morphological analysis. If set to FALSE,
tokens are created from the words that are divided by delimiters
such as white space in the document. Default is TRUE.

to_upper Specify TRUE or FALSE to convert English to uppercase. Default is
TRUE.
hanja Specify TRUE to index hanja characters. If set to FALSE, hanja

characters are converted to hangul characters. Default is FALSE.

long_word Specify TRUE to index long words that have more than 16 syllables in
Korean. Default is FALSE.

japanese Specify TRUE to index Japanese characters in Unicode (only in the
2-byte area). Default is FALSE.

english Specify TRUE to index alphanumeric strings. Default is TRUE.

2.4.7.5 Limitations
Sentence and paragraph sections are not supported with the KOREAN_MORPH_LEXER.

Oracle Text Indexing Elements 2-43

Lexer Types

2.4.7.6 KOREAN_MORPH_LEXER Example: Setting Composite Attribute

Use the composite attribute to control how composite nouns are indexed.

24.7.6.1 NGRAM Example When you specify NGRAM for the composite attribute,
composite nouns are indexed with all possible component tokens. For example, the
following composite noun (information processing institute)

HHHRIEE
is indexed as six tokens:

A, A, e, FeAY)
EERE R FEDE

Specify NGRAM indexing as follows:

begin

ctx_ddl.create_preference('my_lexer', 'KOREAN_MORPH_LEXER') ;
ctx_ddl.set_attribute('my_lexer', 'COMPOSITE', 'NGRAM');

end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer my_ lexer');

24.7.6.2 COMPONENT_WORD Example When you specify COMPONENT_WORD for the
composite attribute, composite nouns and their components are indexed. For example,
the following composite noun (information processing institute)

A H A =hE]
is indexed as four tokens:

FH A, A AR,
A A2, wE

Specify COMPONENT_WORD indexing as follows:

begin

ctx_ddl.create_preference('my_lexer', 'KOREAN_MORPH_LEXER') ;
ctx_ddl.set_attribute('my_lexer', 'COMPOSITE', 'COMPONENT WORD') ;
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer my lexer');

2.4.8 USER_LEXER

Use USER_LEXER to plug in your own language-specific lexing solution. This enables
you to define lexers for languages that are not supported by Oracle Text. It also enables
you to define a new lexer for a language that is supported but whose lexer is
inappropriate for your application.

2-44 Oracle Text Reference

Lexer Types

The user-defined lexer you register with Oracle Text is composed of two routines that
you must supply:

Table 2-24 User-Defined Routines for USER_LEXER

User-Defined Routine Description

Indexing Procedure Stored procedure (PL/SQL) which implements the tokenization
of documents and stop words. Output must be an XML
document as specified in this section.

Query Procedure Stored procedure (PL/SQL) which implements the tokenization
of query words. Output must be an XML document as specified
in this section.

2.4.8.1 Limitations
The following features are not supported with the USER_LEXER:

m CTX_DOC.GIST and CTX_DOC.THEMES
s CTX_QUERY.HFEEDBACK

= ABOUT query operator

»s CTXRULE index type

= VGRAM indexing algorithm

2.4.8.2 USER_LEXER Attributes
USER_LEXER has the following attributes:

Table 2-25 USER_LEXER Attributes

Attribute Attribute Value

INDEX_PROCEDURE Name of a stored procedure. No default provided.
INPUT_TYPE VARCHAR2, CLOB. Default is CLOB.

QUERY_PROCEDURE Name of a stored procedure. No default provided.

2.4.8.3 INDEX_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize a
document or a stop word found in the stoplist object.

2.4.8.3.1 Requirements This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or dropped after the index is created. You
can replace or drop this stored procedure after the index is dropped.

2.4.8.3.2 Parameters Two different interfaces are supported for the user-defined lexer
indexing procedure:

s VARCHAR?2 Interface

s CLOB Interface

24.8.3.3 Restrictions This procedure must not perform any of the following
operations:

s Rollback

Oracle Text Indexing Elements 2-45

Lexer Types

s Explicitly or implicitly commit the current transaction
= Enter any other transaction control statement
= Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be
in the same order as the tokens occur in the document or stop word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all
parameters.

2.4.8.4 INPUT_TYPE

Two different interfaces are supported for the User-defined lexer indexing procedure.
One interface enables the document or stop word and the corresponding tokens
encoded as XML to be passed as VARCHAR2 datatype whereas the other interface uses
the CLOB datatype. This attribute indicates the interface implemented by the stored
procedure specified by the INDEX_PROCEDURE attribute.

24.8.41 VARCHAR2 Interface BASIC_WORDLIST Attributes Table 2-33 describes the
interface that enables the document or stop word from stoplist object to be tokenized
to be passed as VARCHAR2 from Oracle Text to the stored procedure and for the tokens
to be passed as VARCHAR2 as well from the stored procedure back to Oracle Text.

Your user-defined lexer indexing procedure should use this interface when all
documents in the column to be indexed are smaller than or equal to 32512 bytes and
the tokens can be represented by less than or equal to 32512 bytes. In this case the CLOB
interface given in Table 2-27 can also be used, although the VARCHAR2 interface will
generally perform faster than the CLOB interface.

This procedure must be defined with the following parameters:

2-46 Oracle Text Reference

Lexer Types

Table 2-26 VARCHAR?2 Interface for INDEX_PROCEDURES

Parameter Parameter Parameter
Position Mode Datatype Description

1 IN VARCHAR2 Document or stop word from stoplist object to be tokenized.

If the document is larger than 32512 bytes then Oracle Text will
report a document level indexing error.

2 IN OUT VARCHAR2 Tokens encoded as XML.

If the document contains no tokens, then either NULL must be
returned or the tokens element in the XML document returned
must contain no child elements.

Byte length of the data must be less than or equal to 32512.

To improve performance, use the NOCOPY hint when declaring
this parameter. This passes the data by reference, rather than
passing data by value.

The XML document returned by this procedure should not
include unnecessary whitespace characters (typically used to
improve readability). This reduces the size of the XML
document which in turn minimizes the transfer time.

To improve performance, index_procedure should not validate
the XML document with the corresponding XML schema at
run-time.

Note that this parameter is IN OUT for performance purposes.
The stored procedure has no need to use the IN value.

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text needs
the character offset and character length of the tokens as found
in the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of the
tokens as found in the document being tokenized. This implies
that the XML attributes off and len must not be used.

24.8.42 CLOB Interface Table 2-27 describes the CLOB interface that enables the
document or stop word from stoplist object to be tokenized to be passed as CLOB from
Oracle Text to the stored procedure and for the tokens to be passed as CLOB as well
from the stored procedure back to Oracle Text.

The user-defined lexer indexing procedure should use this interface when at least one
of the documents in the column to be indexed is larger than 32512 bytes or the
corresponding tokens are represented by more than 32512 bytes.

Oracle Text Indexing Elements 2-47

Lexer Types

Table 2-27 CLOB Interface for INDEX_PROCEDURE

Parameter
Position

Parameter
Mode Parameter Datatype Description

1

IN

CLOB Document or stop word from stoplist object to be
tokenized.

IN OUT CLOB Tokens encoded as XML.

IN

If the document contains no tokens, then either NULL
must be returned or the tokens element in the XML
document returned must contain no child elements.

To improve performance, use the NOCOPY hint when
declaring this parameter. This passes the data by
reference, rather than passing data by value.

The XML document returned by this procedure should
not include unnecessary whitespace characters
(typically used to improve readability). This reduces
the size of the XML document which in turn minimizes
the transfer time.

To improve performance, index_procedure should not
validate the XML document with the corresponding
XML schema at run-time.

Note that this parameter is IN OUT for performance
purposes. The stored procedure has no need to use the
IN value. The IN value will always be a truncated CLOB.

BOOLEAN Oracle Text sets this parameter to TRUE when Oracle
Text needs the character offset and character length of
the tokens as found in the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is
not interested in the character offset and character
length of the tokens as found in the document being
tokenized. This implies that the XML attributes off and
len must not be used.

The first and second parameters are temporary CLOBS. Avoid assigning these CLOB
locators to other locator variables. Assigning the formal parameter CLOB locator to
another locator variable causes a new copy of the temporary CLOB to be created
resulting in a performance hit.

2.4.8.5 QUERY_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize words in
the query. A space-delimited group of characters (excluding the query operators) in
the query will be identified by Oracle Text as a word.

24.8.5.1 Requirements This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or be dropped after the index is created.
You can replace or drop this stored procedure after the index is dropped.

24.8.5.2 Restrictions This procedure must not perform any of the following
operations:

= Rollback

= Explicitly or implicitly commit the current transaction

= Enter any other transaction control statement

2-48 Oracle Text Reference

Lexer Types

= Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be
in the same order as the tokens occur in the query word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all
parameters.

24.8.5.3 Parameters Table 2-28 describes the interface for the user-defined lexer query
procedure:

Table 2-28 User-defined Lexer Query Procedure XML Schema Attributes

Parameter Parameter
Position Mode Parameter Datatype Description

1 IN VARCHAR2 Query word to be tokenized.

2 IN CTX_ULEXER.WILDCARD_TAB Character offsets of wildcard characters (%
and _) in the query word. If the query word
passed in by Oracle Text does not contain any
wildcard characters then this index-by table
will be empty.

The wildcard characters in the query word
must be preserved in the tokens returned in
order for the wildcard query feature to work

properly.
The character offset is 0 (zero) based. Offset

information follows USC-2 codepoint
semantics.

3 IN OUT VARCHAR2 Tokens encoded as XML.

If the query word contains no tokens then
either NULL must be returned or the tokens
element in the XML document returned must
contain no child elements.

The length of the data must be less-than or
equal to 32512 bytes.

2.4.8.6 Encoding Tokens as XML

The sequence of tokens returned by your stored procedure must be represented as an
XML 1.0 document. The XML document must be valid with respect to the XML
Schemas given in the following sections.

s XML Schema for No-Location, User-defined Indexing Procedure

s XML Schema for User-defined Indexing Procedure with Location

s XML Schema for User-defined Lexer Query Procedure

24.8.6.1 Limitations To boost performance of this feature, the XML parser in Oracle
Text will not perform validation and will not be a full-featured XML compliant parser.

This implies that only minimal XML features will be supported. The following XML
features are not supported:

= Document Type Declaration (for example, <!DOCTYPE [...]>) and therefore entity
declarations. Only the following built-in entities can be referenced: It, gt, amp,
quot, and apos.

s CDATA sections.

» Comments.

Oracle Text Indexing Elements 2-49

Lexer Types

» Processing Instructions.
s XML declaration (for example, <?xml version="1.0" ...?>).
= Namespaces.

= Use of elements and attributes other than those defined by the corresponding
XML Schema.

n Character references (for example ট).
= xml:space attribute.

= xmllang attribute

2.4.8.7 XML Schema for No-Location, User-defined Indexing Procedure

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer indexing procedure when the third parameter is FALSE. The
XML document returned must be valid with respect to the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="tokens">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eos" type="EmptyTokenType"/>
<xsd:element name="eop" type="EmptyTokenType"/>
<xsd:element name="num" type="xsd:token"/>
<xsd:group ref="IndexCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<!--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for indexing
-—>
<xsd:group name="IndexCompositeGroup">
<xsd:sequence>
<xsd:element name="word" type="xsd:token"/>
<xsd:element name="compMem" type="xsd:token" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

<!-- EmptyTokenType defines an empty element without attributes -->
<xsd:complexType name="EmptyTokenType"/>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:
s The root element is tokens. This is mandatory. It has no attributes.

s The root element can have zero or more child elements. The child elements can be
one of the following elements: eos, eop, num, word, and compMem. Each of these
represent a specific type of token.

s The compMem element must be preceded by a word element or a compMem
element.

2-50 Oracle Text Reference

Lexer Types

s The eos and eop elements have no attributes and must be empty elements.

s The num, word, and compMem elements have no attributes. Oracle Text will
normalize the content of these elements as follows: convert whitespace characters
to space characters, collapse adjacent space characters to a single space character,
remove leading and trailing spaces, perform entity reference replacement, and
truncate to 64 bytes.

Table 2-29 describes the element names defined in the preceding XML Schema.

Table 2-29 User-defined Lexer Indexing Procedure XML Schema Element Names

Element Description

word This element represents a simple word token. The content of the element is
the word itself. Oracle Text does the work of identifying this token as being a
stop word or non-stop word and processing it appropriately.

num This element represents an arithmetic number token. The content of the
element is the arithmetic number itself. Oracle Text treats this token as a stop
word if the stoplist preference has NUMBERS added as the stopclass. Otherwise
this token is treated the same way as the word token.

Supporting this token type is optional. Without support for this token type,
adding the NUMERBS stopclass will have no effect.

eos This element represents end-of-sentence token. Oracle Text uses this
information so that it can support WITHIN SENTENCE queries.

Supporting this token type is optional. Without support for this token type,
queries against the SENTENCE section will not work as expected.

eop This element represents end-of-paragraph token. Oracle Text uses this
information so that it can support WITHIN PARAGRAPH queries.

Supporting this token type is optional. Without support for this token type,
queries against the PARAGRAPH section will not work as expected.

compMem Same as the word element, except that the implicit word offset is the same as
the previous word token.

Support for this token type is optional.

24.8.71 Example Document: Vom Nordhauptbahnhof und aus der Innenstadt zum
Messegeldnde.

Tokens:

<tokens>
<word> VOM </word>
<word> NORDHAUPTBAHNHOF </word>
<compMem>NORD</compMem>
<compMem>HAUPT </compMem>
<compMem>BAHNHOF </compMem>
<compMem>HAUPTBAHNHOF </compMem>
<word> UND </word>
<word> AUS </word>
<word> DER </word>
<word> INNENSTADT </word>
<word> ZUM </word>
<word> MESSEGELANDE </word>
<eos/>

</tokens>

2.4.8.7.2 Example Document: Oracle Database 11g Release 1

Tokens:

Oracle Text Indexing Elements 2-51

Lexer Types

<tokens>
<word> ORACLE11G</word>
<word> RELEASE </word>
<num> 1 </num>
</tokens>

24.8.7.3 Example Document: WHERE salary<25000.00 AND job = 'F&B Manager'
Tokens:

<tokens>
<word> WHERE </word>
<word> salary<2500.00 </word>
<word> AND </word>
<word> job </word>
<word> F&B </word>
<word> Manager </word>
</tokens>

2.4.8.8 XML Schema for User-defined Indexing Procedure with Location

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer indexing procedure when the third parameter is TRUE. The
XML document returned must be valid according to the following XML schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="tokens">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eos" type="EmptyTokenType"/>
<xsd:element name="eop" type="EmptyTokenType"/>
<xsd:element name="num" type="DocServiceTokenType"/>
<xsd:group ref="DocServiceCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<!--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for document service
-—>
<xsd:group name="DocServiceCompositeGroup">
<xsd:sequence>
<xsd:element name="word" type="DocServiceTokenType"/>
<xsd:element name="compMem" type="DocServiceTokenType" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

<!-- EmptyTokenType defines an empty element without attributes -->
<xsd:complexType name="EmptyTokenType"/>

<l--
DocServiceTokenType defines an element with content and mandatory attributes
-—>
<xsd:complexType name="DocServiceTokenType">
<xsd:simpleContent>
<xsd:extension base="xsd:token">

2-52 Oracle Text Reference

Lexer Types

<xsd:attribute name="off" type="OffsetType" use="required"/>
<xsd:attribute name="len" type="xsd:unsignedShort" use="required"/>
</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

<xsd:simpleType name="OffsetType">

<xsd:restriction base="xsd:unsignedInt">
<xsd:maxInclusive value="2147483647"/>
</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Some of the constraints imposed by this XML Schema are as follows:

The root element is tokens. This is mandatory. It has no attributes.

The root element can have zero or more child elements. The child elements can be
one of the following elements: eos, eop, num, word, and compMem. Each of these
represent a specific type of token.

The compMem element must be preceded by a word element or a compMem
element.

The eos and eop elements have no attributes and must be empty elements.

The num, word, and compMem elements have two mandatory attributes: off and
len. Oracle Text will normalize the content of these elements as follows: convert
whitespace characters to space characters, collapse adjacent space characters to a
single space character, remove leading and trailing spaces, perform entity
reference replacement, and truncate to 64 bytes.

The off attribute value must be an integer between 0 and 2147483647 inclusive.

The len attribute value must be an integer between 0 and 65535 inclusive.

Table 2-29 describes the element types defined in the preceding XML Schema.

Table 2-30 describes the attributes defined in the preceding XML Schema.

Table 2-30 User-defined Lexer Indexing Procedure XML Schema Attributes

Attribute Description

off

This attribute represents the character offset of the token as it appears in
the document being tokenized.

The offset is with respect to the character document passed to the
user-defined lexer indexing procedure, not the document fetched by the
datastore. The document fetched by the datastore may be pre-processed
by the filter object or the section group object, or both, before being
passed to the user-defined lexer indexing procedure.

The offset of the first character in the document being tokenized is 0
(zero). Offset information follows USC-2 codepoint semantics.

Oracle Text Indexing Elements 2-53

Lexer Types

Table 2-30 (Cont.) User-defined Lexer Indexing Procedure XML Schema Attributes

Attribute Description

len This attribute represents the character length (same semantics as SQL
function LENGTH) of the token as it appears in the document being
tokenized.

The length is with respect to the character document passed to the
user-defined lexer indexing procedure, not the document fetched by the
datastore. The document fetched by the datastore may be pre-processed
by the filter object or the section group object before being passed to the
user-defined lexer indexing procedure.

Length information follows USC-2 codepoint semantics.

Sum of off attribute value and len attribute value must be less than or equal to the
total number of characters in the document being tokenized. This is to ensure that the
document offset and characters being referenced are within the document boundary.

2.4.8.8.1 Example Document: User-defined Lexer.
Tokens:

<tokens>
<word off="0" len="4"> USE </word>
<word off="5" len="7"> DEF </word>
<word off="13" len="5"> LEX </word>
<eos/>

</tokens>

2.4.8.9 XML Schema for User-defined Lexer Query Procedure

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer query procedure. The XML document returned must be valid
with respect to the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="tokens">
<xsd:complexType>
<xsd: sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="num" type="QueryTokenType"/>
<xsd:group ref="QueryCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<l--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for query
-—>
<xsd:group name="QueryCompositeGroup">
<xsd:sequence>
<xsd:element name="word" type="QueryTokenType"/>
<xsd:element name="compMem" type="QueryTokenType" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

<!--

2-54 Oracle Text Reference

Lexer Types

QueryTokenType defines an element with content and with an optional attribute
-=>
<xsd:complexType name="QueryTokenType">
<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="wildcard" type="WildcardType" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="WildcardType">
<xsd:restriction base="WildcardBaseType">
<xsd:minLength value="1"/>
<xsd:maxLength value="64"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="WildcardBaseType">
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
<xsd:maxInclusive value="378"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:list>
</xsd:simpleType>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

The root element is tokens. This is mandatory. It has no attributes.

The root element can have zero or more child elements. The child elements can be
one of the following elements: num and word. Each of these represent a specific type
of token.

The compMem element must be preceded by a word element or a complMen element.

The purpose of compMen is to enable USER_LEXER queries to return multiple forms
for a single query. For example, if a user-defined lexer indexes the word bank as
BANK (FINANCIAL) and BANK (RIVER), the query procedure can return the first term
as a word and the second as a compMem element:

<tokens>
<word>BANK (RIVER) </word>
<compMem>BANK (FINANCIAL) </compMem>
</tokens>

See Table 2-31, " User-defined Lexer Query Procedure XML Schema Attributes" on
page 2-56 for more on the compMen element.

The num and word elements have a single optional attribute: wildcard. Oracle
Text will normalize the content of these elements as follows: convert whitespace
characters to space characters, collapse adjacent space characters to a single space
character, remove leading and trailing spaces, perform entity reference
replacement, and truncate to 64 bytes.

The wildcard attribute value is a white-space separated list of integers. The
minimum number of integers is 1 and the maximum number of integers is 64. The
value of the integers must be between 0 and 378 inclusive. The intriguers in the list
can be in any order.

Oracle Text Indexing Elements 2-55

Lexer Types

Table 2-29 describes the element types defined in the preceding XML Schema.
Table 2-31 describes the attribute defined in the preceding XML Schema.

Table 2-31 User-defined Lexer Query Procedure XML Schema Attributes

Attribute Description

compMem Same as the word element, but its implicit word offset is the same as the
previous word token. Oracle Text will equate this token with the previous word
token and with subsequent compMen tokens using the query EQUIV operator.

wildcard Any% or _ characters in the query which are not escaped by the user are
considered wildcard characters because they are replaced by other characters.
These wildcard characters in the query must be preserved during tokenization
in order for the wildcard query feature to work properly. This attribute
represents the character offsets (same semantics as SQL function LENGTH) of
wildcard characters in the content of the element. Oracle Text will adjust these
offsets for any normalization performed on the content of the element. The
characters pointed to by the offsets must either be% or _ characters.

The offset of the first character in the content of the element is 0. Offset
information follows USC-2 codepoint semantics.

If the token does not contain any wildcard characters then this attribute must
not be specified.

24.8.9.1 Example Query word: pseudo-%morph%
Tokens:

<tokens>

<word> PSEUDO </word>

<word wildcard="1 7"> $MORPH% </word>
</tokens>

2.4.89.2 Example Query word: <%>
Tokens:
<tokens>

<word wildcard="5"> <%> </word>
</tokens>

2.4.9 WORLD_LEXER

Use the WORLD_LEXER to index text columns that contain documents of different
languages. For example, use this lexer to index a text column that stores English,
Japanese, and German documents.

WORLD_LEXER differs from MULTI_LEXER in that WORLD_LEXER automatically detects the
language(s) of a document. Unlike MULTI_LEXER, WORLD_LEXER does not require you to
have a language column in your base table nor to specify the language column when
you create the index. Moreover, it is not necessary to use sub-lexers, as with MULTI_
LEXER. (See "MULTI_LEXER" on page 2-37.)

WORLD_LEXER supports all database character sets, and for languages whose character
sets are Unicode-based, it supports the Unicode 5.0 standard. For a list of languages
that WORLD_LEXER can work with, see "World Lexer Features" on page D-4.

2.4.9.1 WORLD_LEXER Attribute
The WORLD_VGRAM_LEXER has the following attribute:

2-56 Oracle Text Reference

Wordlist Type

Table 2-32 WORLD_LEXER Attribute

Attribute Attribute Value

mixed_case Enable mixed-case (upper- and lower-case) searches of text (for
example, cat and Cat). Allowable values are YES and NO (default).

2.49.2 WORLD_LEXER Example

Here is an example of creating an index using WORLD_LEXER.

exec ctx_ddl.create_preference('MYLEXER', 'world_lexer');
create index doc_idx on doc (data)
indextype is CONTEXT
parameters ('lexer MYLEXER
stoplist CTXSYS.EMPTY_ STOPLIST');

2.5 Wordlist Type

Use the wordlist preference to enable the query options such as stemming, fuzzy
matching for your language. You can also use the wordlist preference to enable
substring and prefix indexing, which improves performance for wildcard queries with
CONTAINS and CATSEARCH.

To create a wordlist preference, you must use BASIC_WORDLIST, which is the only type
available.

2.5.1 BASIC_WORDLIST

Use BASIC_WORDLIST type to enable stemming and fuzzy matching or to create prefix
indexes with Text indexes.

See Also: Chapter 3, "Oracle Text CONTAINS Query Operators"
Table 2-33 lists the attributes for BASIC_WORDLIST.

Table 2-33 BASIC_WORDLIST Attributes

Attribute Attribute Values

stemmer Specify which language stemmer to use. You can specify one of
the following stemmers:

NULL (no stemming)

ENGLISH (English inflectional)
DERIVATIONAL (English derivational)
DUTCH

FRENCH

GERMAN

ITALIAN

SPANISH

AUTO (Automatic language-detection for stemming, derived
from the database session language. If the database session
language is AMERICAN or ENGLISH, then the ENGLISH
stemmer is used. Does not auto-detect JAPANESE.)

JAPANESE

Oracle Text Indexing Elements 2-57

Wordlist Type

Table 2-33 (Cont.) BASIC_WORDLIST Attributes

Attribute

Attribute Values

fuzzy_match

fuzzy_score

fuzzy numresults

substring_index

prefix_index

prefix_min_length

prefix_max_length

wildcard_maxterms

ndata_base_letter

ndata_alternate_
spelling

ndata_thesaurus

2-58 Oracle Text Reference

Specify which fuzzy matching cluster to use. You can specify one
of the following types:

AUTO (Automatic language detection for stemming.)
CHINESE_VGRAM
DUTCH

ENGLISH

FRENCH

GENERIC
GERMAN

ITALIAN
JAPANESE_VGRAM
KOREAN

OCR

SPANISH

Specify a default lower limit of fuzzy score. Specify a number
between 0 and 80. Text with scores below this number is not
returned. Default is 60.

Specify the maximum number of fuzzy expansions. Use a number
between 0 and 5,000. Default is 100.

Specify TRUE for Oracle Text to create a substring index. A
substring index improves left-truncated and double-truncated
wildcard queries such as %ing or %benz%. Default is FALSE.

Specify TRUE to enable prefix indexing. Prefix indexing improves
performance for right truncated wildcard searches such as TO%.
Default is FALSE.

Specify the minimum length of indexed prefixes. Default is 1.
Length information must follow USC-2 codepoint semantics.

Specify the maximum length of indexed prefixes. Default is 64.
Length information must follow USC-2 codepoint semantics.

Specify the maximum number of terms in a wildcard expansion.
The maximum value is 50000 and the default value is 20000. If
you specify a value of 0, then the number of wildcard expansions
will be unbounded.Note that when set to 0, the system may run
out of memory due to the high number of wildcard expansions.

Specify whether characters that have diacritical marks are
converted to their base form before being stored in the Text index
or queried by the NDATA operator.

FALSE (default) or TRUE
When set to FALSE, no base lettering is used.

Specify whether to enable alternate spelling for German, Danish,
and Swedish. Enabling alternate spelling allows you to index
NDATA section data and query using the NDATA operator in
alternate form.

FALSE (default) or TRUE
When set to FALSE, no alternate spelling is used.

Name of the thesaurus used for alternate name expansion.

Wordlist Type

Table 2-33 (Cont.) BASIC_WORDLIST Attributes
Attribute Attribute Values

ndata_join_particles A list of colon-separated name particles that can be joined with a
name that follows them.

stemmer
Specify the stemmer used for word stemming in Text queries. When you do not
specify a value for STEMMER, the default is ENGLISH.

Specify AUTO for the system to automatically set the stemming language according to
the language setting of the database session. If the database language is AMERICAN or
ENGLISH, then the ENGLISH stemmer is automatically used. Otherwise, the stemmer that
maps to the database session language is used.

When there is no stemmer for a language, the default is NULL. With the NULL stemmer,
the stem operator is ignored in queries.

You can create your own stemming user-dictionary. See "Stemming User-Dictionaries"
on page 2-35 for more information.

Note: The STEMMER attribute of BASIC_WORDLIST preference will be
ignored if the database session language causes MULTI_LEXER to
choose a SUB_LEXER with the same setting as wildcard_maxterms or
ndata_base_letter.

In this case, the same stemmer that is used by the BASIC_LEXER during
indexing will be used to determine the stem of the query term during

query.

fuzzy_match

Specify which fuzzy matching routines are used for the column. Fuzzy matching is
currently supported for English, Japanese, and, to a lesser extent, the Western
European languages.

Note: The fuzzy match attributes value for Chinese and Korean
are dummy attribute values that prevent the English and Japanese
fuzzy matching routines from being used on Chinese and Korean
text.

The default for fuzzy match is GENERIC.

Specify AUTO for the system to automatically set the fuzzy matching language
according to language setting of the session.

fuzzy_score
Specify a default lower limit of fuzzy score. Specify a number between 0 and 80. Text
with scores below this number are not returned. The default is 60.

Fuzzy score is a measure of how close the expanded word is to the query word. The
higher the score the better the match. Use this parameter to limit fuzzy expansions to
the best matches.

fuzzy_numresults
Specify the maximum number of fuzzy expansions. Use a number between 0 and 5000.
The default is 100.

Oracle Text Indexing Elements 2-59

Wordlist Type

Setting a fuzzy expansion limits the expansion to a specified number of the best
matching words.

substring_index
Specify TRUE for Oracle Text to create a substring index. A substring index improves

performance for left-truncated or double-truncated wildcard queries such as %ing or
%benz%. The default is false.

Substring indexing has the following impact on indexing and disk resources:
s Index creation and DML processing is up to 4 times slower

s Index creation with substring_index enabled requires more rollback segments
during index flushes than with substring index off. Oracle recommends that you
do either of the following when creating a substring index:

= Make available double the usual rollback or
s Decrease the index memory to reduce the size of the index flushes to disk
prefix_index

Specify yes to enable prefix indexing. Prefix indexing improves performance for right
truncated wildcard searches such as TO%. Default is NO.

Note: Enabling prefix indexing increases index size.

Prefix indexing chops up tokens into multiple prefixes to store in the $I table. For
example, words TOKEN and TOY are normally indexed as follows in the $I table:

Token Type Information
TOKEN 0 DOCID 1 POS 1
TOY 0 DOCID 1 POS 3

With prefix indexing, Oracle Text indexes the prefix substrings of these tokens as
follows with a new token type of 6:

Token Type Information

TOKEN 0 DOCID 1 POS 1

TOY 0 DOCID 1 POS 3

T 6 DOCID 1 POS 1 POS 3
TO 6 DOCID 1 POS 1 POS 3
TOK 6 DOCID 1 POS 1
TOKE 6 DOCID 1 POS 1
TOKEN 6 DOCID 1 POS 1

TOY 6 DOCID 1 POS 3

Wildcard searches such as T0% are now faster because Oracle Text does no expansion of
terms and merging of result sets. To obtain the result, Oracle Text need only examine
the (TO,6) row.

2-60 Oracle Text Reference

Wordlist Type

prefix_min_length
Specify the minimum length of indexed prefixes. Default is 1.

For example, setting prefix_min_length to 3 and prefix_max_length to 5 indexes all
prefixes between 3 and 5 characters long.

Note: A wildcard search whose pattern is below the minimum
length or above the maximum length is searched using the slower
method of equivalence expansion and merging.

prefix_max_length
Specify the maximum length of indexed prefixes. Default is 64.

For example, setting prefix_min_length to 3 and prefix_max_length to 5 indexes all
prefixes between 3 and 5 characters long.

Note: A wildcard search whose pattern is below the minimum
length or above the maximum length is searched using the slower
method of equivalence expansion and merging.

wildcard_maxterms

Specify the maximum number of terms in a wildcard (%) expansion. Use this
parameter to keep wildcard query performance within an acceptable limit. Oracle Text
returns an error when the wildcard query expansion exceeds this number.

Note: Search terms with wild card queries having only the wildcard
character, for example: %, $_%, and %_, are threaded as stopwords.

ndata_base_letter

Specify whether characters that have diacritical marks (umlauts, cedillas, acute
accents, and so on) are converted to their base form before being stored in the Text
index or queried by the NDATA operator. The default is FALSE (base-letter conversion
disabled). For more information on base-letter conversions, see "Base-Letter
Conversion" on page 15-2.

ndata_alternate_spelling

Specify whether to enable alternate spelling for German, Danish, and Swedish.
Enabling alternate spelling allows you to index NDATA section data and query using the
NDATA operator in alternate form.

When ndata_base_letter is enabled at the same time as ndata_alternate_spelling,
NDATA section data is serially transformed first by alternate spelling and then by base
lettering. For more information about the alternate spelling conventions Oracle Text
uses, see "Alternate Spelling” on page 15-2.

ndata_thesaurus

Specify a name of the thesaurus used for alternate name expansion. The indexing
engine expands names in documents using synonym rings in the thesaurus. A user
should make use of homographic disambiguating feature of the thesaurus to
distinguish common nicknames.

An example is:

Albert

Oracle Text Indexing Elements 2-61

Wordlist Type

SYN Al

SYN Bert
Alfred

SYN Al

SYN Fred

A simple definition such as the above will put Albert, Alfred, Al, Bert, and Fred into
the same synonym ring. This will cause an unexpected expansion such that the
expansion of Bert includes Fred. To prevent this, you can use homographic
disambiguation as in:

Albert
SYN Al (Albert)
SYN Bert (Albert)
Alfred
SYN Al (Alfred)
SYN Fred (Alfred)

This forms two synonym rings, Albert-Al-Bert and Alfred-Al-Fred. Thus, the
expansion of Bert no longer includes Fred. A more detailed example is:

begin
ctx_ddl.create_preference('NDAT PREF', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_BASE_LETTER', 'TRUE');
ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_THESAURUS', 'NICKNAMES');

end;

Note: A sample thesaurus for names can be found in the SORACLE_
HOME/ctx/sample/thes directory. This file is drOthsnames. txt.

ndata_join_particles

Specify a list of colon-separated name particles that can be joined with a name that
follows them. A name particle, such as da, is written separately from or joined with its
following name like da Vinci or daVinci. The indexing engine generates index data for
both separated and join versions of a name when it finds a name particle specified in
this prefence. The same happens in the query processing for better recall.

2.5.2 BASIC_WORDLIST Example

The following example shows the use of the BASIC_WORDLIST type.

2.5.2.1 Enabling Fuzzy Matching and Stemming

The following example enables stemming and fuzzy matching for English. The
preference STEM_FUZZY_PREF sets the number of expansions to the maximum allowed.
This preference also instructs the system to create a substring index to improve the
performance of double-truncated searches.

begin
ctx_ddl.create_preference('STEM_FUZZY_PREF', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('STEM_FUZZY PREF', 'FUZZY_MATCH', 'ENGLISH');
ctx_ddl.set_attribute('STEM FUZZY PREF', 'FUZZY SCORE', '0');
ctx_ddl.set_attribute('STEM_FUZZY_PREF', 'FUZZY_NUMRESULTS', '5000');
ctx_ddl.set_attribute('STEM_FUZZY_PREF', 'SUBSTRING_INDEX', 'TRUE');
ctx_ddl.set_attribute('STEM_FUZZY_PREF', 'STEMMER', 'ENGLISH') ;

end;

2-62 Oracle Text Reference

Wordlist Type

To create the index in SQL, enter the following statement:

create index fuzzy stem_subst_idx on mytable (docs)
indextype is ctxsys.context parameters ('Wordlist STEM_FUZZY_PREF');

2.5.2.2 Enabling Sub-string and Prefix Indexing

The following example sets the wordlist preference for prefix and sub-string indexing.
For prefix indexing, it specifies that Oracle Text create token prefixes between 3 and 4
characters long:

begin

ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist', 'PREFIX_INDEX', 'TRUE');
ctx_ddl.set_attribute('mywordlist', 'PREFIX_MIN_LENGTH',3);
ctx_ddl.set_attribute('mywordlist', 'PREFIX_MAX LENGTH', 4);
ctx_ddl.set_attribute('mywordlist', 'SUBSTRING_INDEX', 'YES');
end

2.5.2.3 Setting Wildcard Expansion Limit

Use the wildcard_maxterms attribute to set the maximum allowed terms in a wildcard
expansion.

--- create a sample table
drop table quick ;
create table quick
(
quick_id number primary key,
text varchar (80)

)i

--- insert a row with 10 expansions for 'tire%'
insert into quick (quick_id, text)

values (1, 'tire tirea tireb tirec tired tiree tiref tireg tireh tirei tirej');
commit;

--- create an index using wildcard maxterms=100
begin
Ctx_Ddl.Create_Preference('wildcard pref', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('wildcard_pref', 'wildcard_maxterms', 100) ;
end;
/
create index wildcard idx on quick(text)
indextype is ctxsys.context
parameters ('Wordlist wildcard_pref') ;

--- query on 'tire%' - should work fine
select quick_id from quick
where contains (text, 'tire%') > 0;

--- now re-create the index with wildcard_maxterms=5
drop index wildcard_idx ;

begin
Ctx_Ddl.Drop_Preference('wildcard_pref');
Ctx_Ddl.Create_Preference('wildcard pref', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('wildcard_pref', 'wildcard_maxterms', 5) ;

end;

/

Oracle Text Indexing Elements 2-63

Storage Types

create index wildcard_idx on quick(text)
indextype is ctxsys.context
parameters ('Wordlist wildcard_pref') ;

--- query on 'tire$%' gives "wildcard query expansion resulted in too many terms"
select quick_id from quick
where contains (text, 'tire%') > 0;

2.6 Storage Types

Use the storage preference to specify tablespace and creation parameters for tables
associated with a Text index. The system provides a single storage type called BASIC_
STORAGE:

Table 2-34 Storage Types

Type Description

BASIC_STORAGE Indexing type used to specify the tablespace and creation
parameters for the database tables and indexes that constitute a
Text index.

2.6.1 BASIC_STORAGE

The BASIC_STORAGE type specifies the tablespace and creation parameters for the
database tables and indexes that constitute a Text index.

The clause you specify is added to the internal CREATE TABLE (CREATE INDEX for the i_
index_clause) statement at index creation. You can specify most allowable clauses,
such as storage, LOB storage, or partitioning. However, you cannot specify an index
organized table clause.

See Also: For more information about how to specify CREATE

TABLE and CREATE INDEX statements, see Oracle Database SQL
Language Reference.

BASIC_STORAGE has the following attributes:

Table 2-35 BASIC_STORAGE Attributes

Attribute Attribute Value

i_index_clause Parameter clause for dr$indexname$X index creation.
Specify storage and tablespace clauses to add to the end of the
internal CREATE INDEX statement. The default clause is:
"COMPRESS 2' which instructs Oracle Text to compress this
index table.

If you choose to override the default, Oracle recommends
including COMPRESS 2 in your parameter clause to compress this
table, because such compression saves disk space and helps
query performance.

i_rowid_index_clause Parameter clause to specify the storage clause for the $R index
on dr$rowid column of the $I table. Specify storage and
tablespace clauses to add to the end of the internal CREATE INDEX
statement.

This clause is only used by the CTXCAT index type.

2-64 Oracle Text Reference

Storage Types

Table 2-35 (Cont) BASIC_STORAGE Attributes
Attribute Attribute Value

i_table_clause Parameter clause for dr$indexname$l table creation. Specify
storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement.

The I table is the index data table.

Note: Oracle strongly recommends that you do not specify
"disable storage in row" for $I LOBs, as this will greatly degrade
the query performance.

k_table_clause Parameter clause for dr$indexname$K table creation. Specify
storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement.

The K table is the keymap table.

r_table_clause Parameter clause for dr$indexname$R table creation. Specify
storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement.

The R table is the rowid table.
The default clause is: 'LOB (DATA) STORE AS (CACHE)'.

If you modify this attribute, always include this clause for good
performance.

n_table_clause Parameter clause for dr$indexname$N table creation. Specify
storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement.

The N table is the negative list table.

p_table_clause Parameter clause for the substring index if you have enabled
SUBSTRING_INDEX in the BASIC_WORDLIST.

Specify storage and tablespace clauses to add to the end of the
internal CREATE INDEX statement. The P table is an
index-organized table so the storage clause you specify must be
appropriate to this type of table.

s_table_clause Parameter clause for dr$indexname$S table creation*. Specify
storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement. The default clause is nocompress.

* For performance reasons, $S table must be created on a
tablespace with db block size >= 4K without overflow segment
and without a PCTTHRESHOLD clause. If $S is created on a
tablespace with db block size < 4K, or is created with an
overflow segment or with PCTTHRESHOLD clause, then
appropriate errors will be raised during CREATE INDEX.

The S table is the table that stores SDATA section values.

If this clause is specified for a storage preference in an index
without SDATA, then it will have no effect on the index, and index
creation will still succeed.

2.6.1.1 Storage Default Behavior

By default, BASIC_STORAGE attributes are not set. In such cases, the Text index tables are
created in the index owner's default tablespace. Consider the following statement,
entered by user IUSER, with no BASIC_STORAGE attributes set:

create index IOWNER.idx on TOWNER.tab(b) indextype is ctxsys.context;

In this example, the text index is created in IOWNER's default tablespace.

Oracle Text Indexing Elements 2-65

Section Group Types

2.6.1.2 Storage Examples

The following examples specify that the index tables are to be created in the foo
tablespace with an initial extent of 1K:

begin
ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
ctx_ddl.set_attribute('mystore', 'I_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'K_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'R_TABLE_CLAUSE',

'tablespace users storage (initial 1K) lob

(data) store as (disable storage in row cache)');

ctx_ddl.set_attribute('mystore', 'N_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'I_INDEX_CLAUSE',

'tablespace foo storage (initial 1K) compress 2');
ctx_ddl.set_attribute('mystore', 'P_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'S_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
end;

2.7 Section Group Types

To enter WITHIN queries on document sections, you must create a section group before
you define your sections. Specify your section group in the parameter clause of
CREATE INDEX.

To create a section group, you can specify one of the following group types with the
CTX_DDL.CREATE_SECTION_GROUP procedure:

Table 2-36 Section Group Types

Type Description

NULL_SECTION_GROUP Use this group type when you define no sections or when you
define only SENTENCE or PARAGRAPH sections. This is the default.

BASIC_SECTION_GROUP Use this group type for defining sections where the start and end
tags are of the form <A> and .

Note: This group type does not support input such as
unbalanced parentheses, comments tags, and attributes. Use
HTML_SECTION_GROUP for this type of input.

HTML_SECTION_GROUP Use this group type for indexing HTML documents and for
defining sections in HTML documents.

XML_SECTION_GROUP Use this group type for indexing XML documents and for
defining sections in XML documents. All sections to be indexed
must be manually defined for this group.

2-66 Oracle Text Reference

Section Group Types

Table 2-36 (Cont.) Section Group Types

Type Description

AUTO_SECTION_GROUP Use this group type to automatically create a zone section for
each start-tag/end-tag pair in an XML document. The section
names derived from XML tags are case sensitive as in XML.

Attribute sections are created automatically for XML tags that
have attributes. Attribute sections are named in the form
tag@attribute.

Special sections can be added to AUTO_SECTION_GROUP for WITHIN
SENTENCE and WITHIN PARAGRAPH searches. Once a sentence or
paragraph section is added to the AUTO_SECTION_GROUP, sections
with corresponding tag names 'sentence' or 'paragraph’ (case
insensitive) are treated as stop sections.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section groups:

= You cannot add zone, field, sdata, or special sections to an
automatic section group.

= You can define a stop section that applies only to one
particular type; that is, if you have two different XML
DTDs, both of which use a tag called F00, you can define
(TYPE1) FOO to be stopped, but (TYPE2) FOO to not be
stopped.

= The length of the indexed tags, including prefix and
namespace, cannot exceed 64 bytes. Tags longer than this
are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. Behaves like the
AUTO_SECTION_GROUP.

The difference is that with this section group you can do path
searching with the INPATH and HASPATH operators. Queries are
also case-sensitive for tag and attribute names. Stop sections are
not allowed.

NEWS_SECTION_GROUP Use this group for defining sections in newsgroup formatted
documents according to RFC 1036.

2.7.1 Section Group Examples
This example shows the use of section groups in both HTML and XML documents.

2.7.1.1 Creating Section Groups in HTML Documents
The following statement creates a section group called htmgroup with the HTML group
type.

begin
ctx_ddl.create_section_group ('htmgroup', 'HTML_SECTION_GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX_DDL
package,SucflasCTX_DDL.ADD_SPECIAL_SECTIOKIOrCTX_DDL.ADD_ZONE_SECTION.Tb
index your documents, enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters ('filter ctxsys.null_filter section group htmgroup');

See Also: For more information on section groups, see Chapter 7,
"CTX_DDL Package"

Oracle Text Indexing Elements 2-67

Classifier Types

2.7.1.2 Creating Sections Groups in XML Documents

The following statement creates a section group called xmlgroup with the XML_
SECTION_GROUP group type.

begin
ctx_ddl.create_section_group ('xmlgroup', 'XML_SECTION_GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX_DDL
package,sucflasCTX_DDL.ADD_ATTR_SECTION<mrCTX_DDL.ADD_STOP_SECTION.Toindex
your documents, enter a statement such as:

create index myindex on docs (htmlfile) indextype is ctxsys.context

parameters ('filter ctxsys.null_filter section group xmlgroup');

See Also: For more information on section groups, see Chapter 7,
"CTX_DDL Package"

2.7.1.3 Automatic Sectioning in XML Documents

The following statement creates a section group called auto with the AUTO_SECTION_
GROUP group type. This section group automatically creates sections from tags in XML
documents.

begin
ctx_ddl.create_section_group('auto', 'AUTO_SECTION_GROUP');
end;

CREATE INDEX myindex on docs (htmlfile) INDEXTYPE IS ctxsys.context
PARAMETERS ('filter ctxsys.null_filter section group auto');

2.8 Classifier Types

This section describes the classifier types used to create a preference for CTX_
CLS.TRAIN and CTXRULE index creation. The following two classifier types are
supported:

= RULE_CLASSIFIER
= SVM_CLASSIFIER

Note: In Oracle Database XE Edition, RULE_CLASSIFIER and SVM_
CLASSIFIER are not supported because the Data Mining option is not
available. This is also true for KMEAN_CLUSTERING.

2.8.1 RULE_CLASSIFIER

Use the RULE_CLASSIFIER type for creating preferences for the query rule generating
procedure, CTX_CLS. TRAIN and for CTXRULE creation. The rules generated with this
type are essentially query strings and can be easily examined. The queries generated
by this classifier can use the AND, NOT, or ABOUT operators. The WITHIN operator is
supported for queries on field sections only.

This type has the following attributes:

2-68 Oracle Text Reference

Classifier Types

Table 2-37 RULE_CLASSIFIER Attributes

Data Min Max
Attribute Type Default Value Value Description

THRESHOLD 1 50 1 99 Specify threshold (in percentage)
for rule generation. One rule is
output only when its confidence
level is larger than threshold.

MAX_TERMS 1 100 20 2000 For each class, a list of relevant
terms is selected to form rules.
Specify the maximum number of
terms that can be selected for
each class.

MEMORY_SIZE I 500 10 4000 Specify memory usage for
training in MB. Larger values
improve performance.

NT_THRESHOLD F 0.001 0 0.90 Specify a threshold for term
selection. There are two
thresholds guiding two steps in
selecting relevant terms. This
threshold controls the behavior
of the first step. At this step,
terms are selected as candidate
terms for the further
consideration in the second step.
The term is chosen when the
ratio of the occurrence frequency
over the number of documents
in the training set is larger than
this threshold.

TERM_THRESHOLD 1 10 0 100 Specify a threshold as a
percentage for term selection.
This threshold controls the
second step term selection. Each
candidate term has a numerical
quantity calculated to imply its
correlation with a given class.
The candidate term will be
selected for this class only when
the ratio of its quantity value
over the maximum value for all
candidate terms in the class is
larger than this threshold.

PRUNE_LEVEL 1 75 0 100 Specify how much to prune a
built decision tree for better
coverage. Higher values mean
more aggressive pruning and
the generated rules will have
larger coverage but less
accuracy.

2.8.2 SVM_CLASSIFIER

Use the SVM_CLASSIFIER type for creating preferences for the rule generating
procedure, CTX_CLS.TRAIN, and for CTXRULE creation. This classifier type represents the
Support Vector Machine method of classification and generates rules in binary format.
Use this classifier type when you need high classification accuracy.

This type has the following attributes:

Oracle Text Indexing Elements 2-69

Cluster Types

Table 2-38 SVM_CLASSIFIER Attributes

Attribute Name

Data
Type

Default

Min
Value

Max
Value

Description

MAX_DOCTERMS

MAX_FEATURES

THEME_ON

TOKEN_ON

STEM_ON

MEMORY_SIZE

SECTION_WEIGHT

I

—

50

3,000

FALSE

TRUE

FALSE

500

10

NULL

NULL

NULL

10

8192

100,000

NULL

NULL

NULL

4000

100

Specify the maximum number
of terms representing one
document.

Specify the maximum number
of distinct features.

Specify TRUE to use themes as
features.

Classification with themes
requires an installed
knowledge base. A knowledge
base may or may not have
been installed with Oracle
Text. For more information on
knowledge bases, see the
Oracle Text Application
Developer’s Guide.

Specify TRUE to use regular
tokens as features.

Specify TRUE to use stemmed
tokens as features. This only
works when turning INDEX_
STEM on for the lexer.

Specify approximate memory
size in MB.

Specify the occurrence
multiplier for adding a term in
a field section as a normal
term. For example, by default,
the term cat in "<A>cat"
is a field section term and is
treated as a normal term with
occurrence equal to 2, but you
can specify that it be treated as
a normal term with a weight
up to 100. SECTION_WEIGHT is
only meaningful when the
index policy specifies a field
section.

2.9 Cluster Types

This section describes the cluster types used for creating preferences for the CTX_

CLS.CLUSTERING procedure.

Note:

In Oracle Database XE Edition, KMEAN_CLUSTERING is not

supported because the Data Mining option is not available. This is
also true for RULE_CLASSIFIER and SVM_CLASSIFIER.

See Also: For more information about clustering, see
"CLUSTERING" in Chapter 6, "CTX_CLS Package" as well as the

Oracle Text Application Developer’s Guide

2-70 Oracle Text Reference

Stoplists

2.9.1 KMEAN_CLUSTERING

This clustering type has the following attributes:

Table 2-39 KMEAN_CLUSTERING Attributes

Data Min Max
Attribute Name Type Default Value Value Description

MAX_DOCTERMS I 50 10 8192 Specify the maximum
number of distinct terms
representing one document.

MAX_FEATURES 1 3,000 1 500,000 Specify the maximum
number of distinct features.

THEME_ON B FALSE NULL NULL Specify TRUE to use themes as
features.

Clustering with themes
requires an installed
knowledge base. A
knowledge base may or may
not have been installed with
Oracle Text. For more
information on knowledge
bases, see Oracle Text
Application Developer’s Guide.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM_ON B FALSE NULL NULL Specify TRUE to use stemmed
tokens as features. This only
works when turning INDEX_
STEM on for the lexer.

MEMORY_SIZE 1 500 10 4000 Specify approximate memory
size in MB.

SECTION_WEIGHT 1 2 0 100 Specify the occurrence
multiplier for adding a term
in a field section as a normal
term. For example, by
default, the term cat in
"<A>cat"1is a field
section term and is treated as
a normal term with
occurrence equal to 2, but you
can specify that it be treated
as a normal term with a
weight up to 100. SECTION_
WEIGHT is only meaningful
when the index policy
specifies a field section.

CLUSTER_NUM I 200 2 20000 Specify the total number of
leaf clusters to be generated.

2.10 Stoplists

Stoplists identify the words in your language that are not to be indexed. In English,
you can also identify stopthemes that are not to be indexed. By default, the system
indexes text using the system-supplied stoplist that corresponds to your database
language.

Oracle Text Indexing Elements 2-71

Stoplists

Oracle Text provides default stoplists for most common languages including English,
French, German, Spanish, Chinese, Dutch, and Danish. These default stoplists contain
only stopwords.

See Also: For more information about the supplied default
stoplists, see Appendix E, "Oracle Text Supplied Stoplists"

2.10.1 Multi-Language Stoplists

You can create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you use the MULTI_LEXER to index a table that
contains documents in different languages, such as English, German.

To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST procedure
and specify a stoplist type of MULTI_STOPLIST. Add language specific stopwords with
CTX_DDL.ADD_STOPWORD.

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when using
the multi-lexer.

2.10.2 Creating Stoplists

Create your own stoplists using the CTX_DLL.CREATE_STOPLIST procedure. With
this procedure you can create a BASIC_STOPLIST for single language stoplist, or you
can create a MULTI_STOPLIST for a multi-language stoplist.

When you create your own stoplist, you must specify it in the parameter clause of
CREATE INDEX.

To create stoplists for Chinese or Japanese languages, use the CHINESE_LEXER or
JAPANESE_LEXER respectively, and update the appropriate lexicon to be @contained_
such_stopwords.

2.10.3 Modifying the Default Stoplist

The default stoplist is always named CTXSYS.DEFAULT_STOPLIST. Use the following
procedures to modify this stoplist:

» CTX_DDL.ADD_STOPWORD

s CTX_DDL.REMOVE_STOPWORD
» CTX_DDL.ADD_STOPTHEME

» CTX_DDL.ADD_STOPCLASS

When you modify CTXSYS.DEFAULT_STOPLIST with the CTX_DDL package, you must
re-create your index for the changes to take effect.

2.10.3.1 Dynamic Addition of Stopwords

You can add stopwords dynamically to a default or custom stoplist with ALTER
INDEX. When you add a stopword dynamically, you need not re-index, because the
word immediately becomes a stopword and is removed from the index.

2-72 Oracle Text Reference

System-Defined Preferences

Note: Even though you can dynamically add stopwords to an
index, you cannot dynamically remove stopwords. To remove a

stopword, you must use CTX_DDL.REMOVE_STOPWORD, drop
your index and re-create it.

See Also: "ALTER INDEX" in Chapter 1, "Oracle Text SQL
Statements and Operators"

2.11 System-Defined Preferences

When you install Oracle Text, some indexing preferences are created. You can use
these preferences in the parameter clause of CREATE INDEX or define your own.

The default index parameters are mapped to some of the system-defined preferences
described in this section.

See Also: For more information about default index parameters,
see "Default Index Parameters" on page 2-76

System-defined preferences are divided into the following categories:

= Data Storage

= Filter

s Lexer

= Section Group

= Stoplist
= Storage
s Wordlist

2.11.1 Data Storage

2.11.2 Filter

This section discusses the types associated with data storage preferences.

2.11.1.1 CTXSYS.DEFAULT_DATASTORE

This preference uses the DIRECT_DATASTORE type. Use this preference to create
indexes for text columns in which the text is stored directly in the column.

2.11.1.2 CTXSYS.FILE_DATASTORE
This preference uses the FILE_DATASTORE type.

2.11.1.3 CTXSYS.URL_DATASTORE
This preference uses the URL_DATASTORE type.

This section discusses the types associated with filtering preferences.

2.11.2.1 CTXSYS.NULL_FILTER
This preference uses the NULL_FILTER type.

Oracle Text Indexing Elements 2-73

System-Defined Preferences

2.11.3 Lexer

2.11.2.2 CTXSYS.AUTO_FILTER
This preference uses the AUTO_FILTER type.

This section discusses the types associated with lexer preferences.

2.11.3.1 CTXSYS.DEFAULT_LEXER

The default lexer depends on the language used at install time. The following sections
describe the default settings for CTXSYS.DEFAULT_LEXER for each language.

2.11.3.1.1 American and English Language Settings If your language is English, this
preference uses the BASIC_LEXER with the index_themes attribute disabled.

2.11.3.1.2 Danish Language Settings If your language is Danish, this preference uses the
BASIC_LEXER with the following option enabled:

= Alternate spelling (alternate_spelling attribute set to DANISH)

2.11.3.1.3 Dutch Language Settings If your language is Dutch, this preference uses the
BASIC_LEXER with the following options enabled:

= composite indexing (composite attribute set to DUTCH)

2.11.3.1.4 German and German DIN Language Settings If your language is German, then
this preference uses the BASIC_LEXER with the following options enabled:

» Case-sensitive indexing (mixed_case attribute enabled)

» Composite indexing (composite attribute set to GERMAN)

= Alternate spelling (alternate_spelling attribute set to GERMAN)

2.11.3.1.5 Finnish, Norwegian, and Swedish Language Settings If your language is Finnish,

Norwegian, or Swedish, this preference uses the BASIC_LEXER with the following
option enabled:

= Alternate spelling (alternate_spelling attribute set to SWEDISH)

2.11.3.1.6 Japanese Language Settings If you language is Japanese, this preference uses
the JAPANESE_VGRAM_LEXER.

2.11.3.1.7 Korean Language Settings If your language is Korean, this preference uses the
KOREAN_MORPH_LEXER. All attributes for the KOREAN_ MORPH_LEXER are enabled.

2.11.3.1.8 Chinese Language Settings If your language is Simplified or Traditional
Chinese, this preference uses the CHINESE_VGRAM_LEXER.

2.11.3.1.9 Other Languages For all other languages not listed in this section, this
preference uses the BASIC_LEXER with no attributes set.

See Also: To learn more about these options, see "BASIC_LEXER"
on page 2-30

2.11.3.2 CTXSYS.BASIC_LEXER

This preference uses the BASIC_LEXER.

2-74 Oracle Text Reference

System Parameters

2.11.4 Section Group

This section discusses the types associated with section group preferences.

2.11.4.1 CTXSYS.NULL_SECTION_GROUP
This preference uses the NULL_SECTION_GROUP type.

2.11.4.2 CTXSYS.HTML_SECTION_GROUP
This preference uses the HTML_SECTION_GROUP type.

2.11.4.3 CTXSYS.AUTO_SECTION_GROUP
This preference uses the AUTO_SECTION_GROUP type.

2.11.4.4 CTXSYS.PATH_SECTION_GROUP
This preference uses the PATH_SECTION_GROUP type.

2.11.5 Stoplist

This section discusses the types associated with stoplist preferences.

2.11.5.1 CTXSYS.DEFAULT_STOPLIST

This stoplist preference defaults to the stoplist of your database language.

See Also: For a complete list of the stop words in the supplied
stoplists, see Appendix E, "Oracle Text Supplied Stoplists"

2.11.5.2 CTXSYS.EMPTY_STOPLIST

This stoplist has no words.

2.11.6 Storage

This section discusses the types associated with storage preferences.

2.11.6.1 CTXSYS.DEFAULT_STORAGE
This storage preference uses the BASIC_STORAGE type.

2.11.7 Wordlist

This section discusses the types associated with wordlist preferences.

2.11.7.1 CTXSYS.DEFAULT_WORDLIST

This preference uses the language stemmer for your database language. If your
language is not listed in Table 2-33 on page 2-57, then this preference defaults to the
NULL stemmer and the GENERIC fuzzy matching attribute.

2.12 System Parameters

This section describes the Oracle Text system parameters, which are divided into the
following categories:

= General System Parameters

Oracle Text Indexing Elements 2-75

System Parameters

s Default Index Parameters

2.12.1 General System Parameters

When you install Oracle Text, in addition to the system-defined preferences, the
following system parameters are set:

Table 2-40 General System Parameters

System Parameter Description

MAX_INDEX_MEMORY This is the maximum indexing memory that can be specified in
the parameter clause of CREATE INDEX and ALTER INDEX. The
maximum value for this parameter is 2 GB -1.

DEFAULT_INDEX_ MEMORY This is the default indexing memory used with CREATE INDEX
and ALTER INDEX.

LOG_DIRECTORY This is the directory for CTX_OUTPUT log files.

CTX_DOC_KEY_TYPE This is the default input key type, either ROWID or PRIMARY_KEY,

for the CTX_DOC procedures. Set to ROWID at install time.
See Also: CTX_DOC.SET_KEY_TYPE on page 8-34.

View system defaults by querying the CTX_PARAMETERS view. Change defaults
using the CTX_ADM.SET_PARAMETER procedure.

2.12.2 Default Index Parameters

This section describes the index parameters that you can use when you create CONTEXT
and CTXCAT indexes.

2.12.2.1 CONTEXT Index Parameters

The following default parameters are used when you create a CONTEXT index and do
not specify preferences in the parameter clause of CREATE INDEX. Each default
parameter names a system-defined preference to use for data storage, filtering, lexing,
and so on.

Table 2-41 Default CONTEXT Index Parameters

Parameter Used When Default Value

DEFAULT_DATASTORE No datastore preference CTXSYS.DEFAULT _
specified in parameter clause DATASTORE
of CREATE INDEX.

DEFAULT _FILTER_FILE No filter preference specified ~CTXSYS.AUTO_FILTER
in parameter clause of CREATE
INDEX, and either of the
following conditions is true:

= Your files are stored in
external files (BFILES) or

= Specify a datastore
preference that uses
FILE_DATASTORE

DEFAULT FILTER_BINARY No filter preference specified ~CTXSYS.AUTO_FILTER
in parameter clause of CREATE
INDEX, and Oracle Text detects
that the text column datatype
is RAW, LONG RAW, or BLOB.

2-76 Oracle Text Reference

System Parameters

Table 2-41 (Cont.) Default CONTEXT Index Parameters

Parameter

Used When

Default Value

DEFAULT_FILTER_TEXT

DEFAULT_SECTION_HTML

DEFAULT_SECTION_TEXT

DEFAULT_STORAGE

DEFAULT_LEXER

DEFAULT_STOPLIST

DEFAULT_WORDLIST

No filter preference specified
in parameter clause of CREATE
INDEX, and Oracle Text detects
that the text column datatype
is either LONG, VARCHAR?2,
VARCHAR, CHAR, or CLOB.

No section group specified in
parameter clause of CREATE
INDEX, and when either of the
following conditions is true:

= Your datastore preference
uses URL_DATASTORE or

= Your filter preference uses
AUTO_FILTER.

No section group specified in
parameter clause of CREATE
INDEX, and when you do not
use either URL,_DATASTORE or
AUTO_FILTER.

No storage preference
specified in parameter clause
of CREATE INDEX.

No lexer preference specified
in parameter clause of CREATE
INDEX.

No stoplist specified in
parameter clause of CREATE
INDEX.

No wordlist preference
specified in parameter clause
of CREATE INDEX.

CTXSYS.NULL_FILTER

CTXSYS.HTML_SECTION_
GROUP

CTXSYS.NULL_SECTION_
GROUP

CTXSYS.DEFAULT_
STORAGE

CTXSYS.DEFAULT_LEXER

CTXSYS.DEFAULT _
STOPLIST

CTXSYS.DEFAULT_
WORDLIST

2.12.2.2 CTXCAT Index Parameters

The following default parameters are used when you create a CTXCAT index with
CREATE INDEX and do not specify any parameters in the parameter string. The CTXCAT
index supports only the index set, lexer, storage, stoplist, and wordlist parameters.
Each default parameter names a system-defined preference.

Table 2-42 Default CTXCAT Index Parameters

Parameter

Used When

Default Value

DEFAULT_CTXCAT_INDEX_SET

DEFAULT_CTXCAT_STORAGE

DEFAULT_CTXCAT_LEXER

No index set specified in
parameter clause of CREATE
INDEX.

No storage preference
specified in parameter clause
of CREATE INDEX.

No lexer preference specified
in parameter clause of CREATE
INDEX.

n/a

CTXSYS.DEFAULT _
STORAGE

CTXSYS.DEFAULT_LEXER

Oracle Text Indexing Elements 2-77

System Parameters

Table 2-42 (Cont.) Default CTXCAT Index Parameters

Parameter

Used When

Default Value

DEFAULT_CTXCAT_STOPLIST

DEFAULT_CTXCAT_WORDLIST

No stoplist specified in
parameter clause of CREATE
INDEX.

No wordlist preference
specified in parameter clause
of CREATE INDEX.

Note that while you can
specify a wordlist preference
for CTXCAT indexes, most of
the attributes do not apply,
because the catsearch query
language does not support
wildcarding, fuzzy, and
stemming. The only attribute
that is useful is PREFIX_INDEX
for Japanese data.

CTXSYS.DEFAULT_
STOPLIST

CTXSYS.DEFAULT _
WORDLIST

2.12.2.3 CTXRULE Index Parameters

Table 243 lists the default parameters that are used when you create a CTXRULE index
with CREATE INDEX and do not specify any parameters in the parameter string. The
CTXRULE index supports only the lexer, storage, stoplist, and wordlist parameters. Each
default parameter names a system-defined preference.

Table 2-43 Default CTXRULE Index Parameters

Parameter

Used When

Default Value

DEFAULT_CTXRULE_LEXER

DEFAULT_CTXRULE_STORAGE

DEFAULT_CTXRULE_STOPLIST

DEFAULT_CTXRULE_WORDLIST

DEFAULT_CLASSIFIER

No lexer preference specified
in parameter clause of CREATE
INDEX.

No storage preference
specified in parameter clause
of CREATE INDEX.

No stoplist specified in
parameter clause of CREATE
INDEX.

No wordlist preference
specified in parameter clause
of CREATE INDEX.

No classifier preference is
specified in parameter clause.

CTXSYS.DEFAULT_LEXER

CTXSYS.DEFAULT _
STORAGE

CTXSYS.DEFAULT _
STOPLIST

CTXSYS.DEFAULT _
WORDLIST

RULE_CLASSIFIER

CTXRULE Index Limitations
The CTXRULE index does not support the following query operators:

s Fuzzy

s Soundex

It also does not support the following BASIC_WORDLIST attributes:

s SUBSTRING_INDEX

s PREFIX INDEX

2-78 Oracle Text Reference

System Parameters

2.12.2.4 Viewing Default Values

View system defaults by querying the CTX_PARAMETERS view. For example, to see
all parameters and values, enter the following statement:

SQL> SELECT par_name, par_value from ctx_parameters;

2.12.2.5 Changing Default Values

Change a default value using the CTX_ADM.SET_PARAMETER procedure to name
another custom or system-defined preference to use as default.

Oracle Text Indexing Elements 2-79

System Parameters

2-80 Oracle Text Reference

3

Oracle Text CONTAINS Query Operators

This chapter describes operator precedence and provides descriptions, syntax, and
examples for every CONTAINS operator. The following topics are covered:

= Operator Precedence

= ABOUT
» ACCUMulate (,)
= AND (&)

s Broader Term (BT, BTG, BTP, BTI)
= DEFINEMERGE

= DEFINESCORE

= EQUIValence (=)

s Fuzzy

= HASPATH
= INPATH

= MDATA

= MINUS (-)
= MNOT

s Narrower Term (NT, NTG, NTP, NTI)
= NDATA

= NEARC()

= NOT(~)

= OR(Il)

n Preferred Term (PT)

s Related Term (RT)

= SDATA

= soundex ()

s stem ($)

s Stored Query Expression (SQE)
= SYNonym (SYN)

Oracle Text CONTAINS Query Operators 3-1

Operator Precedence

n threshold (>)

» Translation Term (TR)

s Translation Term Synonym (TRSYN)
n Top Term (TIT)

s weight (¥)

s wildcards (% _)

= WITHIN

3.1 Operator Precedence

Operator precedence determines the order in which the components of a query
expression are evaluated. Text query operators can be divided into two sets of
operators that have their own order of evaluation. These two groups are described
later as Group 1 and Group 2.

In all cases, query expressions are evaluated in order from left to right according to the
precedence of their operators. Operators with higher precedence are applied first.
Operators of equal precedence are applied in order of their appearance in the
expression from left to right.

3.1.1 Group 1 Operators

Within query expressions, the Group 1 operators have the following order of
evaluation from highest precedence to lowest:

1. EQUlIValence (=)
NEAR (;)

weight (*), threshold (>)
MINUS (-)

NOT (~)

MNOT

WITHIN

AND (&)

OR (1)

10. ACCUMulate (,)

© ® N o o & 0D

3.1.2 Group 2 Operators and Characters

Within query expressions, the Group 2 operators have the following order of
evaluation from highest to lowest:

1. Wildcard Characters
2. stem ($)
3. Fuzzy
4.

soundex (!)

3-2 Oracle Text Reference

Operator Precedence

3.1.3 Procedural Operators

Other operators not listed under Group 1 or Group 2 are procedural. These operators
have no sense of precedence attached to them. They include the SQE and thesaurus
operators.

3.1.4 Precedence Examples

Table 3—-1 Query Expression Precedence Examples

Query Expression Order of Evaluation
wl | w2 & w3 (wl) | (W2 & w3)

wl & w2 | w3 wl&w2) | w3

wl, w2 | w3 & w4 (?wl), (W2 | (W3 & w4))

abc = def ghi & jkl = mno ((abc = def) ghi) & (jkl=mno)
dog and cat WITHIN body dog and (cat WITHIN body)

In the first example, because AND has a higher precedence than OR, the query returns all
documents that contain w1 and all documents that contain both w2 and w3.

In the second example, the query returns all documents that contain both w1 and w?2
and all documents that contain w3.

In the third example, the fuzzy operator is first applied to w1, then the AND operator is
applied to arguments w3 and w4, then the OR operator is applied to term w2 and the
results of the AND operation, and finally, the score from the fuzzy operation on w1 is
added to the score from the OR operation.

The fourth example shows that the equivalence operator has higher precedence than
the AND operator.

The fifth example shows that the AND operator has lower precedence than the WITHIN
operator.

3.1.5 Altering Precedence

Precedence is altered by grouping characters as follows:

= Within parentheses, expansion or execution of operations is resolved before other
expansions regardless of operator precedence.

= Within parentheses, precedence of operators is maintained during evaluation of
expressions.

= Within parentheses, expansion operators are not applied to expressions unless the
operators are also within the parentheses.

See Also: "Grouping Characters" in Chapter 4, "Special
Characters in Oracle Text Queries"

Oracle Text CONTAINS Query Operators 3-3

ABOUT

ABOUT

General Behavior

Use the ABOUT operator to return documents that are related to a query term or phrase.
In English and French, ABOUT enables you to query on concepts, even if a concept is not
actually part of a query. For example, an ABOUT query on heat might return documents
related to temperature, even though the term temperature is not part of the query.

In other languages, using ABOUT will often increase the number of returned documents
and may improve the sorting order of results. For all languages, Oracle Text scores
results for an ABOUT query with the most relevant document receiving the highest
score.

English and French Behavior

In English and French, use the ABOUT operator to query on concepts. The system looks
up concept information in the theme component of the index. Create a theme
component to your index by setting the INDEX_THEMES BASIC_LEXER attribute to YES.

Note: You need not have a theme component in the index to enter
ABOUT queries in English and French. However, having a theme
component in the index yields the best results for ABOUT queries.

Oracle Text retrieves documents that contain concepts that are related to your query
word or phrase. For example, if you enter an ABOUT query on California, the system
might return documents that contain the terms Los Angeles and San Francisco, which
are cities in California.The document need not contain the term California to be
returned in this ABOUT query.

The word or phrase specified in your ABOUT query need not exactly match the themes
stored in the index. Oracle Text normalizes the word or phrase before performing
lookup in the index.

You can use the ABOUT operator with the CONTAINS and CATSEARCH SQL operators. In
the case of CATSEARCH, you must use query templating with the CONTEXT grammar to
query on the indexed themes. See ABOUT Query with CATSEARCH in the Examples
section.

3-4 Oracle Text Reference

ABOUT

Syntax
Syntax Description
about(phrase) In all languages, increases the number of relevant documents
returned for the same query without the ABOUT operator.The phrase
parameter can be a single word or a phrase, or a string of words in
free text format.
In English and French, returns documents that contain concepts
related to phrase, provided the BASIC_LEXER INDEX_THEMES attribute is
set to YES at index time.
The score returned is a relevance score.
Oracle Text ignores any query operators that are included in phrase.
If your index contains only theme information, an ABOUT operator
and operand must be included in your query on the text column or
else Oracle Text returns an error.
The phrase you specify cannot be more than 4000 characters.
Case-Sensitivity
ABOUT queries give the best results when your query is formulated with proper case.
This is because the normalization of your query is based on the knowledge catalog
which is case-sensitive.
However, you need not type your query in exact case to obtain results from an ABOUT
query. The system does its best to interpret your query. For example, if you enter a
query of CISCO and the system does not find this in the knowledge catalog, the
system might use Cisco as a related concept for look-up.
Improving ABOUT Results

Limitations

Examples

The ABOUT operator uses the supplied knowledge base in English and French to
interpret the phrase you enter. Your ABOUT query therefore is limited to knowing and
interpreting the concepts in the knowledge base.

Improve the results of your ABOUT queries by adding your application-specific
terminology to the knowledge base.

See Also: "Extending the Knowledge Base" in Chapter 14, "Oracle
Text Utilities"

The phrase you specify in an ABOUT query cannot be more than 4000 characters.

Single Words

To search for documents that are about soccer, use the following syntax:

'about (soccer) '

Phrases

Further refine the query to include documents about soccer rules in international
competition by entering the phrase as the query term:

'about (soccer rules in international competition)'

Oracle Text CONTAINS Query Operators 3-5

ABOUT

In this English example, Oracle Text returns all documents that have themes of soccer,
rules, or international competition.

In terms of scoring, documents which have all three themes will generally score higher
than documents that have only one or two of the themes.

Unstructured Phrases
You can also query on unstructured phrases, such as the following:

'about (japanese banking investments in indonesia)'

Combined Queries

Use other operators, such as AND or NOT, to combine ABOUT queries with word queries.
For example, enter the following combined ABOUT and word query:

'about (dogs) and cat'

Combine an ABOUT query with another ABOUT query as follows:

'about (dogs) not about (labradors)'

Note: You cannot combine ABOUT with the WITHIN operator, as for
example 'ABOUT (xyz) WITHIN abc’.

ABOUT Query with CATSEARCH

Enter ABOUT queries with CATSEARCH using the query template method with grammar
set to CONTEXT as follows:

select pk||' ==> '||text from test
where catsearch(text,
'<query>
<textquery grammar="context">
about (California)
</textquery>
<score datatype="integer"/>
</query>',"'")>0
order by pk;

3-6 Oracle Text Reference

ACCUMulate (,)

ACCUMulate (,)

Use the ACCUM operator to search for documents that contain at least one occurrence of
any query terms, with the returned documents ranked by a cumulative score based on
how many query terms are found (and how frequently).

Syntax
Syntax Description
term1,term2 Returns documents that contain term1 or term2. Ranks documents
according to document term weight, with the highest scores assigned
term1 ACCUM term2 to documents that have the highest total term weight.
ACCUMulate Scoring

ACCUMulate first scores documents on how many query terms a document matches.
A document that matches more terms will always score higher than a document that
matches fewer terms, even if the terms appear more frequently in the latter. In other
words, if you search for dog ACCUM cat, you'll find that

the dog played with the cat

scores higher than

the big dog played with the little dog while a third dog ate the dog food

Scores are divided into ranges. In a two-term ACCUM, hits that match both terms will
always score between 51 and 100, whereas hits matching only one of the terms will
score between 1 and 50. Likewise, for a three-term ACCUN, a hit matching one term will
score between 1 and 33; a hit matching two terms will score between 34 and 66, and a

hit matching all three terms will score between 67 and 100. Within these ranges, normal
scoring algorithms apply.

See Also: Appendix F, "The Oracle Text Scoring Algorithm" for more
information on how scores are calculated
You can assign different weights to different terms. For example, in a query of the form

soccer, Brazil*3

the term Brazil is weighted three times as heavily as soccer. Therefore, the document

people play soccer because soccer is challenging and fun

will score lower than

Brazil is the largest nation in South America

but both documents will rank below

soccer is the national sport of Brazil

Note that a query of soccer ACCUM Brazil*3 is equivalent to soccer ACCUM Brazil
ACCUM Brazil ACCUM Brazil. Because each query term Brazil is considered
independent, the entire query is scored as though it has four terms, not two, and thus
has four scoring ranges. The first Brazil-and-soccer example document shown above
scores in the first range (1-25), the second scores in the third range (51-75), and the

Oracle Text CONTAINS Query Operators 3-7

ACCUMulate (,)

third scores in the fourth range (76-100). (No document scores in the second range,
because any document with Brazil in it will be considered to match at least three query
terms.)

Example

set serveroutput on;
DROP TABLE accumtbl;
CREATE TABLE accumtbl (id NUMBER, text VARCHAR2 (4000));

INSERT INTO accumtbl VALUES (1, 'the little dog played with the big dog
while the other dog ate the dog food');
INSERT INTO accumtbl values (2, 'the cat played with the dog');

CREATE INDEX accumtbl_idx ON accumtbl (text) indextype is ctxsys.context;

PROMPT dog ACCUM cat
SELECT SCORE(10) FROM accumtbl WHERE CONTAINS (text, 'dog ACCUM cat', 10)
> 0;

PROMPT dog*3 ACCUM cat
SELECT SCORE(10) FROM accumtbl WHERE CONTAINS (text, 'dog*3 ACCUM cat', 10)
> 0;

This produces the following output. Note that the document with both dog and cat
scores highest.

dog ACCUM cat
ID SCORE(10)

dog*3 ACCUM cat
ID SCORE(10)

Related Topics
See also weight (*) on page 3-56

3-8 Oracle Text Reference

AND (&)

AND (&)

Syntax

Example

Related Topics

Use the AND operator to search for documents that contain at least one occurrence of
each of the query terms.

Syntax Description

term1&term?2 Returns documents that contain term1 and term2. Returns the minimum

term1 and term? score of its operands. All query terms must occur; lower score taken.

To obtain all the documents that contain the terms blue and black and red, enter the
following query:

'blue & black & red'
In an AND query, the score returned is the score of the lowest query term. In this

example, if the three individual scores for the terms blue, black, and red is 10, 20 and 30
within a document, the document scores 10.

See Also: The AND operator returns documents that contain all of the
query terms, while OR operator returns documents that contain any of
the query terms. See "OR (|)" on page 3-41.

Oracle Text CONTAINS Query Operators 3-9

Broader Term (BT, BTG, BTP, BTI)

Broader Term (BT, BTG, BTP, BTI)

Syntax

Use the broader term operators (BT, BTG, BTP, BTI) to expand a query to include the
term that has been defined in a thesaurus as the broader or higher level term for a
specified term. They can also expand the query to include the broader term for the
broader term and the broader term for that broader term, and so on up through the
thesaurus hierarchy.

Syntax Description

BT (term[(qualifier)][level][,thes]) Expands a query to include the term defined in the
thesaurus as a broader term for term.

BTG(term[(qualifier)][level][,thes]) Expands a query to include all terms defined in the
thesaurus as broader generic terms for term.

BTP(term|[(qualifier)][level][,thes]) Expands a query to include all the terms defined in
the thesaurus as broader partitive terms for term.

BTI(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in
the thesaurus as broader instance terms for term.

term

Specify the operand for the broader term operator. Oracle Text expands term to include
the broader term entries defined for the term in the thesaurus specified by thes. For
example, if you specify BTG(dog), the expansion includes only those terms that are
defined as broader term generic for dog. You cannot specify expansion operators in the
term argument.

The number of broader terms included in the expansion is determined by the value for
level.

qualifier

Specify a qualifier for term, if term is a homograph (word or phrase with multiple
meanings, but the same spelling) that appears in two or more nodes in the same
hierarchy branch of thes.

If a qualifier is not specified for a homograph in a broader term query, the query
expands to include the broader terms of all the homographic terms.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the broader
terms for the specified term. For example, a level of 1 in a BT query returns the broader
term entry, if one exists, for the specified term. A level of 2 returns the broader term
entry for the specified term, as well as the broader term entry, if one exists, for the
broader term.

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. A thesaurus named
DEFAULT must exist in the thesaurus tables if you use this default value.

3-10 Oracle Text Reference

Broader Term (BT, BTG, BTP, BTI)

Examples

Related Topics

Note: If you specify thes, then you must also specify level.

The following query returns all documents that contain the term tutorial or the BT term
defined for tutorial in the DEFAULT thesaurus:

'BT (tutorial)'

When you specify a thesaurus name, you must also specify level as in:

'BT (tutorial, 2, mythes)'

Broader Term Operator on Homographs

If machine is a broader term for crane (building equipment) and bird is a broader term for
crane (waterfowl) and no qualifier is specified for a broader term query, the query

BT (crane)

expands to:

'{crane} or {machine} or {bird}'

If waterfowl is specified as a qualifier for crane in a broader term query, the query

BT (crane{ (waterfowl) })

expands to the query:

'{crane} or {bird}"'

Note: When specifying a qualifier in a broader or narrower term
query, the qualifier and its notation (parentheses) must be escaped,
as is shown in this example.

Browse a thesaurus using procedures in the CTX_THES package.

See Also: CTX_THES.BT in Chapter 12, "CTX_THES Package" for
more information on browsing the broader terms in your thesaurus

Oracle Text CONTAINS Query Operators 3-11

DEFINEMERGE

DEFINEMERGE

Syntax

Example

Related Topic

Use the DEFINEMERGE operator to define how the score of child nodes of the AND and OR
should be merged. The DEFINEMERGE operator can be used as operand(s) of any
operators that allow AND or OR as operands. The score can be merged in three ways:
picking the minimum value, picking the maximum value, or calculating the average
score of all child nodes.

Use DEFINESCORE before using DEFINEMERGE.

DEFINEMERGE (((text_queryl), (text_query2), ..) , operator, merge_method)

Syntax Description

text_queryl,2 ... Defines the search criteria. These parameters can have any value that is
valid for the AND/OR operator.

operator Defines the relationship between the two text_query parameters.

merge_method Defines how the score of the text_query should be merged. Possible

values: MIN, MAX, AVG, ADD

Example 3-1 DEFINEMERGE and text_query

The following examples show only the text_query part of a CONTAINS query:
'DEFINEMERGE (((dog), (cat)), OR, AVG)'

Queries for the term "dog" or "cat," using the average relevance score of both terms as
the merged score.

'DEFINEMERGE (((dog , cat) , (blue or black)), AND, MIN)'

Queries for the expression "dog ACCUM cat" and "blue OR black," using the default
scoring schemes and then using the minimum score of the two as the merged-score.
'DEFINEMERGE(((DEFINESCORE(dog, DISCRETE)) , (cat)), AND, MAX)'

Queries for the term "dog" using the DISCRETE scoring, and for the term "cat" using the

default relevant scoring, and then using the maximum score of the two as the
merged-score.

DEFINESCORE on page 3-13.

3-12 Oracle Text Reference

DEFINESCORE

DEFINESCORE

Syntax

Use the DEFINESCORE operator to define how a term or phrase, or a set of term
equivalences will be scored. The definition of a scoring expression can consist of an
arithmetic expression of predefined scoring components and numeric literals.

DEFINEMERGE can be used after DEFINESCORE.

DEFINESCORE (query_term, scoring_expression)

query_term
The query term or phrase. Expressions containing the following operators are also
allowed:

ABOUT EQUIV (=)

Fuzzy Soundex (!)
Stem ($) Wildcards (% _)
SDATA MDATA

scoring_expression
An arithmetic expression that describes how the query_term should be scored. This
operand is a string that contains the following components:

» Arithmetic operators: + - * /. The precedence is multiplication and division (%, /)
first before addition and subtraction (+, -).

s Grouping operators: (). Parentheses can be used to alter the precedence of the
arithmetic operators.

= Absolute function: ABS (n) returns the absolute value of n; where n is any
expression that returns a number.

s Logarithmic function: LOG (n) returns the base-10 logarithmic value of n ; where n
is any expression that returns a number.

s Predefined scoring components: Each of the following scoring components returns
a value of 0 - 100, depending on different criteria:

Name Description

DISCRETE If the term exists in the document, score = 100. Otherwise,
score = (.

OCCURRENCE Score based on the number of occurrences.

RELEVANCE Score based on the document's relevance.

COMPLETION Score based on coverage. Documents will score higher if

the ratio between the number of the matching terms and
the number of all terms in the section (counting stop
words) is higher. The COMPLETION scoring is only
applicable when used with the WITHIN operator to search
in zone sections.

Oracle Text CONTAINS Query Operators 3-13

DEFINESCORE

Examples

Name Description

IGNORE Ignore the scoring of this term. This component should be
used alone. Otherwise, the query will return a syntax
error. If the scoring of the only term in the query is set to
IGNORE, then all the matching documents should be
returned with the same score of 100.

Note: For numeric literals, any number literal can be used that
conforms to the SQL pattern of number literal, and is within the range
of the double precision floating point (-3.4e38 to 3.4e38).

scoring_expression Syntax

<Exp> = <Exp> + <Term> | <Exp> - <Term> | <Term>

<Term> := <Term> * <Factor> | <Term> / <Factor> | <Factor>

<Factor> := <<NumericLiterals >>| DISCRETE | OCCURRENCE | RELEVANCE |
COMPLETION | IGNORE | (<Exp>) | -<Factor> | Abs(<Exp>) | Log (<Exp>)

'DEFINESCORE (dog, OCCURRENCE)’
Queries for the word dog, and scores each document using the occurrence score.
Returns the score as integer.

'DEFINESCORE (Labradors are big dog, RELEVANCE)'
Queries for the phrase Labradors are big dogs, and scores each document using the
relevance score.

‘cat and DEFINESCORE (dog, IGNORE)’
Queries for the words dog and cat, using only the default relevance score of cat as the
overall score of the document. Returns the score as integer.

'DEFINESCORE (dog, IGNORE)'
Queries for the word dog, and returns all documents with the word dog. The result is
the same as if all documents get a score of 100. Returns the score as integer.

'DEFINESCORE (dog, ABS (100-RELEVANCE)) '
Queries for the word dog, and scores each document using the absolute value of 100
minus the relevance score. Returns the score as integer.

‘cat and DEFINESCORE (dog, RELEVANCE*5 - OCCURRENCE) '
Returns a syntax error: Two pre-defined components are used.

When DEFINESCORE is used with query templates, the scoring_expression overrides
the values specified by the template. The following example queries for "dog" and
"cat," scores "cat" using OCCURRENCE (COUNT) and scores "dog" based on RELEVANCE.

query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE (dog, RELEVANCE) and cat
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

3-14 Oracle Text Reference

DEFINESCORE

Limitations

Notes

If the ABOUT operator is used in query_term, the OCCURRENCE and COMPLETION
scoring will not be applicable. If used, the query will return a syntax error.

The IGNORE score cannot be used as right hand of the minus operator. If used, then
a syntax error will occur.

The COMPLETION score is only applicable if the DEFINESCORE is used with a WITHIN
operator to search in zone sections, for example:

‘DEFINESCORE (dog, COMPLETION) within zonesection'’
otherwise, the query will return a syntax error.

For the left hand operand of WITHIN:

- All nodes must use the same predefined-scoring component. (If not specified,
then the predefined scoring is RELEVANCE.)

— If the nodes use DISCRETE or COMPLETION, then only the AND and OR operator is
allowed as the left hand children of WITHIN.

— If the nodes use DISCRETE or COMPLETION, then WITHIN will use the max score
of all section instances as the score.

— If the nodes use RELEVANCE or OCCURRENCE, then WITHIN will use the
summation of the score of all section instances as the score.

Only one predefined scoring component can be used in the scoring_expression
at one time. If more than one predefined scoring component is used, then a syntax
error will occur.

See Also: Oracle Database SQL Language Reference

The DEFINESCORE operator, the absolute function, the logarithmic function, and the
pre-defined scoring components are case-insensitive.

The query_term and the scoring_expression parameters are mandatory.

The final score of the DEFINESCORE operator will be truncated to be in the 0 — 100
range. If the data type is INTEGER, then the score is rounded up.

The intermediate data type of the scoring value is a double precision float. As a
result, the value is limited to be in the -3.4e38 to 3.4e38 range. If the intermediate
scoring of any document exceeds the value, then the score will be truncated. If an
integer scoring is required, then the score will always be rounded up after the
score is calculated.

The DEFINESCORE operator can be used as an operand of the following operators:
- AND

- NOT

- INPATH

- THRESHOLD

- WITHIN

- SQE

- OR

- DEFINEMERGE

Oracle Text CONTAINS Query Operators 3-15

DEFINESCORE

- MINUS

- WEIGHT

- ACCUM

For example, the following statement is valid:

DEFINESCORE ('dog’, OCCURRENCE) AND DEFINESCORE('cat’, RELEVANCE)

Queries for the term "dog" using occurrence scoring, and the term "cat" using
relevance scoring.

» If DEFINESCORE is used as a parameter of other operators, then an error will be
returned. For example, the following example returns an error:

SYN (DEFINESCORE (‘cat’, OCCURRENCE))

= When used with query templates, the scoring_expression overrides the values
specified by the template. For example,

query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE (dog, RELEVANCE) and cat
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Queries for "dog" and "cat", scores "cat" using OCCURRENCE (COUNT), and scores
"dog" based on RELEVANCE.

Related Topic
DEFINEMERGE on page 3-12.

3-16 Oracle Text Reference

EQUIValence (=)

EQUIValence (=)

Use the EQUIV operator to specify an acceptable substitution for a word in a query.

Syntax
Syntax Description
term1=term?2 Specifies that term2 is an acceptable substitution for term1. Score
. calculated as the sum of all occurrences of both terms.
term1 equiv term?2
Example

The following example returns all documents that contain either the phrase alsatians
are big dogs or labradors are big dogs:

'labradors=alsatians are big dogs'

Operator Precedence

The EQUIV operator has higher precedence than all other operators except the
expansion operators (fuzzy, soundex, stem).

Oracle Text CONTAINS Query Operators 3-17

Fuzzy

Fuzzy

Use the fuzzy operator to expand queries to include words that are spelled similarly to
the specified term. This type of expansion is helpful for finding more accurate results
when there are frequent misspellings in your document set.

The fuzzy syntax enables you to rank the result set so that documents that contain
words with high similarity to the query word are scored higher than documents with
lower similarity. You can also limit the number of expanded terms.

Unlike stem expansion, the number of words generated by a fuzzy expansion depends
on what is in the index. Results can vary significantly according to the contents of the
index.

Supported Languages

Oracle Text supports fuzzy definitions for English, French, German, Italian, Dutch,
Spanish, Portuguese, Japanese, OCR, and auto-language detection.

Stopwords

If the fuzzy expansion returns a stopword, the stopword is not included in the query
or highlighted by CTX_DOC .HIGHLIGHT or CTX_DOC .MARKUP.

Base-Letter Conversion

If base-letter conversion is enabled for a text column and the query expression
contains a fuzzy operator, Oracle Text operates on the base-letter form of the query.

Syntax
fuzzy(term, score, numresults, weight)
Parameter Description
term Specify the word on which to perform the fuzzy expansion. Oracle Text
expands term to include words only in the index. The word needs to be
at least 3 characters for the fuzzy operator to process it.
score Specify a similarity score. Terms in the expansion that score below this
number are discarded. Use a number between 1 and 80. The default is
60.
numresults Specify the maximum number of terms to use in the expansion of term.
Use a number between 1 and 5000. The default is 100.
weight Specify WEIGHT or W for the results to be weighted according to their
similarity scores.
Specify NOWEIGHT or N for no weighting of results.
Examples

Consider the CONTAINS query:

...CONTAINS (TEXT, 'fuzzy(government, 70, 6, weight)', 1) > 0;

This query expands to the first six fuzzy variations of government in the index that
have a similarity score over 70.

3-18 Oracle Text Reference

Fuzzy

In addition, documents in the result set are weighted according to their similarity to
government. Documents containing words most similar to government receive the
highest score.

Skip unnecessary parameters using the appropriate number of commas. For example:

'fuzzy (government, , ,weight)

Backward Compatibility Syntax

The old fuzzy syntax from previous releases is still supported. This syntax is as

follows:

Parameter Description

?term Expands term to include all terms with similar spellings as the specified
term. Term needs to be at least 3 characters for the fuzzy operator to
process it.

Oracle Text CONTAINS Query Operators 3-19

HASPATH

HASPATH

Use this operator to find all XML documents that contain a specified section path. You
can also use this operator to do section equality testing.

Your index must be created with the PATH_SECTION_GROUP for this operator to work.

Syntax

Syntax Description

HASPATH(path) Searches an XML document set and returns a score
of 100 for all documents where path exists. Separate
parent and child paths with the / character. For
example, you can specify A/B/C.

See example.

HASPATH(A="value") Searches an XML document set and returns a score
of 100 for all documents that have the element A
with content value and only value.

See example.

Using Special Characters with HASPATH and INPATH

The following rules govern the use of special characters with regard to both the
HASPATH and INPATH operators:

s Left-brace ({) and right-brace (}) characters are not allowed inside HASPATH or
INPATH expressions unless they are inside the equality operand enclosed by double
quotes. So both 'HASPATH ({/A/B})" and 'HASPATH (/A/{B})' will return errors.
However, 'HASPATH (/A [B="{author}"])" will be parsed correctly.

= With exception of the backslash (\), special characters, such as dollar sign ($),
percent sign (%), underscore (_), left brace ({), and right brace (}), when inside the
equality operand enclosed by double or single quotes, have no special meaning.
(That is, no stemming, wildcard expansion, or similar processing will be
performed on them.) However, they are still subject to regular text lexing and will
be translated to whitespace, with the exception of characters declared as printjoins.
A backslash will still escape any character that immediately follows it.

For example, if the hyphen (-) and the double quote character (") are defined as
printjoins in a lexer preference, then:

— The string B_TEXT inside HASPATH (/A[B="B_TEXT") will be lexed as the
phrase B TEXT.

— The string B-TEXT inside HASPATH (/A[B="B-TEXT") will be lexed as the word
B-TEXT.

— The string B'TEXT inside HASPATH (/A[B="B'TEXT") will be lexed as the word
B"TEXT. You must use a backslash to escape the double quote between B and
TEXT, or you will get a parsing error.

— Thestring {B_TEXT} inside HASPATH (/A[B="{B_TEXT} ") will be lexed as a
phrase B TEXT.

3-20 Oracle Text Reference

HASPATH

Example

Limitations

Path Testing
The query

HASPATH (A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Section Equality Testing
The query

dog INPATH A
finds

<A>dog

but it also finds

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality test
with the HASPATH operator. For example,

HASPATH (A="dog")

finds and returns a score of 100 only for the first document, and not the second.

Because of how XML section data is recorded, false matches might occur with XML
sections that are completely empty as follows:

<A><C></C><D><E></E></D>

A query of HASPATH (A/B/E) or HASPATH (A/D/C) falsely matches this document. This
type of false matching can be avoided by inserting text between empty tags.

Oracle Text CONTAINS Query Operators 3-21

INPATH

INPATH

Use this operator to do path searching in XML documents. This operator is like the
WITHIN operator except that the right-hand side is a parentheses enclosed path, rather

than a single section name.

Your index must be created with the PATH_SECTION_GROUP for the INPATH operator to

work.

Syntax

The INPATH operator has the following syntax:

Top-Level Tag Searching

Syntax Description
term INPATH (/A) Returns documents that have term within the <A>
term INPATH (A) and tags.

Any-Level Tag Searching

Syntax

Description

term INPATH (//A)

Returns documents that have term in the <A> tag
at any level. This query is the same as "term
WITHIN A'

Direct Parentage Path Searching

Syntax

Description

term INPATH (A/B)

Returns documents where term appears in a B
element which is a direct child of a top-level A
element.

For example, a document containing
<A>term

is returned.

Single-Level Wildcard Searching

Syntax

Description

term INPATH (A/*/B)

Returns documents where term appears in a B
element which is a grandchild (two levels down) of
a top-level A element.

For example a document containing
<A><D>term</D>

is returned.

3-22 Oracle Text Reference

INPATH

Multi-level Wildcard Searching

Syntax

Description

term INPATH (A/*/B/*/*/C)

Returns documents where term appears in a C
element which is 3 levels down from a B element
which is two levels down (grandchild) of a
top-level A element.

Any-Level Descendant Searching

Syntax

Description

term INPATH(A/ /B)

Returns documents where term appears in a B
element which is some descendant (any level) of a
top-level A element.

Attribute Searching

Syntax

Description

term INPATH (//A/@B)

Returns documents where term appears in the B
attribute of an A element at any level. Attributes
must be bound to a direct parent.

Descendant/Attribute Existence Testing

Syntax

Description

term INPATH (A[B])

term INPATH (A[.//B])

term INPATH (// A[@B])

Returns documents where term appears in a
top-level A element which has a B element as a
direct child.

Returns documents where term appears in a
top-level A element which has a B element as a
descendant at any level.

Finds documents where term appears in an A
element at any level which has a B attribute.
Attributes must be tied to a direct parent.

Attribute Value Testing

Syntax

Description

term INPATH (A[@B = "value"])

term INPATH (A[@B !="value"])

Finds all documents where term appears in a
top-level A element which has a B attribute whose
value is value.

Finds all documents where term appears in a
top-level A element which has a B attribute whose
value is not value.

Tag Value Testing

Syntax

Description

term INPATH (A[B = "value"]))

Returns documents where term appears in an A tag
which has a B tag whose value is value.

Oracle Text CONTAINS Query Operators 3-23

INPATH

Nested INPATH

Not

Syntax Description

term INPATH (A[NOT(B)]) Finds documents where term appears in a top-level
A element which does not have a B element as an
immediate child.

AND and OR Testing

Syntax Description

term INPATH (A[B and C]) Finds documents where term appears in a

top-level A element which has a B and a C element
as an immediate child.

term INPATH (A[B and @C="value"]]) Finds documents where term appears in a top-level
A element which has a B element and a C attribute
whose value is value.

term INPATH (A [B OR C]) Finds documents where term appears in a top-level
A element which has a B element or a C element.

Combining Path and Node Tests

Syntax Description

term INPATH (A[@B = "value"]/C/D) Returns documents where term appears in aD
element which is the child of a C element, which is
the child of a top-level A element with a B attribute
whose value is value.

Nest the entire INPATH expression in another INPATH expression as follows:

(dog INPATH (//A/B/C)) INPATH (D)

When you do so, the two INPATH paths are completely independent. The outer INPATH
path does not change the context node of the inner INPATH path. For example:

(dog INPATH (A)) INPATH (D)

never finds any documents, because the inner INPATH is looking for dog within the
top-level tag A, and the outer INPATH constrains that to document with top-level tag D.

A document can have only one top-level tag, so this expression never finds any
documents.

Case-Sensitivity

Tags and attribute names in path searching are case-sensitive. That is,

dog INPATH (A)

finds <A>dog but does not find <a>dog. Instead use

dog INPATH (a)

3-24 Oracle Text Reference

INPATH

Using Special Characters with INPATH

Examples

See "Using Special Characters with HASPATH and INPATH" on page 3-20 for
information on using special characters, such as the percent sign (%) or the backslash
(\), with INPATH.

Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)

or

dog INPATH(A)

Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

<C><A>dog</C>

Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a
top-level A element:

dog INPATH(A/B)

This query finds the following XML document:

<A>My dog is friendly.<A>

but does not find:

<C>My dog is friendly.</C>

Tag Value Testing
You can test the value of tags. For example, the query:

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog
But does not find:

<A>My dog is friendly.

Attribute Searching

You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Oracle Text CONTAINS Query Operators 3-25

INPATH

Limitations

Finds the document

<C> </C>

Attribute Value Testing
You can test the value of attributes. For example, the query

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA

But does not find:

San Francisco, California, USA

Path Testing
You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH (A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Testing for Equality
The following is an example of an INPATH equality test.

dog INPATH (A[@B = "foo"])

The following limitations apply for these expressions:

s Only equality and inequality are supported. Range operators and functions are not
supported.

» The left hand side of the equality must be an attribute. Tags and literals here are
not enabled.

s The right hand side of the equality must be a literal. Tags and attributes here are
not allowed.

s The test for equality depends on your lexer settings. With the default settings, the
query
dog INPATH (A[@B= "pot of gold"])

matches the following sections:

dog

and

dog

because lexer is case-insensitive by default.

dog

3-26 Oracle Text Reference

INPATH

because of and is are default stopwords in English, and a stopword matches any
stopword word.

dog

because the underscore character is not a join character by default.

Oracle Text CONTAINS Query Operators 3-27

MDATA

MDATA

Syntax

Example

Notes

Use the MDATA operator to query documents that contain MDATA sections. MDATA sections
are metadata that have been added to documents to speed up mixed querying.

MDATA queries are treated exactly as literals. For example, with the query:
MDATA (price, $1.24)
the § is not interpreted as a stem operator, nor is the . (period) transformed into

whitespace. A right (close) parenthesis terminates the MDATA operator, so that MDATA
values that have close parentheses cannot be searched.

Syntax
MDATA (sectionname, value)

sectionname

The name of the MDATA section(s) to search. MDATA will also search DATE or numerical
equality if the sectionname parameter is mapped to a FILTER BY column of DATE or
some numerical type.

value
The value of the MDATA section. For example, if an MDATA section called Booktype has
been created, it might have a value of paperback.

For MDATA operator on MDATA sections that are mapped to a DATE FILTER BY column, the
MDATA value must follow the Date format: YYYY-MM-DD HH24:MI:SS. Otherwise, the
expected rows will not be returned. If the time component is omitted, it will default to
00:00:00, according to SQL semantics.

Suppose you want to query for books written by the writer Nigella Lawson that contain
the word summer. Assuming that an MDATA section called AUTHOR has been declared,
you can query as follows:

SELECT id FROM idx_docs
WHERE CONTAINS (text, 'summer AND MDATA (author, Nigella Lawson)')>0

This query will only be successful if an AUTHOR tag has the exact value Nigella Lawson
(after simplified tokenization). Nigella or Ms. Nigella Lawson will not work.

MDATA query values ignore stopwords.
The MDATA operator returns 100 or 0, depending on whether the document is a match.
The MDATA operator is not supported for CTXCAT, CTXRULE, or CTXXPATH indexes.

Table 3-2 shows how MDATA interacts with some other query operators:

3-28 Oracle Text Reference

MDATA

Table 3-2 MDATA and Other Query Operators

Operator Example Allowed?

AND dog & MDATA(a, b) yes

OR dog | MDATA(a, b) yes

NOT dog ~ MDATA(a, b) yes

MINUS dog - MDATA(a, b) yes

ACCUM dog , MDATA(a, b) yes

PHRASE MDATA(a, b) dog no

NEAR MDATA(a, b) ; dog no

WITHIN, HASPATH, MDATA(a, b) WITHINc no

INPATH

Thesaurus MDATA(a, SYN(b)) no

expansion MDATA(a, $b) no (syntactically '
MDATA(a, b%) Sperator i reated a6
MDATAC(a, 'b) literal text)
MDATA(a, ?b)

ABOUT ABOUT(MDATA(a,b)) no (syntactically
MDATA(ABOUT(a)) allowed, but the inner

operator is treated as
literal text)

When MDATA sections repeat, each instance is a separate and independent value. For

instance, the document

<AUTHOR>Terry Pratchett</AUTHOR><AUTHOR>Douglas Adams</AUTHOR>

can be found with any of the following queries:

MDATA (author, Terry Pratchett)
MDATA (author, Douglas Adams)
MDATA (author, Terry Pratchett) and MDATA (author, Douglas Adams)

but not any of the following:

MDATA (author, Terry Pratchett Douglas Adams)
MDATA (author, Terry Pratchett & Douglas Adams)
MDATA (author, Pratchett Douglas)

Related Topics

See also "ADD_MDATA" on page 7-9 and "ADD_MDATA_SECTION" on page 7-12, as
well as the Section Searching chapter of the Oracle Text Application Developer’s Guide.

Oracle Text CONTAINS Query Operators 3-29

MINUS (-)

MINUS (-)

Use the MINUS operator to lower the score of documents that contain unwanted noise
terms. MINUS is useful when you want to search for documents that contain one query
term but want the presence of a second term to cause a document to be ranked lower.

Syntax
Syntax Description
term1-term2 Returns documents that contain term1. Calculates score by
term1 minus ferm? subtracting the score of term2 from the score of term1. Only
documents with positive score are returned.
Example
Suppose a query on the term cars always returned high scoring documents about Ford
cars. You can lower the scoring of the Ford documents by using the expression:
'cars - Ford'
In essence, this expression returns documents that contain the term cars and possibly
Ford. However, the score for a returned document is the score of cars minus the score of
Ford.
Related Topics

See Also: "NOT (~)" on page 3-40

3-30 Oracle Text Reference

MNOT

MNOT

Syntax

Example

Related Topics

The Mild Not (MNOT) operator is similar to the NOT and MINUS operators. The Mild Not
operator returns hits where the the left child is not contained by the right child. Both
children can only be TERM or PHRASE nodes.

The semantics can be illustrated with a query of "term1 mnot term1 term2", where the
hits for "term1 term2" will be filtered out. For example:

= A document with only term1 will be returned, with score unchanged.
= A document with only term1 term2 will not be returned.

s A document with term1 terml1 term2 will be returned, but the score will be
calculated using just the first term1 hit.

The behavior described in the third bullet is different from the behavior of NOT, which
does not return this type of document.

The MNOT operator is more specific than the MINUS operator, in that the left child must
be contained by the right child. If it is not, the Mild Not operator ignores the right
child. Also, for Mild Not, the right child is a true filter, that is, it does not simply
subtract the scores of left child and right child.

The MNOT operator has precedence lower than NOT and higher than WITHIN.

Syntax Description

term1 mnot term1 term2 Returns docs that contain term1 unless it is
part of the phrase term1 term2.

term1 mnot term2 Returns all documents that contain term1. It
will be the same query as just term1.

The children of the MNOT operator must be a TERM or PHRASE.

SELECT * FROM docs
WHERE CONTAINS (txt, 'terml mnot terml term2') >0

See Also: "NOT (~)" on page 3-40

Oracle Text CONTAINS Query Operators 3-31

Narrower Term (NT, NTG, NTP, NTI)

Narrower Term (NT, NTG, NTP, NTI)

Use the narrower term operators (NT, NTG, NTP, NTI) to expand a query to include all
the terms that have been defined in a thesaurus as the narrower or lower level terms
for a specified term. They can also expand the query to include all of the narrower
terms for each narrower term, and so on down through the thesaurus hierarchy.

Syntax

Syntax Description

NT(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower terms for term.

NTG(term[(qualifier)][level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower generic terms for
term.

NTP(term[(qualifier)][level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower partitive terms
for term.

NTI(term[(qualifier)][level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower instance terms
for term.

term

Specify the operand for the narrower term operator. termis expanded to include the
narrower term entries defined for the term in the thesaurus specified by thes. The
number of narrower terms included in the expansion is determined by the value for
level. You cannot specify expansion operators in the term argument.

qualifier

Specify a qualifier for term, if term is a homograph (word or phrase with multiple
meanings, but the same spelling) that appears in two or more nodes in the same
hierarchy branch of thes.

If a qualifier is not specified for a homograph in a narrower term query, the query
expands to include all of the narrower terms of all homographic terms.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the
narrower terms for the specified term. For example, a level of 1 in an NT query returns
all the narrower term entries, if any exist, for the specified term. A level of 2 returns all
the narrower term entries for the specified term, as well as all the narrower term
entries, if any exist, for each narrower term.

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. A thesaurus named
DEFAULT must exist in the thesaurus tables if you use this default value.

Note: If you specify thes, then you must also specify level.

3-32 Oracle Text Reference

Narrower Term (NT, NTG, NTP, NTI)

Examples

Notes

Related Topics

The following query returns all documents that contain either the term cat or any of
the NT terms defined for cat in the DEFAULT thesaurus:

'NT (cat) '

If you specify a thesaurus name, then you must also specify level as in:

'NT (cat, 2, mythes)'

The following query returns all documents that contain either fairy tale or any of the
narrower instance terms for fairy tale as defined in the DEFAULT thesaurus:

'NTI (fairy tale)'

That is, if the terms cinderella and snow white are defined as narrower term instances for
fairy tale, Oracle Text returns documents that contain fairy tale, cinderella, or snow white.

Each hierarchy in a thesaurus represents a distinct, separate branch, corresponding to
the four narrower term operators. In a narrower term query, Oracle Text only expands
the query using the branch corresponding to the specified narrower term operator.

Browse a thesaurus using procedures in the CTX_THES package.

See Also: CTX_THES.NT in Chapter 12, "CTX_THES Package" for
more information on browsing the narrower terms in your
thesaurus

Oracle Text CONTAINS Query Operators 3-33

NDATA

NDATA

Normalization

Syntax

Use the NDATA operator to find matches that are spelled in a similar way or where
rearranging the terms of the specified phrase is useful. It is helpful for finding more
accurate results when there are frequent misspellings (or inaccurate orderings) of
name data in the document set. This operator can be used only on defined NDATA
sections. The NDATA syntax enables you to rank the result set so that documents that
contain words with high orthographic similarity are scored higher than documents
with lower similarity.

A lexer does not process NDATA query phrases. Users can, however, set base letter and
alternate spelling attributes for a particular section group containing NDATA sections.
Query case is normalized and non-character data (except for white space) is removed
(for example, numerical or punctuation).

ndata (sectionname, phrase [,order][,proximity])

Parameter
Name Default Value Parameter Description

sectionname Specify the name of a defined NDATA sections to query (that
is, section_name)

phrase Specify the phrase for the name data query.

The phrase parameter can be a single word or a phrase, or a
string of words in free text format.

The score returned is a relevant score.

Oracle Text ignores any query operators that are included in
phrase.

The phrase should be a minimum of two characters in
length and should not exceed 4000 characters in length.

order NOORDER Specify whether individual tokens (terms) in a query
should be matched in-order or in any order. The order
parameter provides a primary filter for matching candidate
documents.

ORDER or 0 - The query terms are matched in-order.

NOORDER o N [DEFAULT] - The query terms are matched in
any order.

proximity NOPROXIMITY Specify whether the proximity of terms should influence the
similarity score of candidate matches. That is, if the
proximity parameter is enabled, non-matching additional
terms between matching terms will reduce the similarity
score of candidate matches.

PROXIMITY or P - The similarity score influenced by the
proximity of query terms in candidate matches.

NOPROXIMITY or N [DEFAULT] - The similarity score is not
influenced by the proximity of query terms in candidate
matches.

3-34 Oracle Text Reference

NDATA

Examples

Notes

An NDATA query on an indexed surname section name that matches terms in the query
phrase in any order without influencing the similarity score by the proximity of the
black and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS (idx_column, 'NDATA (surname, black smith)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query
phrase in any order and in which similarity scores are influenced by the proximity of
the black and smith terms has the form:

SELECT entryid, SCORE(1l) FROM people WHERE
CONTAINS (idx_column, 'NDATA (surname, black smith,,proximity)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query
phrase in-order without influencing the similarity score by the proximity of the black
and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS (idx_column, 'NDATA (surname, black smith, order)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query
phrase in-order and in which similarity scores are influenced by the proximity of the
black and smith terms has the form:

SELECT entryid, SCORE(1l) FROM people WHERE
CONTAINS (idx_column, 'NDATA (surname, black smith, order, proximity)',1)>0;

The NDATA query operator does not provide offset information. As such, it cannot be
used as a child of WITHIN, NEAR(;), or EQUIV (=), and NDATA sections will be ignored by
CTX_DOC . HIGHLIGHT, CTX_DOC.SNIPPET, and CTX_DOC.MARKUP. The NDATA operator also
is not supported in the CTXCAT grammar. It can be used with other operators, including
OR and query templates.

A use case of the NDATA operator may involve finding a particular entry based on an
approximate spelling of a person’s full-name and an estimated date-of-birth.
Supposing the entries” date-of-births are stored as an SDATA section, user-defined
scoring’s alternate scoring template can be used to combine the scores of the
full-name’s NDATA section data and the date-of-birth’s SDATA section data.

The name john smith is queried for the section specified by the fullname section_name.
Altering the NDATA operator’s score based on the closeness of the SDATA section’s
date-of-birth to the date 08-NOV-2005 modifies the ranking of matching documents:

<query>
<textquery grammar="CONTEXT" lang="english">
NDATA (fullname, john smith)
</textquery>
<score algorithm="COUNT" normalization_expr =
"doc_score- (DATE (8-NOV-2005) -sdata:dob) "/>
</query>

Oracle Text CONTAINS Query Operators 3-35

NEAR (;)

NEAR (;)

Use the NEAR operator to return a score based on the proximity of two or more query
terms. Oracle Text returns higher scores for terms closer together and lower scores for
terms farther apart in a document.

Note: The NEAR operator works with only word queries. You
cannot use NEAR in ABOUT queries.

Syntax

Syntax
NEAR((word1, word2,..., wordn) [, max_span [, order]])

Backward compatibility syntax: word1; word?2

word71-n

Specify the terms in the query separated by commas. The query terms can be single
words or phrases and may make use of other query operators (see "NEAR with Other
Operators").

max_span
Optionally specify the size of the biggest clump. The default is 100. Oracle Text returns
an error if you specify a number greater than 100.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term.

For near queries with two terms, max_span is the maximum distance allowed between
the two terms. For example, to query on dog and cat where dog is within 6 words of cat,
enter the following query:

'near ((dog, cat), 6)'

order
Specify TRUE for Oracle Text to search for terms in the order you specify. The default is
FALSE.

For example, to search for the words monday, tuesday, and wednesday in that order with
a maximum clump size of 20, enter the following query:

'near ((monday, tuesday, wednesday), 20, TRUE)'

Note: To specify order, then you must always specify a number
for max_span.

Oracle Text might return different scores for the same document when you use
identical query expressions that have the order flag set differently. For example,
Oracle Text might return different scores for the same document when you enter the
following queries:

'near ((dog, cat), 50, FALSE)'
'near ((dog, cat), 50, TRUE)'

3-36 Oracle Text Reference

NEAR (;)

NEAR Scoring

The scoring for the NEAR operator combines frequency of the terms with proximity of
terms. For each document that satisfies the query, Oracle Text returns a score between
1 and 100 that is proportional to the number of clumps in the document and inversely
proportional to the average size of the clumps. This means many small clumps in a
document result in higher scores, because small clumps imply closeness of terms.

The number of terms in a query also affects score. Queries with many terms, such as
seven, generally need fewer clumps in a document to score 100 than do queries with
few terms, such as two.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term. Define clump size with the max_span parameter, as
described in this section.

The size of a clump does not include the query terms themselves. So for the query
NEAR ((DOG, CAT), 1),dog cat will be a match, and dog ate cat will be a match, but dog
sat on cat will not be a match.

NEAR with Other Operators

You can use the NEAR operator with other operators such as AND and OR. Scores are
calculated in the regular way.

For example, to find all documents that contain the terms tiger, lion, and cheetah where
the terms lion and tiger are within 10 words of each other, enter the following query:

'near ((lion, tiger), 10) AND cheetah'

The score returned for each document is the lower score of the near operator and the
term cheetah.

You can also use the equivalence operator to substitute a single term in a near query:
'near ((stock crash, Japan=Korea), 20)'

This query asks for all documents that contain the phrase stock crash within twenty
words of Japan or Korea.

The following NEAR syntax is now valid:

SELECT * FROM docs WHERE CONTAINS (txt, 'near((aterml aterm2 ... atermI
OR bterml bterm2 ... btermJ
OR cterml cterm2 ... ctermK, dterm))') >0

There can be any number of ORs in a given NEAR child, and the OR can appear in any of
the NEAR children.

The NEAR within NEAR feature allows users to use nested proximity queries. Users can
execute queries such as the following:

SELECT * FROM docs
WHERE CONTAINS (txt, 'near((near((terml, term2),5), term3), 100)')>0

This will return documents where terml1, term2, and term3 are near within a 100 token
window and, additionally, the tokens term1 and term2 are near within a 5 token
window.

Mixing the semicolon and NEAR syntax is not supported and will throw an error. That
is, the queries "near ((a;b,c),3)" or "near((a,b));c" will be disallowed.

The following operators also work with NEAR and ; :

Oracle Text CONTAINS Query Operators 3-37

NEAR (;)

s EQUIV

= All expansion operators that produce words, phrases, or EQUIV. These include:
= soundex
s fuzzy
» wildcards

s stem

Backward Compatibility NEAR Syntax

You can write near queries using the syntax of previous Oracle Text releases. For
example, to find all documents where lion occurs near tiger, write:

'lion near tiger'

or with the semi-colon as follows:

'lion;tiger'

This query is equivalent to the following query:

'near ((lion, tiger), 100, FALSE)'

Note: Only the syntax of the NEAR operator is backward
compatible. In the example, the score returned is calculated using
the clump method as described in this section.

Highlighting with the NEAR Operator

When you use highlighting and your query contains the near operator, all occurrences
of all terms in the query that satisfy the proximity requirements are highlighted.
Highlighted terms can be single words or phrases.

For example, assume a document contains the following text:

Chocolate and vanilla are my favorite ice cream flavors. I like chocolate served
in a waffle cone, and vanilla served in a cup with carmel syrup.

If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
<<chocolate>> served in a waffle cone, and <<vanilla>> served in a cup with
caramel syrup.

However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is
highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
chocolate served in a waffle cone, and vanilla served in a cup with carmel syrup.

See Also: Chapter 8, "CTX_DOC Package" for more information
about the procedures for highlighting

Section Searching and NEAR

Use the NEAR operator with the WITHIN operator for section searching as follows:

'near ((dog, cat), 10) WITHIN Headings'

3-38 Oracle Text Reference

NEAR (;)

When evaluating expressions such as these, Oracle Text looks for clumps that lie
entirely within the given section.

In this example, only those clumps that contain dog and cat that lie entirely within the
section Headings are counted. That is, if the term dog lies within Headings and the term
cat lies five words from dog, but outside of Headings, this pair of words does not satisfy
the expression and is not counted.

Oracle Text CONTAINS Query Operators 3-39

NOT (~)

NOT (~)

Syntax

Examples

Related Topics

Use the NOT operator to search for documents that contain one query term and not
another.

Syntax Description

terml1~term?2 Returns documents that contain terml1 and not term?2.

term1 not term2

To obtain the documents that contain the term animals but not dogs, use the following
expression:

'animals ~ dogs'
Similarly, to obtain the documents that contain the term transportation but not
automobiles or trains, use the following expression:

'transportation not (automobiles or trains)'

Note: The NOT operator does not affect the scoring produced by
the other logical operators.

See Also: "MINUS (-)" on page 3-30

3-40 Oracle Text Reference

OR (I)

OR ()

Use the OR operator to search for documents that contain at least one occurrence of any
of the query terms.

Syntax
Syntax Description
term1 | term2 Returns documents that contain term1 or term2. Returns the
terml or term? maximum score of its operands. At least one term must
exist; higher score taken.
Examples
To obtain the documents that contain the term cats or the term dogs, use either of the
following expressions:
'cats | dogs'
'cats OR dogs'
Scoring
In an OR query, the score returned is the score for the highest query term. In the
example, if the scores for cats and dogs is 30 and 40 within a document, the document
scores 40.
Related Topics

See Also: The OR operator returns documents that contain any of the
query terms, while the AND operator returns documents that contain all
query terms. See "AND (&)" on page 3-9.

Oracle Text CONTAINS Query Operators 3-41

Preferred Term (PT)

Preferred Term (PT)

Syntax

Example

Related Topics

Use the preferred term operator (PT) to replace a term in a query with the preferred
term that has been defined in a thesaurus for the term.

Syntax Description

PT(term|,thes]) Replaces the specified word in a query with the preferred term
for term.

term

Specify the operand for the preferred term operator. term is replaced by the preferred
term defined for the term in the specified thesaurus. However, if no PT entries are
defined for the term, term is not replaced in the query expression and term is the result
of the expansion.

You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before using any of the
thesaurus operators.

The term automobile has a preferred term of car in a thesaurus. A PT query for
automobile returns all documents that contain the word car. Documents that contain the
word automobile are not returned.

Browse a thesaurus using procedures in the CTX_THES package.

See Also: CTX_THES.PT in Chapter 12, "CTX_THES Package"
form more information on browsing the preferred terms in your
thesaurus

3-42 Oracle Text Reference

Related Term (RT)

Related Term (RT)

Syntax

Example

Related Topics

Use the related term operator (RT) to expand a query to include all related terms that
have been defined in a thesaurus for the term.

Syntax Description

RT(term|[,thes]) Expands a query to include all the terms defined in the
thesaurus as a related term for term.

term
Specify the operand for the related term operator. termis expanded to include term
and all the related entries defined for termin thes.

You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. As a result, a

thesaurus named DEFAULT must exist in the thesaurus tables before using any of the
thesaurus operators.

The term dog has a related term of wolf. An RT query for dog returns all documents that
contain the word dog and wolf.

Browse a thesaurus using procedures in the CTX_THES package

See Also: CTX_THES.RT in Chapter 12, "CTX_THES Package" for
more information on browsing the related terms in your thesaurus

Oracle Text CONTAINS Query Operators 3-43

SDATA

SDATA

Syntax

Use the SDATA operator to perform tests on SDATA sections and columns, which contain
structured data values. SDATA sections speed up mixed querying and ordering. This
operator provides structured predicate support for CONTAINS, which extends non-SQL
interfaces such as count_hits or the result set interface.

SDATA operators should only be used as descendants of AND operators that also have
non-SDATA children.

SDATA queries perform on string or numeric literals, and on date strings. The string
literal and date string are enclosed within single or double quote characters. The
numeric value is not enclosed in quote characters, and must conform to the SQL
format of NUMBER. For example:

CONTAINS (text, "dog and SDATA(category = ''news'')")>0 ...
SDATA (rating between 1.2 and 3.4)

SDATA (author LIKE 'FFORDES$')

SDATA (date >='2005-09-18")

Closed parentheses are permitted, as long as they are enclosed in single or double
quotes.

The SDATA operator can be used in query templates.

Syntax

SData :="SDATA" "(" SDataPredicate ")"

SDataPredicate := sectionname SDataTest

SDataTest := <SDataSingleOp SDataLiteral> | SDataBetweenOp | <"is" ("not")?
"null">

SDataSingleOp =< =" T SE" S] E" | "> | "like") SDataLiteral

SDataBetweenOp := "between" SDataLiteral "and" SDataLiteral

SDatalLiteral = numeric_literal | """ string_literal """ | """ date_string "

sectionname
The name of the SDATA section(s) on which to search and perform the test, or check.

SDatalL.iteral
The value of the SDATA section. This must be either a string literal, numeric literal, or a
date string.

The SDATA operator returns a score of 100 if the enclosed predicate returns TRUE, and
returns 0 otherwise. In the case of a NULL value, the SDATA operator returns a score of 0
(since in SQL it would not return TRUE).

Multi-valued semantics are not defined, as multi-valued SDATA sections are not
supported.

Comparison of strings is case sensitive. The BINARY collation is always used.

3-44 Oracle Text Reference

SDATA

Examples

Restrictions

Notes

Note: For the SDATA operator on SDATA sections that are mapped to a
DATE FILTER BY column, the SDATA value must follow the Date format:
YYYY-MM-DD or YYYY-MM-DD HH24:MI:SS. Otherwise, the expected rows
will not be returned. If the time component is omitted, it will default
to 00:00:00, according to SQL semantics. This Date format is always
used, regardless of the setting of the NLS_DATE_FORMAT environment
variable.

Suppose that you want to query for books in the fiction category that contain the word
summer. Assuming that an SDATA section called CATEGORY has been declared, you can
query as follows:

SELECT id FROM idx_docs
WHERE CONTAINS (text, 'summer AND SDATA (category = "fiction")')>0

m An error is raised if the section name is not a defined SDATA section. The source of
the section (for example, tag versus column) is not important.

s The syntax precludes RHS SDATA and expressions.
= SDATA operators cannot be children of WITHIN, INPATH, HASPATH, or NEAR.

s The datatype of the named SDATA section must be compatible with the literal
provided (and the operator, for example, LIKE) or an error is raised.

= SDATA operators are not supported in CTXRULE query documents.

= SDATA operators have no effect on highlighting.

Oracle recommends using SDATA operators only as descendants of AND operators that
also have non-SDATA children. Essentially, use SDATA operators as secondary (that is,
checking or non-driving) criteria. For instance, "find documents with DOG that also
have price > 5", rather than "find documents with rating > 4". Other usage may operate
properly, but may not have optimal performance.

The following examples are consistent with recommended use:

dog & SDATA(foo = 5)

The SDATA is a child of an AND operator that also has non-SDATA children.

dog & (SDATA(foo = 5) | SDATA(x = 1))

Although the SDATA operators here are children of OR, they are still descendants of an
AND operator with non-SDATA children.

The following examples show use that is not recommended:

SDATA (foo = 5)

Here, SDATA is the only criteria and, therefore, the driving criteria.

dog | SDATA(bar = 9)

The SDATA in this example is a child of an OR operator rather than an AND.

Oracle Text CONTAINS Query Operators 3-45

SDATA

SDATA (foo = 5) & SDATA(bar = 7)

While both SDATA operators in this example are descendants of AND, this AND operator
does not have non-SDATA children.

Related Topics
ADD_SDATA_COLUMN on page 7-14

ADD_SDATA_SECTION on page 7-16
CTX_SECTIONS on page G-9 in Appendix G, "Oracle Text Views"

See Also:
» Oracle Database SQL Language Reference

s Chapter 8, "Searching Document Sections in Oracle Text" in Oracle
Text Application Developer’s Guide

3-46 Oracle Text Reference

soundex (!)

soundex (!)

Syntax

Example

Language

Use the soundex (!) operator to expand queries to include words that have similar
sounds; that is, words that sound like other words. This function enables comparison
of words that are spelled differently, but sound alike in English.

Syntax Description

Iterm Expands a query to include all terms that sound the same
as the specified term (English-language text only).

SELECT ID, COMMENT FROM EMP_RESUME
WHERE CONTAINS (COMMENT, '!SMYTHE') > 0 ;

ID COMMENT

23 Smith is a hard worker who. .

Soundex works best for languages that use a 7-bit character set, such as English. It can
be used, with lesser effectiveness, for languages that use an 8-bit character set, such as
many Western European languages.

If you have base-letter conversion specified for a text column and the query expression
contains a soundex operator, then Oracle Text operates on the base-letter form of the

query.

Oracle Text CONTAINS Query Operators 3-47

stem ($)

stem ($)

Use the stem ($) operator to search for terms that have the same linguistic root as the
query term.

If you use the BASIC_LEXER to index your language, stemming performance can be
improved by using the index_stems attribute.

The Oracle Text stemmer, licensed from XSoft Division of Xerox Corporation, supports
the following languages with the BASIC_LEXER: English, French, Spanish, Italian,
German, and Dutch.

Japanese stemming is supported with the JAPANESE_LEXER.
Specify your stemming language with the BASIC_WORDLIST wordlist preference.

Syntax

Syntax Description

$term Expands a query to include all terms having the same

stem or root word as the specified term.

Examples

Input Expands To

$scream scream screaming screamed

$distinguish distinguish distinguished distinguishes

$guitars guitars guitar

$commit commit committed

$cat cat cats

$sing sang sung sing

Behavior with Stopwords

If stem returns a word designated as a stopword, the stopword is not included in the
query or highlighted by CTX_QUERY.HIGHLIGHT or CTX_QUERY.MARKUP.

Related Topics
See Also: For more information about enabling the stem operator

with BASIC_LEXER, see "BASIC_LEXER" in Chapter 2, "Oracle Text
Indexing Elements".

3-48 Oracle Text Reference

Stored Query Expression (SQE)

Stored Query Expression (SQE)

Syntax

Examples

Limitations

Use the SQE operator to call a stored query expression created with the CTX_
QUERY. STORE_SQE procedure.

Stored query expressions can be used for creating predefined bins for organizing and
categorizing documents or to perform iterative queries, in which an initial query is
refined using one or more additional queries.

Syntax Description
SQE(SQE_name) Returns the results for the stored query expression
SQE_name.

To create an SQE named disasters, use CTX_QUERY.STORE_SQE as follows:

begin
ctx_query.store_sqge('disasters', 'hurricane or earthquake or blizzard');
end;

This stored query expression returns all documents that contain either hurricane,
earthquake or blizzard.
This SQE can then be called within a query expression as follows:

SELECT SCORE(1), docid FROM news
WHERE CONTAINS (resume, 'sqge(disasters)', 1)> 0
ORDER BY SCORE (1) ;

Up to 100 stored query expressions (SQEs) can be stored in a single Text query. If a Text
query has more than 100 SQEs, including nested SQEs, then the query fails and error
DRG-50949 is raised.

Oracle Text CONTAINS Query Operators 3-49

SYNonym (SYN)

SYNonym (SYN)

Use the synonym operator (SYN) to expand a query to include all the terms that have
been defined in a thesaurus as synonyms for the specified term.

Syntax
Syntax Description
SYN(term[,thes]) Expands a query to include all the terms defined in the

thesaurus as synonyms for term.

term
Specify the operand for the synonym operator. term is expanded to include term and
all the synonyms defined for termin thes.
You cannot specify expansion operators in the term argument.
thes
Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. A thesaurus named
DEFAULT must exist in the thesaurus tables if you use this default value.

Examples
The following query expression returns all documents that contain the term dog or any
of the synonyms defined for dog in the DEFAULT thesaurus:
'SYN (dog) '
Compound Phrases in Synonym Operator
Expansion of compound phrases for a term in a synonym query are returned as AND
conjunctives.
For example, the compound phrase temperature + measurement + instruments is defined
in a thesaurus as a synonym for the term thermometer. In a synonym query for
thermometer, the query is expanded to:
{thermometer} OR ({temperature}&{measurement}&{instruments})

Related Topics

Browse your thesaurus using procedures in the CTX_THES package.

See Also: CTX_THES.SYN in Chapter 12, "CTX_THES Package"
for more information on browsing the synonym terms in your
thesaurus

3-50 Oracle Text Reference

threshold (>)

threshold (>)

Use the threshold operator (>) in two ways:
= at the expression level
= at the query term level

The threshold operator at the expression level eliminates documents in the result set
that score below a threshold number.

The threshold operator at the query term level selects a document based on how a
term scores in the document.

Syntax
Syntax Description
expression>n Returns only those documents in the result set that
score above the threshold n.
Within an expression, returns documents that contain
term>n .
the query term with score of at least n.
Examples

At the expression level, to search for documents that contain relational databases and to
return only documents that score greater than 75, use the following expression:

'relational databases > 75'

At the query term level, to select documents that have at least a score of 30 for lion and
contain tiger, use the following expression:

'(lion > 30) and tiger'

Oracle Text CONTAINS Query Operators 3-51

Translation Term (TR)

Translation Term (TR)

Syntax

Examples

Related Topics

Use the translation term operator (TR) to expand a query to include all defined foreign
language equivalent terms.

Syntax Description

TR(term[, lang, [thes]]) Expands term to include all the foreign equivalents that are
defined for term.

term

Specify the operand for the translation term operator. term is expanded to include all
the foreign language entries defined for termin thes. You cannot specify expansion
operators in the term argument.

lang

Optionally, specify which foreign language equivalents to return in the expansion. The
language you specify must match the language as defined in thes. (You may specify
only one language at a time.) If you omit this parameter or specify it as ALL, the system
expands to use all defined foreign language terms.

thes

Optionally, specify the name of the thesaurus used to return the expansions for the
specified term. The thes argument has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before you can use any of
the thesaurus operators.

Note: If you specify thes, then you must also specify lang.

Consider a thesaurus MY_THES with the following entries for cat:

cat
SPANISH: gato
FRENCH: chat

To search for all documents that contain cat and the spanish translation of cat, enter the
following query:

'tr(cat, spanish, my_ thes)'

This query expands to:

"{cat}|{gato}"

Browse a thesaurus using procedures in the CTX_THES package.

See Also: CTX_THES.TR in Chapter 12, "CTX_THES Package" for
more information on browsing the related terms in your thesaurus

3-52 Oracle Text Reference

Translation Term Synonym (TRSYN)

Translation Term Synonym (TRSYN)

Syntax

Examples

Related Topics

Use the translation term operator (TR) to expand a query to include all the defined
foreign equivalents of the query term, the synonyms of query term, and the foreign
equivalents of the synonyms.

Syntax Description

TRSYN(term], lang, [thes]]) Expands term to include foreign equivalents of term, the
synonyms of term, and the foreign equivalents of the
synonyms.

term

Specify the operand for this operator. term is expanded to include all the foreign
language entries and synonyms defined for term in thes. You cannot specify
expansion operators in the term argument.

lang

Optionally, specify which foreign language equivalents to return in the expansion. The
language you specify must match the language as defined in thes. If you omit this
parameter, the system expands to use all defined foreign language terms.

thes

Optionally, specify the name of the thesaurus used to return the expansions for the
specified term. The thes argument has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before you can use any of
the thesaurus operators.

Note: If you specify thes, then you must also specify lang.

Consider a thesaurus MY_THES with the following entries for cat:

cat
SPANISH: gato
FRENCH: chat
SYN lion
SPANISH: leon

To search for all documents that contain cat, the spanish equivalent of cat, the synonym
of cat, and the spanish equivalent of lion, enter the following query:

'trsyn(cat, spanish, my_thes)'

This query expands to:

"{cat}|{gato}|{lion}|{leon}"

Browse a thesaurus using procedures in the CTX_THES package.

Oracle Text CONTAINS Query Operators 3-53

Translation Term Synonym (TRSYN)

See Also: CTX_THES.TRSYN in Chapter 12, "CTX_THES
Package" for more information on browsing the translation and
synonym terms in your thesaurus

3-54 Oracle Text Reference

Top Term (TT)

Top Term (TT)

Syntax

Example

Related Topics

Use the top term operator (TT) to replace a term in a query with the fop term that has
been defined for the term in the standard hierarchy (Broader Term [BT], Narrower
Term [NT]) in a thesaurus. A top term is the broadest conceptual term related to a
given query term. For example, a thesaurus might define the following hierarchy:

DOG
BT1 CANINE
BT2 MAMMAL
BT3 VERTEBRATE
BT4 ANIMAL

The top term for dog in this thesaurus is animal.

Top terms in the generic (BTG, NTG), partitive (BTP, NTP), and instance (BTI, NTI)
hierarchies are not returned.

Syntax Description

TT(term|[,thes]) Replaces the specified word in a query with the top term in the
standard hierarchy (BT, NT) for term.

term

Specify the operand for the top term operator. term is replaced by the top term defined
for the term in the specified thesaurus. However, if no TT entries are defined for term,
term is not replaced in the query expression and term is the result of the expansion.

You cannot specify expansion operators in the term argument.
thes
Specify the name of the thesaurus used to return the expansions for the specified term.

The thes argument is optional and has a default value of DEFAULT. A thesaurus named
DEFAULT must exist in the thesaurus tables if you use this default value.

The term dog has a top term of animal in the standard hierarchy of a thesaurus. A TT
query for dog returns all documents that contain the phrase animal. Documents that
contain the word dog are not returned.

Browse your thesaurus using procedures in the CTX_THES package.

See Also: CTX_THES.TT on page 12-46 for more information on
browsing the top terms in your thesaurus

Oracle Text CONTAINS Query Operators 3-55

weight (*)

weight (*)

Syntax

Examples

The weight operator multiplies the score by the given factor, topping out at 100 when
the score exceeds 100. For example, the query cat, dog*2 sums the score of cat with
twice the score of dog, topping out at 100 when the score is greater than 100.

In expressions that contain more than one query term, use the weight operator to
adjust the relative scoring of the query terms. Reduce the score of a query term by
using the weight operator with a number less than 1; increase the score of a query term
by using the weight operator with a number greater than 1 and less than 10.

The weight operator is useful in ACCUMulate (,), AND (&), or OR (1) queries when
the expression has more than one query term. With no weighting on individual terms,
the score cannot tell which of the query terms occurs the most. With term weighting,
you can alter the scores of individual terms and hence make the overall document
ranking reflect the terms you are interested in.

Syntax Description

term*n Returns documents that contain term. Calculates score by
multiplying the raw score of term by n, where n is a number from 0.1
to 10.

Suppose you have a collection of sports articles. You are interested in the articles about
Brazilian soccer. It turns out that a regular query on soccer or Brazil returns many high
ranking articles on US soccer. To raise the ranking of the articles on Brazilian soccer,
enter the following query:

'soccer or Brazil*3'
Table 3-3 illustrates how the weight operator can change the ranking of three
hypothetical documents A, B, and C, which all contain information about soccer. The

columns in the table show the total score of four different query expressions on the
three documents.

Table 3-3 Score Samples

soccer Brazil soccer or Brazil soccer or Brazil*3
20 10 20 30

B 10 30 30 90
50 20 50 60

The score in the third column containing the query soccer or Brazil is the score of the
highest scoring term. The score in the fourth column containing the query soccer or
Brazil*3 is the larger of the score of the first column soccer and of the score Brazil
multiplied by three, Brazil*3.

With the initial query of soccer or Brazil, the documents are ranked in the order C B A.
With the query of soccer or Brazil*3, the documents are ranked B C A, which is the
preferred ranking.

3-56 Oracle Text Reference

weight (*)

Weights can be added to multiple terms. The query Brazil OR (soccer AND Brazil)*3 will
increase the relative scores for documents that contain both soccer and Brazil.

Oracle Text CONTAINS Query Operators 3-57

wildcards (% _)

wildcards (% _)

Wildcard characters can be used in query expressions to expand word searches into
pattern searches. The wildcard characters are:

Wildcard Character Description

% The percent wildcard can appear any number of times at any part of
the search term. The search term will be expanded into an
equivalence list of terms. The list consists of all terms in the index
that match the wildcarded term, with zero or more characters in
place of the percent character.

The underscore wildcard specifies a single position in which any
character can occur.

The total number of wildcard expansions from all words in a query containing
unescaped wildcard characters cannot exceed the maximum number of expansions
specified by the BASIC_WORDLIST attribute WILDCARD_MAXTERMS. For more information,
see "BASIC_WORDLIST" on page 3-2.

Note: When a wildcard expression translates to a stopword, the
stopword is not included in the query and not highlighted by CTX_
DOC.HIGHLIGHT or CTX_DOC.MARKUP.

Right-Truncated Queries

Right truncation involves placing the wildcard on the right-hand-side of the search
string.

For example, the following query expression finds all terms beginning with the pattern
scal:

'scal%’

Left- and Double-Truncated Queries

Left truncation involves placing the wildcard on the left-hand-side of the search string.
To find words such as king, wing or sing, write the query as follows:

' _ing '

For all words that end with ing, enter:

'%ing’

Combine left-truncated and right-truncated searches to create double-truncated

searches. The following query finds all documents that contain words that contain the
substring %benz %

Improving Wildcard Query Performance
Improve wildcard query performance by adding a substring or prefix index.

When your wildcard queries are left- and double-truncated, you can improve query
performance by creating a substring index. Substring indexes improve query

3-58 Oracle Text Reference

wildcards (% _)

performance for all types of left-truncated wildcard searches such as %ed, _ing, or
Yobenz%.

When your wildcard queries are right-truncated, you can improve performance by
creating a prefix index. A prefix index improves query performance for wildcard
searches such as t0%.

See Also: "BASIC_WORDLIST" on page 2-57 in Chapter 2,
"Oracle Text Indexing Elements" for more information about
creating substring and prefix indexes

Oracle Text CONTAINS Query Operators 3-59

WITHIN

WITHIN

Use the WITHIN operator to narrow a query down into document sections. Document
sections can be one of the following:

s Zone sections
s Field sections
m Attribute sections

= Special sections (sentence or paragraph)

Syntax

Syntax Description

expression WITHIN section Searches for expression within the pre-defined zone,
field, or attribute section.

If section is a zone, expression can contain one or more
WITHIN operators (nested WITHIN) whose section is a
zone or special section.

If section is a field or attribute section, expression
cannot contain another WITHIN operator.

expression WITHIN SENTENCE Searches for documents that contain expression within
a sentence. Specify an AND or NOT query for expression.

The expression can contain one or more WITHIN
operators (nested WITHIN) whose section is a zone or
special section.

expression WITHIN PARAGRAPH Searches for documents that contain expression within
a paragraph. Specify an AND or NOT query for expression.

The expression can contain one or more WITHIN
operators (nested WITHIN) whose section is a zone or
special section.

WITHIN Limitations

The WITHIN operator has the following limitations:

= You cannot embed the WITHIN clause in a phrase. For example, you cannot write:
term1 WITHIN section term?2

= Because WITHIN is a reserved word, you must escape the word with braces to
search on it.

WITHIN Operator Examples

Querying Within Zone Sections

To find all the documents that contain the term San Francisco within the section
Headings, write the query as follows:

'San Francisco WITHIN Headings'

To find all the documents that contain the term sailing and contain the term San
Francisco within the section Headings, write the query in one of two ways:

' (San Francisco WITHIN Headings) and sailing'

3-60 Oracle Text Reference

WITHIN

'sailing and San Francisco WITHIN Headings'

Compound Expressions with WITHIN

To find all documents that contain the terms dog and cat within the same section
Headings, write the query as follows:

' (dog and cat) WITHIN Headings'

This query is logically different from:
'dog WITHIN Headings and cat WITHIN Headings'
This query finds all documents that contain dog and cat where the terms dog and cat are

in Headings sections, regardless of whether they occur in the same Headings section or
different sections.

Near with WITHIN

To find all documents in which dog is near cat within the section Headings, write the
query as follows:

'dog near cat WITHIN Headings'

Note: The near operator has higher precedence than the WITHIN
operator so braces are not necessary in this example. This query is
equivalent to (dog near cat) WITHIN Headings.

Nested WITHIN Queries

You can nest the within operator to search zone sections within zone sections.

For example, assume that a document set had the zone section AUTHOR nested within
the zone BOOK section. Write a nested WITHIN query to find all occurrences of scott
within the AUTHOR section of the BOOK section as follows:

' (scott WITHIN AUTHOR) WITHIN BOOK'

Querying Within Field Sections

The syntax for querying within a field section is the same as querying within a zone
section. The syntax for most of the examples given in the previous section, "Querying
Within Zone Sections", apply to field sections.

However, field sections behave differently from zone sections in terms of

= Visibility: Make text within a field section invisible.

= Repeatability: WITHIN queries cannot distinguish repeated field sections.
= Nestability: You cannot enter a nested WITHIN query with a field section.

The following sections describe these differences.

Visible Flag in Field Sections

When a field section is created with the visible flag set to FALSE in CTX_DDL.ADD_
FIELD_SECTION, the text within a field section can only be queried using the WITHIN
operator.

For example, assume that TITLE is a field section defined with visible flag set to FALSE.
Then the query dog without the WITHIN operator will not find a document containing;:

Oracle Text CONTAINS Query Operators 3-61

WITHIN

<TITLE>The dog</TITLE> I like my pet.

To find such a document, use the WITHIN operator as follows:
'dog WITHIN TITLE'

Alternatively, set the visible flag to TRUE when you define TITLE as a field section with
CTX_DDL.ADD_FIELD_SECTION.

See Also: "ADD_FIELD_SECTION" in Chapter 7, "CTX_DDL
Package" for more information about creating field sections

Repeated Field Sections

WITHIN queries cannot distinguish repeated field sections in a document. For example,
consider the document with the repeated section <author>:

<author> Charles Dickens </author>

<author> Martin Luther King </author>

Assuming that <author> is defined as a field section, a query such as (charles and
martin) within author returns the document, even though these words occur in separate
tags.

To have WITHIN queries distinguish repeated sections, define the sections as zone
sections.

Nested Field Sections
You cannot enter a nested WITHIN query with field sections. Doing so raises an error.

Querying Within Sentence or Paragraphs

Querying within sentence or paragraph boundaries is useful to find combinations of
words that occur in the same sentence or paragraph. To query sentence or paragraphs,
you must first add the special section to your section group before you index. Do so
with CTX_DDL.ADD_SPECIAL_SECTION.

To find documents that contain dog and cat within the same sentence:

' (dog and cat) WITHIN SENTENCE'

To find documents that contain dog and cat within the same paragraph:

' (dog and cat) WITHIN PARAGRAPH'

To find documents that contain sentences with the word dog but not cat:

' (dog not cat) WITHIN SENTENCE'

Querying Within Attribute Sections

Query within attribute sections when you index with either XML_SECTION_GROUP or
AUTO_SECTION_GROUP as your section group type.

Assume you have an XML document as follows:
<book title="Tale of Two Cities">It was the best of times.</book>

Define the section title@book to be the attribute section title. Do so with the CTX_
DLL.ADD_ATTR_SECTION procedure or dynamically after indexing with ALTER INDEX.

3-62 Oracle Text Reference

WITHIN

Notes

Note: When you use the AUTO_SECTION_GROUP to index XML
documents, the system automatically creates attribute sections and
names them in the form attribute@tag.

If you use the XML_SECTION_GROUP, you can name attribute sections
anything with CTX_DDL.ADD_ATTR_SECTION.

To search on Tale within the attribute section title, enter the following query:

'Tale WITHIN title'

Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:

= Regular queries on attribute text do not hit the document unless qualified in a
within clause. Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>
A query on Tale by itself does not produce a hit on the document unless qualified with

WITHIN title@book. (This behavior is like field sections when you set the visible flag
set to false.)

= You cannot use attribute sections in a nested WITHIN query.

= Phrases ignore attribute text. For example, if the original document looked like:
Now is the time for all good <word type="noun"> men </word> to come to the aid.
Then this document would hit on the regular query good men, ignoring the intervening
attribute text.

= WITHIN queries can distinguish repeated attribute sections. This behavior is like
zone sections but unlike field sections. For example, you have a document as
follows:

<book title="Tale of Two Cities">It was the best of times.</book>
<book title="Of Human Bondage">The sky broke dull and gray.</book>

Assume that book is a zone section and book@author is an attribute section. Consider
the query:

' (Tale and Bondage) WITHIN book@author'

This query does not hit the document, because tale and bondage are in different
occurrences of the attribute section book@author.

Section Names

The WITHIN operator requires you to know the name of the section you search. A list of
defined sections can be obtained using the CTX_SECTIONS or CTX_USER_SECTIONS
views.

Section Boundaries

For special and zone sections, the terms of the query must be fully enclosed in a
particular occurrence of the section for the document to satisfy the query. This is not a
requirement for field sections.

Oracle Text CONTAINS Query Operators 3-63

WITHIN

For example, consider the query where bold is a zone section:

' (dog and cat) WITHIN bold'

This query finds:

dog cat

but it does not find:

dogcat

This is because dog and cat must be in the same bold section.
This behavior is especially useful for special sections, where

' (dog and cat) WITHIN sentence'

means find dog and caf within the same sentence.

Field sections on the other hand are meant for non-repeating, embedded metadata
such as a title section. Queries within field sections cannot distinguish between
occurrences. All occurrences of a field section are considered to be parts of a single
section. For example, the query:

(dog and cat) WITHIN title

can find a document like this:
<TITLE>dog</TITLE><TITLE>cat</TITLE>

In return for this field section limitation and for the overlap and nesting limitations,
field section queries are generally faster than zone section queries, especially if the
section occurs in every document, or if the search term is common.

3-64 Oracle Text Reference

4

Special Characters in Oracle Text Queries

This chapter describes the special characters that can be used in Text queries. In
addition, it provides a list of the words and characters that Oracle Text treats as
reserved words and characters.

The following topics are covered in this chapter:
s Grouping Characters
» Escape Characters

» Reserved Words and Characters

4.1 Grouping Characters

The grouping characters control operator precedence by grouping query terms and
operators in a query expression. The grouping characters are:

Table 4-1 Characters for Grouping Query Terms

Grouping Character Description

) The parentheses characters serve to group terms and operators
found between the characters

[1] The bracket characters serve to group terms and operators found
between the characters; however, they prevent penetrations for
the expansion operators (fuzzy, soundex, stem).

The beginning of a group of terms and operators is indicated by an open character
from one of the sets of grouping characters. The ending of a group is indicated by the
occurrence of the appropriate close character for the open character that started the
group. Between the two characters, other groups may occur.

For example, the open parenthesis indicates the beginning of a group. The first close
parenthesis encountered is the end of the group. Any open parentheses encountered
before the close parenthesis indicate nested groups.

4.2 Escape Characters

To query on words or symbols that have special meaning to query expressions such as
and & or | accum, you must escape them. There are two ways to escape characters in a
query expression:

Special Characters in Oracle Text Queries 4-1

Reserved Words and Characters

Table 4-2 Characters for Escaping Query Terms

Escape Character Description

{} Use braces to escape a string of characters or symbols.
Everything within a set of braces in considered part of the
escape sequence.

When you use braces to escape a single character, the escaped
character becomes a separate token in the query.

\ Use the backslash character to escape a single character or
symbol. Only the character immediately following the backslash
is escaped. For example, a query of blue\-green matches
blue-green and blue green.

In the following examples, an escape sequence is necessary because each expression
contains a Text operator or reserved symbol:

'high\-voltage'
'{high-voltage}"

'XY\&Z!
' {XY&Z}!

In the first example, the query matches high-voltage or high voltage.

Note that in the second example, a query on XY&Z will return 'XY Z', 'XY-Z', 'XY*Z,,
and so forth, as well as 'XY&Z'. This is because non-alphabetic characters are treated as
whitespace (so XY&Z is treated as 'XY Z'). To match only XY&Z, you must declare &
as a printjoin. (If you do, however, XY&Z will not match XY & Z'.) For more on
printjoins, see BASIC_LEXER on page 2-30.

Note: If you use braces to escape an individual character within
a word, the character is escaped, but the word is broken into
three tokens.

For example, a query written as high{-}voltage searches for high -
voltage, with the space on either side of the hyphen.

4.2.1 Querying Escape Characters

The open brace { signals the beginning of the escape sequence, and the closed brace }
indicates the end of the sequence. Everything between the opening brace and the
closing brace is part of the escaped query expression (including any open brace
characters). To include the close brace character in an escaped query expression, use

1

To escape the backslash escape character, use \\.

4.3 Reserved Words and Characters

Table 4-3 lists the Oracle Text reserved words and characters that must be escaped
when you want to search them in CONTAINS queries:

Table 4-3 Reserved Words and Characters

Reserved Words Reserved Characters Operator
ABOUT (none) ABOUT

4-2 Oracle Text Reference

Reserved Words and Characters

Table 4-3 (Cont.) Reserved Words and Characters

Reserved Words Reserved Characters Operator

ACCUM , Accumulate

AND & And

BT (none) Broader Term

BTG (none) Broader Term Generic

BTI (none) Broader Term Instance

BTP (none) Broader Term Partitive

EQUIV = Equivalence

FUZZY ? fuzzy

(none) {} escape characters (multiple)

(none) \ escape character (single)

(none) O grouping characters

(none) [] grouping characters

HASPATH (none) HASPATH

INPATH (none) INPATH

MDATA (none) MDATA

MINUS - MINUS

NEAR ; NEAR

NOT ~ NOT

NT (none) Narrower Term

NTG (none) Narrower Term Generic

NTI (none) Narrower Term Instance

NTP (none) Narrower Term Partitive

OR | OR

PT (none) Preferred Term

RT (none) Related Term

(none) $ stem

(none) ! soundex

SQE (none) Stored Query Expression

SYN (none) Synonym

(none) > threshold

TR (none) Translation Term

TRSYN (none) Translation Term Synonym

TT (none) Top Term

(none) * weight

(none) Y% wildcard character
(multiple)

(none) _ wildcard character (single)

Special Characters in Oracle Text Queries 4-3

Reserved Words and Characters

Table 4-3 (Cont.) Reserved Words and Characters

Reserved Words Reserved Characters Operator

WITHIN (none) WITHIN

4-4 Oracle Text Reference

O

CTX_ADM Package

This chapter provides information for using the cTX_aDpM PL/SQL package.

CTX_ADM contains the following stored procedures:

Name Description

MARK_FAILED Changes an index's status from LOADING to FAILED.
RECOVER Cleans up database objects for deleted Text tables.
SET_PARAMETER Sets system-level defaults for index creation.

Note: Only the CTXSYS user can use the procedures in CTX_ADM.

CTX_ADM Package 5-1

MARK_FAILED

MARK_FAILED

Syntax

Example

Use this procedure to change the status of an index from LOADING to FAILED.

Under rare circumstances, if CREATE INDEX or ALTER INDEX fails, an index may be left
with the status LOADING. When an index is in LOADING status, any attempt to recover
using RESUME INDEX is blocked. For this situation, use CTX_ADM.MARK_FAILED to forcibly
change the status from LOADING to FAILED so that you can recover the index with
RESUME INDEX.

You must log on as CTXSYS to run CTX_ADM.MARK_FAILED.

CAUTION: Use CTX_ADM.MARK FAILED with caution. It should only
be used as a last resort and only when no other session is touching
the index. Normally, CTX_ADM.MARK_FAILED does not succeed if
another session is actively building the index with CREATE or ALTER
INDEX. However, index creation or alteration may include windows
of time during which CTX_ADM.MARK_FAILED can succeed, marking
the index as failed even as it is being built by another session.

CTX_ADM.MARK_FAILED works with local partitioned indexes. However, it changes the
status of all partitions to FAILED. Therefore, you should rebuild all index partitions
with ALTER INDEX REBUILD PARTITION PARAMETERS ('RESUME') after using CTX_
ADM.MARK_FAILED. If you run ALTER INDEX PARAMETER ('RESUME') after this operation,
then Oracle resets the index partition status to valid. Oracle does not rebuild the index
partitions that were successfully built before the MARK_FAILED operation.

CTX_ADM.MARK_FATILED (
owner_name in VARCHAR2,
index_name in VARCHAR?2) ;

owner_name
The name of the owner of the index whose status is to be changed.

index_name
The name of the index whose status is to be changed.

begin
CTX_ADM.MARK_FAILED('owner_1', 'index_1');
end;

5-2 Oracle Text Reference

RECOVER

RECOVER

The RECOVER procedure cleans up the Text data dictionary, deleting objects such as
leftover preferences.

Syntax
CTX_ADM.RECOVER;
Example
begin
ctx_adm.recover;
end;

CTX_ADM Package 5-3

SET_PARAMETER

SET_PARAMETER

The SET_PARAMETER procedure sets system-level parameters for index creation.

Syntax

CTX_ADM.SET_PARAMETER (param_name IN VARCHAR2,

param_value IN VARCHAR2);

param_name
Specify the name of the parameter to set, which can be one of the following
parameters:

max_index_memory (maximum memory allowed for indexing)
default_index_memory (default memory allocated for indexing)
log_directory (directory for CTX_OUPUT files)

ctx_doc_key_type (default input key type for CTX_DOC procedures)

file_access_role (default database role name for index creation when using FILE
or URL datastores)

default_datastore (default datastore preference)
default_filter_file (default filter preference for data stored in files)
default_filter_text (default text filter preference)
default_filter_binary (default binary filter preference)
default_section_html (default html section group preference)
default_section_xml (default xml section group preference)
default_section_text (default text section group preference)
default_lexer (default lexer preference)
default_wordlist (default wordlist preference)
default_stoplist (default stoplist preference)
default_storage (default storage preference)
default_ctxcat_lexer
default_ctxcat_stoplist
default_ctxcat_storage
default_ctxcat_wordlist
default_ctxrule_lexer
default_ctxrule_stoplist
default_ctxrule_storage
default_ctxrule_wordlist

See Also: To learn more about the default values for these

parameters, see "System Parameters” on page 2-75 in Chapter 2,
"Oracle Text Indexing Elements"

5-4 Oracle Text Reference

SET_PARAMETER

param_value
Specify the value to assign to the parameter. For max_index_memory and default_
index_memory, the value you specify must have the following syntax:

number [K|M|G]

where K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

For each of the other parameters, specify the name of a preference to use as the default
for indexing.

Example

begin
ctx_adm.set_parameter ('default_lexer', 'my_lexer');
end;

CTX_ADM Package 5-5

SET_PARAMETER

5-6 Oracle Text Reference

6

CTX_CLS Package

This chapter provides reference information for using the CTX_CLS PL/SQL package,
which enables you to perform document classification.

The following procedures are described in this chapter:

Name Description

TRAIN Generates rules that define document categories. Output based
on input training document set.

CLUSTERING Generates clusters for a document collection.

See Also: Oracle Text Application Developer’s Guide for more on
document classification

CTX_CLS Package 6-1

TRAIN

TRAIN

Use this procedure to generate query rules that select document categories. You must
supply a training set consisting of categorized documents. Documents can be in any
format supported by Oracle Text and must belong to one or more categories. This
procedure generates the queries that define the categories and then writes the results
to a table.

You must also have a document table and a category table. The category table must
contain at least two categories.

For example, your document and category tables can be defined as:

create table trainingdoc (
docid number primary key,
text varchar2 (4000));

create table category (
docid trainingdoc (docid),
categoryid number) ;

You can use one of two syntaxes depending on the classification algorithm you need.
The query compatible syntax uses the RULE_CLASSIFIER preference and generates rules
as query strings. The support vector machine syntax uses the SVM_CLASSIFER
preference and generates rules in binary format. The SVM_CLASSIFIER is good for high
classification accuracy, but because its rules are generated in binary format, they
cannot be examined like the query strings generated with the RULE_CLASSIFIER. Note
that only those document ids that appear in both the document table and the category
table will impact RULE_CLASSIFIER and SVM_CLASSIFIER learning.

The CTX_CLS.TRAIN procedure requires that your document table have an associated
context index. For best results, the index should be synchronized before running this
procedure. SVM_CLASSIFIER syntax enables the use of an unpopulated context index,
while query-compatible syntax requires that the context index be populated.

See Also: Oracle Text Application Developer's Guide for more on
document classification

Query Compatible Syntax

The following syntax generates query-compatible rules and is used with the RULE_
CLASSIFIER preference. Use this syntax and preference when different categories are
separated from others by several key words. An advantage of generating your rules as
query strings is that you can easily examine the generated rules. This is different from
generating SVM rules, which are in binary format.

CTX_CLS.TRAIN(

index_name in varchar2,
docid in varchar2,
cattab in varchar2,
catdocid in varchar2,
catid in varchar?,
restab in varchar2,
rescatid in varchar2,
resquery in varchar2,
resconfid in varchar2,

preference in varchar2 DEFAULT NULL
)

6-2 Oracle Text Reference

TRAIN

index_name
Specify the name of the context index associated with your document training set.

docid
Specify the name of the document ID column in the document table. The document
IDs in this column must be unique, and this column must be of datatype NUMBER. The

values for this column must be stored in an unsigned 32-bit integer and must be in the
range 0-4294967295.

cattab
Specify the name of the category table. You must have SELECT privilege on this table.

catdocid

Specify the name of the document ID column in the category table. The document ids
in this table must also exist in the document table. This column must a NUMBER. The
values for this column must be stored in an unsigned 32-bit integer and must be in the
range 0-4294967295.

catid

Specify the name of the category ID column in the category table. This column must a
NUMBER. The values for this column must be stored in an unsigned 32-bit integer and
must be in the range 0-4294967295.

restab
Specify the name of the result table. You must have INSERT privilege on this table.

rescatid

Specify the name of the category ID column in the result table. This column must a
NUMBER. The values for this column must be stored in an unsigned 32-bit integer and
must be in the range 0-4294967295.

resquery
Specify the name of the query column in the result table. This column must be
VARACHAR2, CHAR CLOB, NVARCHAR2, or NCHAR

The queries generated in this column connects terms with AND or NOT operators, such
as:

'TL & T2 ~ T3

Terms can also be theme tokens and be connected with the ABOUT operator, such as:

'about (T1) & about(T2) ~ about(T3)'
Generated rules also support WITHIN queries on field sections.

resconfid

Specify the name of the confidence column in result table. This column contains the
estimated probability from training data that a document is relevant if that document
satisfies the query.

preference
Specify the name of the preference. For classifier types and attributes, see "Classifier
Types" on page 2-68 in Chapter 2, "Oracle Text Indexing Elements".

CTX_CLS Package 6-3

TRAIN

Syntax for Support Vector Machine Rules

Example

The following syntax generates support vector machine (SVM) rules with the SVM_
CLASSIFIER preference. This preference generates rules in binary format. Use this

syntax when your application requires high classification accuracy.

CTX_CLS.TRAIN (
index_name in varchar2,

docid in varchar2,
cattab in varchar2,
catdocid in varchar2,
catid in varchar2,
restab in varchar2,

preference in varchar2);

index_name
Specify the name of the text index.

docid
Specify the name of docid column in document table.

cattab
Specify the name of category table.

catdocid
Specify the name of docid column in category table.

catid
Specify the name of category ID column in category table.

restab
Specify the name of result table.

The result table has the following format:

Column Name Datatype Description

CAT_ID NUMBER The ID of the category.

TYPE NUMBER (3) NOT NULL 0 for the actual rule or catid;
1 for other.

RULE BLOB The returned rule.

preference

Specify the name of user preference. For classifier types and attributes, see "Classifier

Types" on page 2-68 in Chapter 2, "Oracle Text Indexing Elements".

The CTX_CLS.TRAIN procedure is used in supervised classification. For an extended

example, see Oracle Text Application Developer’s Guide.

6-4 Oracle Text Reference

CLUSTERING

CLUSTERING

Use this procedure to cluster a collection of documents. A cluster is a group of
documents similar to each other in content.

A clustering result set is composed of document assignments and cluster descriptions:

= A document assignment result set shows how relevant each document is to all
generated leaf clusters.

= A cluster description result set contains information about what topic a cluster is
about. This result set identifies the cluster and contains cluster description text, a
suggested cluster label, and a quality score for the cluster.

Cluster output is hierarchical. Only leaf clusters are scored for relevance to documents.
Producing more clusters requires more computing time. Indicate the upper limit for
generated clusters with the CLUSTER_NUM attribute of the KMEAN_CLUSTERING cluster
type (see "Cluster Types" on page 2-70 in this chapter).

There are two versions of this procedure: one with a table result set, and one with an
in-memory result set.

Clustering is also known as unsupervised classification.

See Also: For more information about clustering and relevant
preferences, see Cluster Types on page 2-70 in Chapter 2, "Oracle
Text Indexing Elements", as well as the Oracle Text Application
Developer’s Guide

Syntax: Table Result Set

ctx_cls.clustering (

index_name IN VARCHAR2,

docid IN VARCHAR2,

doctab_name IN VARCHAR2,

clstab_name IN VARCHAR2,

pref_name IN VARCHAR2 DEFAULT NULL
)i

index_name
Specify the name of the context index on collection table.

docid
Specify the name of document ID column of the collection table.

doctab_name
Specify the name of document assignment table. This procedure creates the table with
the following structure:

doc_assign(
docid number,
clusterid number,
score number

)i

Column Description

DOCID Document ID to identify document.

CTX_CLS Package 6-5

CLUSTERING

Column Description

CLUSTERID ID of a leaf cluster associated with this document. If CLUSTERID is -1,
then the cluster contains "miscellaneous” documents; for example,
documents that cannot be assigned to any other cluster category.

SCORE The associated score between the document and the cluster.

If you require more columns, then create the table before you call this procedure.

clstab_name
Specify the name of the cluster description table. This procedure creates the table with
the following structure:

cluster_desc(
clusterid NUMBER,
descript VARCHAR2 (4000),
label VARCHAR2(200),
sze NUMBER,
quality_score NUMBER,
parent NUMBER

)i

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then the cluster
contains "miscellaneous” documents; for example, documents
that cannot be assigned to any other cluster category.

DESCRIPT String to describe the cluster.

LABEL A suggested label for the cluster.

SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number indicates

greater coherence.

PARENT The parent cluster ID. Zero means no parent cluster.

If you require more columns, then create the table before you call this procedure.

pref_name
Specify the name of the preference.

Syntax: In-Memory Result Set

Put the result set into in-memory structures for better performance. Two in-memory
tables are defined in CTX_CLS package for document assignment and cluster
description respectively.

CTX_CLS.CLUSTERING (

index_name IN VARCHAR2,
docid IN VARCHAR2,
dids IN DOCID_TAB,

doctab_name IN OUT NOCOPY DOC_TAB,

clstab_name IN OUT NOCOPY CLUSTER_TAB,

pref_name IN VARCHAR2 DEFAULT NULL
)i

index_name
Specify the name of context index on the collection table.

6-6 Oracle Text Reference

CLUSTERING

docid
Specify the document ID column of the collection table.

dids
Specify the name of the in-memory docid_tab.

TYPE docid_tab IS TABLE OF number INDEX BY BINARY_INTEGER;

doctab_name
Specify name of the document assignment in-memory table. This table is defined as
follows:

TYPE doc_rec IS RECORD (
docid NUMBER,
clusterid NUMBER,
score NUMBER
)
TYPE doc_tab IS TABLE OF doc_rec INDEX BY BINARY_ INTEGER;

Column Description
DOCID Document ID to identify document.
CLUSTERID ID of a leaf cluster associated with this document. If CLUSTERID is -1,

then the cluster contains "miscellaneous" documents; for example,
documents that cannot be assigned to any other cluster category.

SCORE The associated score between the document and the cluster.

cls_tab
Specify the name of cluster description in-memory table.

TYPE cluster_rec IS RECORD (
clusterid NUMBER,
descript VARCHAR2 (4000),
label VARCHAR2(200),
sze NUMBER,
quality_score NUMBER,
parent NUMBER
)i
TYPE cluster_tab IS TABLE OF cluster_rec INDEX BY BINARY_ INTEGER;

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then the cluster
contains "miscellaneous" documents; for example, documents that
cannot be assigned to any other cluster category.

DESCRIPT String to describe the cluster.

LABEL A suggested label for the cluster.

SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number indicates greater
coherence.

PARENT The parent cluster ID. Zero means no parent cluster.

pref_name

Specify the name of the preference. For cluster types and attributes, see Cluster Types
in Chapter 2, "Oracle Text Indexing Elements".

CTX_CLS Package 6-7

CLUSTERING

Example

See Also: The Oracle Text Application Developer’s Guide for an
example of using clustering

6-8 Oracle Text Reference

7

CTX_DDL Package

This chapter provides reference information for using the CTX_DDL PL/SQL package to
create and manage the preferences, section groups, and stoplists required for Text

indexes.

CTX_DDL contains the following stored procedures and functions:

Name

Description

ADD_ATTR_SECTION
ADD_FIELD_SECTION

ADD_INDEX
ADD_MDATA
ADD_MDATA_COLUMN
ADD_MDATA_SECTION
ADD_NDATA_SECTION
ADD_SDATA_COLUMN
ADD_SDATA_SECTION
ADD_SPECIAL_SECTION
ADD_STOPCLASS
ADD_STOP_SECTION
ADD_STOPTHEME
ADD_STOPWORD
ADD_SUB_LEXER
ADD_ZONE_SECTION

COPY_POLICY
CREATE_INDEX_SET
CREATE_POLICY
CREATE_PREFERENCE

CREATE_SECTION_GROUP

CREATE_SHADOW_INDEX

Adds an attribute section to an XML section group.

Creates a field section and assigns it to the specified
section group.

Adds an index to a catalog index preference.

Changes the MDATA value of a document.

Maps a FILTER BY column to the specified MDATA section.
Adds an MDATA metadata section to a document.

Adds an NDATA section to a document.

Maps a FILTER BY column to the specified SDATA section.
Adds an SDATA structured data section to a document.
Adds a special section to a section group.

Adds a stopclass to a stoplist.

Adds a stop section to an automatic section group.
Adds a stoptheme to a stoplist.

Adds a stopword to a stoplist.

Adds a sub-lexer to a multi-lexer preference.

Creates a zone section and adds it to the specified
section group.

Creates a copy of a policy.

Creates an index set for CTXCAT index types.
Creates a policy to use with ORA: CONTAINS ().
Creates a preference in the Text data dictionary.
Creates a section group in the Text data dictionary.

Creates a policy for the passed-in index. For
non-partitioned index, also creates an index table.

CTX_DDL Package 7-1

Name

Description

CREATE_STOPLIST
DROP_INDEX_SET
DROP_POLICY
DROP_PREFERENCE
DROP_SECTION_GROUP
DROP_SHADOW_INDEX
DROP_STOPLIST
EXCHANGE_SHADOW_INDEX
OPTIMIZE_INDEX
POPULATE_PENDING

RECREATE_INDEX_ONLINE
REMOVE_INDEX
REMOVE_MDATA
REMOVE_SECTION
REMOVE_STOPCLASS
REMOVE_STOPTHEME
REMOVE_STOPWORD
REMOVE_SUB_LEXER
REPLACE_INDEX_METADATA
SET_ATTRIBUTE
SYNC_INDEX
UNSET_ATTRIBUTE
UPDATE_POLICY

Creates a stoplist.

Drops an index set.

Drops a policy.

Deletes a preference from the Text data dictionary.
Deletes a section group from the Text data dictionary.
Drops a shadow index.

Drops a stoplist.

Swaps the shadow index metadata and data.
Optimizes the index.

Populates the pending queue with every rowid in the
base table or table partition.

Recreates the passed-in index.

Removes an index from a CTXCAT index preference.
Removes MDATA values from a document.

Deletes a section from a section group.

Deletes a stopclass from a stoplist.

Deletes a stoptheme from a stoplist.

Deletes a stopword from a stoplist.

Deletes a sub-lexer from a multi-lexer preference.
Replaces metadata for local domain indexes.

Sets a preference attribute.

Synchronizes the index.

Removes a set attribute from a preference.

Updates a policy.

7-2 Oracle Text Reference

ADD_ATTR_SECTION

ADD_ATTR_SECTION

Syntax

Examples

Adds an attribute section to an XML section group. This procedure is useful for
defining attributes in XML documents as sections. This enables you to search XML
attribute text with the WITHIN operator.

Note: When you use AUTO_SECTION_GROUP, attribute sections are
created automatically. Attribute sections created automatically are
named in the form tag@attribute.

CTX_DDL.ADD_ATTR_SECTION (

group_name in varchar?2,
section_name in varchar?,
tag in varchar?) ;

group_name
Specify the name of the XML section group. You can add attribute sections only to
XML section groups.

section_name
Specify the name of the attribute section. This is the name used for WITHIN queries on
the attribute text.

The section name you specify cannot contain the colon (:), comma (,), or dot ()
characters. The section name must also be unique within group_name. Section names
are case-insensitive.

Attribute section names can be no more than 64 bytes long.

tag
Specify the name of the attribute in tag@attr form. This parameter is case-sensitive.

Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP and
define the attribute section as follows:

begin

ctx_ddl.create_section_group ('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'BOOK@TITLE');
end;

When you define the TITLE attribute section as such and index the document set, you
can query the XML attribute text as follows:

'Cities within booktitle'

CTX_DDL Package 7-3

ADD_FIELD_SECTION

ADD_FIELD_SECTION

Creates a field section and adds the section to an existing section group. This enables
field section searching with the WITHIN operator.

Field sections are delimited by start and end tags. By default, the text within field
sections are indexed as a sub-document separate from the rest of the document.

Unlike zone sections, field sections cannot nest or overlap. As such, field sections are
best suited for non-repeating, non-overlapping sections such as TITLE and AUTHOR
markup in e-mail- or news-type documents.

Because of how field sections are indexed, WITHIN queries on field sections are
usually faster than WITHIN queries on zone sections.

Syntax
CTX_DDL.ADD_FIELD_SECTION (
group_name in varchar?2,
section_name in varchar2,
tag in varchar?,
visible in boolean default FALSE

)i

group_name

Specify the name of the section group to which section_name is added. You can add
up to 64 field sections to a single section group. Within the same group, section zone
names and section field names cannot be the same.

section_name

Specify the name of the section to add to the group_name. Use this name to identify the
section in queries. Avoid using names that contain non-alphanumeric characters such
as _, because these characters must be escaped in queries. Section names are
case-insensitive.

Within the same group, zone section names and field section names cannot be the
same. The terms Paragraph and Sentence are reserved for special sections.

Section names need not be unique across tags. You can assign the same section name
to more than one tag, which makes details transparent to searches.

tag
Specify the tag that marks the start of a section. For example, if the tag is <H1>, then
specify H1. The start tag you specify must be unique within a section group.

If group_name is an HTML_SECTION_GROUP, then you can create field sections for the
META tag's NAME/CONTENT attribute pairs. To do so, specify tag as meta@namevalue
where namevalue is the value of the NAME attribute whose CONTENT attribute is to be
indexed as a section. Refer to the example "Creating Sections for <META> Tags" on
page 7-5.

Oracle Text knows what the end tags look like from the group_type parameter you
specify when you create the section group.

visible
Specify TRUE to make the text visible within the rest of the document.

By default the visible flag is FALSE. This means that Oracle Text indexes the text
within field sections as a sub-document separate from the rest of the document.

7-4 Oracle Text Reference

ADD_FIELD_SECTION

Examples

Limitations

However, you can set the visible flag to TRUE if you want text within the field section to
be indexed as part of the enclosing document.

Visible and Invisible Field Sections

The following example defines a section group basicgroup of the BASIC_SECTION_
GROUP type. It then creates a field section in basicgroup called Author for the <A> tag. It
also sets the visible flag to FALSE:

begin

ctx_ddl.create_section_group ('basicgroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_field section('basicgroup', 'Author', 'A', FALSE);
end;

Because the Author field section is not visible, to find text within the Author section,
you must use the WITHIN operator as follows:

' (Martin Luther King) WITHIN Author'

A query of Martin Luther King without the WITHIN operator does not return instances of

this term in field sections. To query text within field sections without specifying
WITHIN, you must set the visible flag to TRUE when you create the section as follows:

begin
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', TRUE);
end;

Creating Sections for <META> Tags
When you use the HTML._SECTION_GROUP, you can create sections for META tags.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a field section that indexes the CONTENT attribute for the <META
NAME="author"> tag:

begin

ctx_ddl.create_section_group ('myhtmlgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_field_section('myhtmlgroup', 'author', 'METAGAUTHOR');
end

After indexing with section group mygroup, query the document as follows:

'ken WITHIN author'

Nested Sections

Field sections cannot be nested. For example, if you define a field section to start with
<TITLE> and define another field section to start with <F00>, the two sections cannot be
nested as follows:

<TITLE> dog <FO0O> cat </F00> </TITLE>

To work with nested section define them as zone sections.

CTX_DDL Package 7-5

ADD_FIELD_SECTION

Repeated Sections

Repeated field sections are allowed, but WITHIN queries treat them as a single section.
The following is an example of repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query (dog and cat) within title returns the document, even though these words
occur in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

Related Topics
"WITHIN" on page 3-60

"Section Group Types" on page 2-66
"CREATE_SECTION_GROUP" on page 7-38
"ADD_ZONE_SECTION" on page 7-28
"ADD_SPECIAL_SECTION" on page 7-18
"REMOVE_SECTION" on page 7-67
"DROP_SECTION_GROUP" on page 7-48

7-6 Oracle Text Reference

ADD_INDEX

ADD_INDEX

Syntax

Example

Use this procedure to add a sub-index to a catalog index preference. Create this
preference by naming one or more columns in the base table.

Because you create sub-indexes to improve the response time of structured queries, the
column you add should be used in the structured_query clause of the CATSEARCH
operator at query time.

CTX_DDL.ADD_INDEX (set_name in varchar2,
column_list varchar2,
storage_clause varchar2);

set_name
Specify the name of the index set.

column_list

Specify a comma separated list of columns to index. At index time, any column listed
here cannot have a NULL value in any row in the base table. If any row is NULL
during indexing, then an error is raised.

Always ensure that your columns have non-NULL values before and after indexing.

storage_clause
Specify a storage clause.

Consider a table called AUCTION with the following schema:

create table auction(
item_id number,

title varchar2(100),
category_id number,
price number,
bid_close date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on category_id. Results must be sorted based on bid_close.

You can create a catalog index to support the different types of structured queries a
user might enter.

To create the indexes, first create the index set preference then add the required
indexes to it:

begin
ctx_ddl.create_index_set ('auction_iset');
ctx_ddl.add_index('auction_iset', 'bid_close');
ctx_ddl.add_index('auction_iset', 'category_id, bid_close');
end;

Create the combined catalog index with CREATE INDEX as follows:

create index auction_titlex on AUCTION(title) indextype is CTXCAT parameters
('index set auction_iset');

CTX_DDL Package 7-7

ADD_INDEX

Querying
To query the title column for the word pokemon, enter regular and mixed queries as
follows:
select * from AUCTION where CATSEARCH(title, 'pokemon',K NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'category_ id=99 order by
bid_close desc')> 0;

Notes
VARCHAR2 columns in the column list of a CTXCAT index of an index set cannot exceed
30 bytes.

Related Topic

"REMOVE_INDEX" on page 7-65

7-8 Oracle Text Reference

ADD_MDATA

ADD_MDATA

Syntax

Use this procedure to change the metadata of a document that has been specified as an
MDATA section. After this call, MDATA queries involving the named MDATA value will find
documents with the given MDATA value.

There are two versions of CTX_DDL.ADD_MDATA: one for adding a single metadata value
to a single rowid, and one for handing multiple values, multiple rowids, or both.

CTX_DDL.ADD_MDATA is transactional; it takes effect immediately in the calling session,
can be seen only in the calling session, can be reversed with a ROLLBACK command, and
must be committed to take permanent effect.

Use CTX_DDL.REMOVE_MDATA to remove metadata values from already-indexed
documents. Only the owner of the index is allowed to call ADD_MDATA and REMOVE_
MDATA.

This is the syntax for adding a single value to a single rowid:

CTX_DDL.ADD_MDATA (

1dx_name IN VARCHAR2,
section_name IN VARCHAR2,
mdata_value IN VARCHAR2,
mdata_rowid IN VARCHAR2,
[part_name] IN VARCHAR2]
)i
idx_name

Name of the text index that contains the named rowid.

section_name
Name of the MDATA section.

mdata_value
The metadata value to add to the document.

mdata_rowid
The rowid to which to add the metadata value.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and
must be NULL for global, non-partitioned indexes.

This is the syntax for handling multiple values, multiple rowids, or both. This version
is more efficient for large numbers of new values or rowids.

CTX_DDL.ADD_MDATA (

1dx_name IN VARCHAR2,
section_name IN VARCHAR2,
mdata_values SYS.ODCIVARCHAR2LIST,
mdata_rowids SYS.ODCIRIDLIST,
[part_name] IN VARCHAR2]

)i

idx_name

Name of the text index that contains the named rowids.

CTX_DDL Package 7-9

ADD_MDATA

Example

Notes

Related Topics

section_name
Name of the MDATA section.

mdata_values
List of metadata values. If a metadata value contains a comma, the comma must be
escaped with a backslash.

mdata_rowids
The rowids to which to add the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and
must be NULL for global, non-partitioned indexes.

This example updates a single value:

select rowid from mytab where contains(text, 'MDATA (sec, value')>0;
No rows returned

exec ctx_ddl.add_mdata('my_index', 'sec', 'value', 'ABC');

select rowid from mytab where contains(text, 'MDATA(sec, value')>0;
ROWID

This example updates multiple values:

begin

ctx_ddl.add_mdata('my_index', 'sec',
sys.odcivarchar2list('valuel', 'value2', 'value3'),
sys.odciridlist ('ABC', 'DEF'));

end;

This is equivalent to:

begin

ctx_ddl.add_mdata('my_index', 'sec', 'valuel', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'valuel', 'DEF');
ctx_ddl.add_mdata('my_index', 'sec', 'value2', 'ABC');

ctx_ddl.add_mdata('my_index', 'sec', 'value3', 'ABC'
ctx_ddl.add_mdata('my_index', 'sec', 'value3', 'DEF'
end;

()
()
()
ctx_ddl.add_mdata('my_index', 'sec', 'value2', 'DEF');
()
()

If a rowid is not yet indexed, CTX_DDL . ADD.MDATA completes without error, but an error
is logged in CTX_USER_INDEX_ERRORS.

These updates are updates directly on the index itself, not on the actual contents stored
in the base table. Therefore, they will not survive when the Text index is rebuilt.

See also "ADD_MDATA_SECTION" on page 7-12; "REMOVE_MDATA" on page 7-66;
"MDATA" on page 3-28; as well as the Section Searching chapter of the Oracle Text
Application Developer's Guide.

7-10 Oracle Text Reference

ADD_MDATA_COLUMN

ADD_MDATA_COLUMN

Syntax

Restrictions

Notes

Related Topics

Use this procedure to map the FILTER BY column named in column_name to the MDATA
section named in section_name.

The syntax is as follows:

CTX_DDL.ADD_MDATA_COLUMN (

group_name IN VARCHAR2,
section_name IN VARCHAR2,
column_name IN VARCHAR2,

)i

group_name
Name of the group that contains the section.

section_name
Name of the MDATA section.

column_name
Name of the FILTER BY column to add to the MDATA section.

MDATA sections that are created with CTX_DDL.ADD_MDATA COLUMN cannot have their
values changed using CTX_DDL.ADD_MDATA or CTX_DDL.REMOVE_MDATA. Doing so will
result in errors being returned. The section values must be updated using SQL.

= The stored datatype for MDATA sections is text. Therefore, the value of the FILTER
BY column is converted to text during indexing. For non-text datatypes, the
FILTER BY columns are normalized to an internal format during indexing. If the

section is queried with an MDATA operator, then the MDATA query string will also be
normalized to the internal format before processing.

When a FILTER BY column is mapped as MDATA, the cost-based optimizer in Oracle
Text tries to avoid using the Oracle Text composite domain index to process range
predicate(s) on that FILTER BY column. This is because range predicates on MDATA

FILTER BY columns are processed less efficiently than if they were declared as
SDATA. For this reason, you should not add a FILTER BY column as MDATA if you
plan to do range searches on the column.

"MDATA" on page 3-28
"ADD_MDATA_SECTION" on page 7-12
"REMOVE_MDATA" on page 7-66
"ADD_SDATA_COLUMN" on page 7-14

See Also: Chapter 8, "Searching Document Sections in Oracle Text"
in Oracle Text Application Developer’s Guide

CTX_DDL Package 7-11

ADD_MDATA_SECTION

ADD_MDATA_SECTION

Syntax

Example

Related Topics

Use this procedure to add an MDATA section, with an accompanying value, to an
existing section group. MDATA sections cannot be added to Null Section groups, Path
Section groups, or Auto Section groups.

Section values undergo a simplified normalization:
» Leading and trailing whitespace on the value is removed.
» The value is truncated to 64 bytes.

» The value is indexed as a single value; if the value consists of multiple words, it is
not broken up.

» Case is preserved. If the document is dynamically generated, then implement
case-insensitivity by uppercasing MDATA values and making sure to search only in
uppercase.

Use CTX_DDL.REMOVE_SECTION to remove sections.

CTX_DDL.ADD_MDATA_SECTION (
group_name IN VARCHAR2,
section_name IN VARCHAR2,
tag IN VARCHAR2,

)i

group_name
Name of the section group that will contain the MDATA section.

section_name
Name of the MDATA section.

tag

The value of the MDATA section. For example, if the section is <AUTHOR>, the value could
be Cynthia Kadohata (author of the novel The Floating World). More than one tag can be
assigned to a given MDATA section.

This example creates an MDATA section called auth.

ctx_ddl.create_section_group ('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_mdata_section('htmgroup', 'auth', ‘'author');

"ADD_MDATA" on page 7-9

"REMOVE_MDATA" on page 7-66

"MDATA" on page 3-28

"CREATE_SECTION_GROUP" on page 7-38

The Section Searching chapter of the Oracle Text Application Developer’s Guide

7-12 Oracle Text Reference

ADD_NDATA_SECTION

ADD_NDATA_SECTION

Use this procedure to find matches that are spelled in a similar way. The value of an
NDATA section is extracted from the document text like other sections, but is indexed as
name data. NDATA sections are stored in the CTX_USER_SECTIONS view.

Syntax
CTX_DDL.ADD_NDATA_SECTION (
group_name IN VARCHAR2,
section_name IN VARCHAR2,
tag IN VARCHAR2);
group_name
Name of the group that contains the section.
section_name
Name of the NDATA section.
tag
Name of the tag that marks the start of a section. For example, if the tag is <H1>,
specify H1. The start tag you specify must be unique within a section group.
Notes
NDATA sections support both single and multi-byte data, however, there are character-
and term-based limitations. NDATA section data that is indexed is constrained as
follows:
= number of characters in a single, white space delimited term
511
= number of white space delimited terms
255
= total number of characters, including white spaces
511
NDATA section data that exceeds these constraints are truncated.
Example

The following example defines a section group namegroup of the BASIC_SECTION_GROUP
type. It then creates an NDATA section in namegroup called firstname.

begin
ctx_ddl.create_section_group ('namegroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_ndata_section('namegroup', 'firstname', 'fnamel');
end;

CTX_DDL Package 7-13

ADD_SDATA_COLUMN

ADD_SDATA_COLUMN

Use this procedure to map the FILTER BY or ORDER BY column named in column_name to
the SDATA section named in section_name. By default, all FILTER BY columns are
mapped as SDATA.

Syntax

The syntax is as follows:

CTX_DDL.ADD_SDATA_COLUMN (

)i

group_name IN VARCHAR2,
section_name IN VARCHAR2,
column_name IN VARCHAR2,

group_name
Name of the group that contains the section.

section_name
Name of the SDATA section.

column_name
Name of the FILTER BY column to add to the SDATA section.

Notes

Mapping FILTER BY columns to sections is optional. If no section mapping exists
for a FILTER BY column, then it is mapped to an SDATA section, and the section
name will be the name of the FILTER BY column.

If a section group is not specified during CREATE INDEX of a composite domain
index, then system default section group settings will be used, and a SDATA section
will be created for each of the FILTER BY and ORDER BY columns.

Note: Because section name does not allow certain special characters
and is case insensitive, if the column name is case sensitive or contains
special characters, then an error will be raised. To work around this
problem, you need to map the column to an MDATA or SDATA section
before creating the index. Refer to CTX_DDL.ADD_MDATA _
COLUMN or CTX_DDL.ADD_SDATA_COLUMN in this chapter.

An error will be raised if a column mapped to MDATA also appears in the ORDER BY
column clause.

Column section names are unique to their section group. That is, you cannot have
an MDATA column section named FOO if you already have an MDATA column section
named FOO. Furthermore, you cannot have a field section named F00 if you
already have an SDATA column section named FOO. This is true whether it is
implicitly created (by CREATE INDEX for FILTER BY or ORDER BY clauses) or explicitly
created (by CTX_DDL.ADD_SDATA_ COLUMN).

One section name can only be mapped to one FILTER BY column, and vice versa.
For example, mapping a section to more than one column or mapping a column to
more than one section is not allowed.

7-14 Oracle Text Reference

ADD_SDATA_COLUMN

s Column sections can be added to any type of section group, including the NULL
section group.

s 32 is the maximum number for SDATA sections and columns.

Related Topics
"SDATA" on page 3-44

"ADD_SDATA_SECTION" on page 7-16

See Also: Chapter 8, "Searching Document Sections in Oracle Text"
in Oracle Text Application Developer’s Guide

CTX_DDL Package 7-15

ADD_SDATA_SECTION

ADD_SDATA_SECTION

Syntax

This procedure adds an SDATA section to a section group. By default, all FILTER BY
columns are mapped as SDATA.

The syntax is as follows:

CTX_DDL.ADD_SDATA_SECTION (

group_name IN VARCHAR2,
section_name IN VARCHAR2,
tag IN VARCHAR2,
datatype IN VARCHAR2, default NULL,

)i

group_name
Name of the group that contains the section.

section_name
Name of the SDATA section.

tag
Name of the tag to add to the SDATA section.

datatype

Specifies the stored format for the data, as well as the semantics of comparison in later
use in SDATA operators. The default is VARCHAR2, but if specified must be one of the
following values:

s VARCHAR2
= CHAR

= RAW

= NUMBER

= DATE

The VARCHAR2 datatype stores up to 249 bytes of character data in the database
character set. Values larger than this result in a per-document indexing error. Note that
leading and trailing whitespace are always trimmed from SDATA section values when
extracted by the sectioner. This is different than SDATA columns. Column values are
never trimmed. No lexing is performed on the value from either kind of SDATA.

The CHAR datatype stores up to 249 bytes of character data in the database character
set. Values larger than this result in a per-document indexing error. Note that leading
and trailing whitespace are always trimmed from SDATA section values when extracted
by the sectioner. This is different than SDATA columns. Column values are never
trimmed. No lexing is performed on the value from either kind of SDATA. To be
consistent with SQL, the comparisons of CHAR datatype SDATA values are blank-padded
comparisons.

RAW datatype stores up to 249 bytes of binary data. Values larger than this result in a
per-document indexing error. The value is converted from hexadecimal string
representation. That is, to store a value of 65, the document should look like
<TAG>40</TAG>, and not <TAG>65</TAG> or <TAG>A</TAG>.

7-16 Oracle Text Reference

ADD_SDATA_SECTION

The DATE datatype values must conform to the following format: YYYY-MM-DD or
YYYY-MM-DD HH24:MI:SS. That is, to store a DATE value of "Nov. 24, 2006 10:32pm
36sec”, the document should look like <TAG>2006-11-24 22:32:36</TAG>.

Limitations
= SDATA are single-occurrence only. If multiple instances of an SDATA tag are
encountered in a single document, then later instances supersede the value set by
earlier instances. This means that the last occurrence of an SDATA tag takes effect.
= If no SDATA tag occurs in a given document, then this is treated as an SDATA value
of NULL.
= Empty SDATA tags are treated as NULL values.
= SDATA sections cannot be nested. Sections that are nested inside are ignored.
s 32 is the maximum number for SDATA sections and columns.
Related Topics

"SDATA" on page 3-44
"ADD_SDATA_COLUMN" on page 7-14

See Also: Chapter 8, "Searching Document Sections in Oracle Text"
in Oracle Text Application Developer’s Guide

CTX_DDL Package 7-17

ADD_SPECIAL_SECTION

ADD_SPECIAL_SECTION

Syntax

Example

Adds a special section, either SENTENCE or PARAGRAPH, to a section group. This enables
searching within sentences or paragraphs in documents with the WITHIN operator.

A special section in a document is a section which is not explicitly tagged like zone
and field sections. The start and end of special sections are detected when the index is
created. Oracle Text supports two such sections: paragraph and sentence.

The sentence and paragraph boundaries are determined by the lexer. For example, the
lexer recognizes sentence and paragraph section boundaries as follows:

Table 7-1 Paragraph and Sentence Section Boundaries

Special Section Boundary
SENTENCE WORD/PUNCT/WHITESPACE
WORD/PUNCT/NEWLINE
PARAGRAPH WORD/PUNCT/NEWLINE/WHITESPACE (indented paragraph)

WORD/PUNCT/NEWLINE/NEWLINE (block paragraph)

The punctuation, whitespace, and newline characters are determined by your lexer
settings and can be changed.

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are
indexed.

CTX_DDL.ADD_SPECIAL_SECTION (
group_name IN VARCHAR2,
section_name IN VARCHAR2);

group_name
Specify the name of the section group.

section_name
Specify SENTENCE or PARAGRAPH.

The following example enables searching within sentences within HTML documents:

begin

ctx_ddl.create_section_group ('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');

end;

Add zone sections to the group to enable zone searching in addition to sentence
searching. The following example adds the zone section Headline to the section group
htmgroup:

begin

ctx_ddl.create_section_group ('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
ctx_ddl.add_zone_section('htmgroup', 'Headline', 'H1');

end;

7-18 Oracle Text Reference

ADD_SPECIAL_SECTION

Related Topics

If you are only interested in sentence or paragraph searching within documents and
not interested in defining zone or field sections, then use the NULL_SECTION_GROUP as
follows:

begin

ctx_ddl.create_section_group('nullgroup', 'NULL_SECTION_GROUP');
ctx_ddl.add_special_section('nullgroup', 'SENTENCE');

end;

"WITHIN" on page 3-60

"Section Group Types" on page 2-66
"CREATE_SECTION_GROUP" on page 7-38
"ADD_ZONE_SECTION" on page 7-28
"ADD_FIELD_SECTION" on page 7-4
"REMOVE_SECTION" on page 7-67
"DROP_SECTION_GROUP" on page 7-48

CTX_DDL Package 7-19

ADD_STOPCLASS

ADD_STOPCLASS

Syntax

Example

Related Topics

Adds a stopclass to a stoplist. A stopclass is a class of tokens that is not to be indexed.

CTX_DDL.ADD_STOPCLASS (
stoplist_name in varchar2,
stopclass in varchar2

)i

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the stopclass to be added to stoplist_name. Currently, only the NUMBERS class
is supported. It is not possible to create a custom stopclass.

NUMBERS includes tokens that follow the number pattern: digits, numgroup, and numjoin
only. Therefore, 123ABC is not a number, nor is A123. These are labeled as MIXED. $123
is not a number (this token is not common in a text index because non-alphanumerics
become whitespace by default). In the United States, 123.45 is a number, but
123.456.789 is not; in Europe, where numgroup may be ', the reverse is true.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

The following example adds a stopclass of NUMBERS to the stoplist mystop:

begin
ctx_ddl.add_stopclass('mystop', 'NUMBERS');
end;

"CREATE_STOPLIST" on page 7-43
"REMOVE_STOPCLASS" on page 7-68
"DROP_STOPLIST" on page 7-50

7-20 Oracle Text Reference

ADD_STOP_SECTION

ADD_STOP_SECTION

Syntax

Example

Adds a stop section to an automatic section group. Adding a stop section causes the
automatic section indexing operation to ignore the specified section in XML
documents.

Note: Adding a stop section causes no section information to be
created in the index. However, the text within a stop section is
always searchable.

Adding a stop section is useful when your documents contain many low information
tags. Adding stop sections also improves indexing performance with the automatic
section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section
views.

CTX_DDL.ADD_STOP_SECTION (
section_group IN VARCHAR2,
tag IN VARCHAR2) ;

section_group
Specify the name of the automatic section group. If you do not specify an automatic
section group, then this procedure returns an error.

tag
Specify the tag to ignore during indexing. This parameter is case-sensitive. Defining a
stop tag as such also stops the tag's attribute sections, if any.

Qualify the tag with document type in the form (doctype) tag. For example, if you
wanted to make the <f1uff> tag a stop section only within the mydoc document type,
specify (mydoc) £1uff for tag.

Defining Stop Sections

The following example adds a stop section identified by the tag <f1luff> to the
automatic section group myauto:

begin
ctx_ddl.add_stop_section('myauto', 'fluff');
end;

This example also stops any attribute sections contained within <f1uff>. For example,
if a document contained:

<fluff type="computer">

Then the preceding example also stops the attribute section fluff@type.

CTX_DDL Package 7-21

ADD_STOP_SECTION

Doctype Sensitive Stop Sections

The following example creates a stop section for the tag <fluff> only in documents
that have a root element of mydoc:

begin
ctx_ddl.add_stop_section('myauto', '(mydoc)fluff');
end;

Related Topics
"ALTER INDEX" on page 1-2

"CREATE_SECTION_GROUP" on page 7-38

7-22 Oracle Text Reference

ADD_STOPTHEME

ADD_STOPTHEME

Syntax

Example

Related Topics

Adds a single stoptheme to a stoplist. A stoptheme is a theme that is not to be indexed.
In English, query on indexed themes using the ABOUT operator.

CTX_DDL.ADD_STOPTHEME (
stoplist_name in varchar2,
stoptheme in varchar2

)i

stoplist_name
Specify the name of the stoplist.

stoptheme

Specify the stoptheme to be added to stoplist_name. The system normalizes the
stoptheme you enter using the knowledge base. If the normalized theme is more than
one theme, then the system does not process your stoptheme. For this reason, Oracle
recommends that you submit single stopthemes.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

The following example adds the stoptheme banking to the stoplist mystop:

begin
ctx_ddl.add_stoptheme('mystop', 'banking');
end;

"CREATE_STOPLIST" on page 7-43
"REMOVE_STOPTHEME" on page 7-69
"DROP_STOPLIST" on page 7-50
"ABOUT" on page 3-4

CTX_DDL Package 7-23

ADD_STOPWORD

ADD_STOPWORD

Use this procedure to add a single stopword to a stoplist.

To create a list of stopwords, you must call this procedure once for each word.

Syntax
CTX_DDL . ADD_STOPWORD (
stoplist_name in varchar2,
stopword in varchar2,
language in varchar2 default NULL
)i
stoplist_name
Specify the name of the stoplist.
stopword
Specify the stopword to be added.
Language-specific stopwords must be unique across the other stopwords specific to
the language. For example, it is valid to have a German die and an English die in the
same stoplist.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.
language
Specify the language of stopword when the stoplist you specify with stoplist_name is
of type MULTI_STOPLIST. You must specify the globalization support name or
abbreviation of an Oracle Text-supported language.
To make a stopword active in multiple languages, specify ALL for this parameter. For
example, defining ALL stopwords is useful when you have international documents
that contain English fragments that need to be stopped in any language.
An ALL stopword is active in all languages. If you use the multi-lexer, the
language-specific lexing of the stopword occurs, just as if it had been added multiple
times in multiple specific languages.
Otherwise, specify NULL.

Example

Single Language Stoplist

The following example adds the stopwords because, notwithstanding, nonetheless, and
therefore to the stoplist mystop:

begin

ctx_ddl.add_stopword('mystop', 'because');

ctx_ddl.add_stopword('mystop', 'notwithstanding');
ctx_ddl.add_stopword('mystop', 'nonetheless');

ctx_ddl.add_stopword('mystop', 'therefore');

end;

Multi-Language Stoplist
The following example adds the German word die to a multi-language stoplist:

7-24 Oracle Text Reference

ADD_STOPWORD

begin
ctx_ddl.add_stopword('mystop', 'Die','german');
end;

Note: Add stopwords after you create the index with ALTER INDEX.

Adding An ALL Stopword

The following adds the word the as an ALL stopword to the multi-language stoplist
globallist:

begin
ctx_ddl.add_stopword('globallist', 'the', 'ALL');
end;

Related Topics
"CREATE_STOPLIST" on page 7-43

"REMOVE_STOPWORD" on page 7-70
"DROP_STOPLIST" on page 7-50

"ALTER INDEX" on page 1-2

Appendix E, "Oracle Text Supplied Stoplists"

CTX_DDL Package 7-25

ADD_SUB_LEXER

ADD_SUB_LEXER

Restrictions

Syntax

Add a sub-lexer to a multi-lexer preference. A sub-lexer identifies a language in a
multi-lexer (multi-language) preference. Use a multi-lexer preference when you want
to index more than one language.

The following restrictions apply to using CTX_DDL.ADD_SUB_LEXER:

s The invoking user must be the owner of the multi-lexer or CTXSYS.

= The lexer_name parameter must name a preference which is a multi-lexer lexer.

= Alexer for default must be defined before the multi-lexer can be used in an index.
s The sub-lexer preference owner must be the same as multi-lexer preference owner.
s The sub-lexer preference must not be a multi-lexer lexer.

= A sub-lexer preference cannot be dropped while it is being used in a multi-lexer
preference.

= CTX_DDL.ADD_SUB_LEXER records only a reference. The sub-lexer values are copied
at create index time to index value storage.

CTX_DDL.ADD_SUB_LEXER (

lexer_name in varchar2,

language in varchar2,

sub_lexer in varchar2,

alt_value in varchar2 default null
)i

lexer_name
Specify the name of the multi-lexer preference.

language
Specify the globalization support language name or abbreviation of the sub-lexer. For
example, specify JAPANESE or JA for Japanese.

The sub-lexer you specify with sub_lexer is used when the language column has a
value case-insensitive equal to the globalization support name of abbreviation of
language.

Specify DEFAULT to assign a default sub-lexer to use when the value of the language
column in the base table is null, invalid, or unmapped to a sub-lexer. The DEFAULT
lexer is also used to parse stopwords.

If a sub-lexer definition for language already exists, then it is replaced by this call.

sub_lexer
Specify the name of the sub-lexer to use for this language.

alt_value
Optionally specify an alternate value for language.

If you specify DEFAULT for language, then you cannot specify an alt_value.

7-26 Oracle Text Reference

ADD_SUB_LEXER

Example

The alt_value is limited to 30 bytes and cannot be a globalization support language
name, abbreviation, or DEFAULT.

This example shows how to create a multi-language text table and how to set up the
multi-lexer to index the table.

Create the multi-language table with a primary key, a text column, and a language
column as follows:

create table globaldoc (
doc_id number primary key,
lang varchar2(3),
text clob

)i

Assume that the table holds mostly English documents, with an occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers:
one for English, one for German, and one for Japanese as follows:

ctx_ddl.create_preference('english_lexer', 'basic_lexer');
ctx_ddl.set_attribute('english_lexer', 'index_themes', 'yes');
ctx_ddl.set_attribtue('english_ lexer', 'theme_language', 'english');

ctx_ddl.create_preference('german_lexer', 'basic_lexer');
ctx_ddl.set_attribute('german_lexer', 'composite', 'german');
ctx_ddl.set_attribute('german_lexer', 'mixed_case', 'yes');
ctx_ddl.set_attribute('german_lexer', 'alternate_spelling', 'german');

ctx_ddl.create_preference('japanese_lexer', 'japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default:
ctx_ddl.add_sub_lexer('global_lexer', 'default', 'english_lexer');

Add the German and Japanese lexers in their respective languages. Also assume that
the language column is expressed in ISO 639-2, so add those as alternative values.
ctx_ddl.add_sub_lexer('global_lexer', 'german', 'german_lexer', 'ger');
ctx_ddl.add_sub_lexer('global_lexer', 'japanese', 'japanese_lexer', 'jpn');

Create the index globalx, specifying the multi-lexer preference and the language
column in the parameters string as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

CTX_DDL Package 7-27

ADD_ZONE_SECTION

ADD_ZONE_SECTION

Syntax

Examples

Creates a zone section and adds the section to an existing section group. This enables
zone section searching with the WITHIN operator.

Zone sections are sections delimited by start and end tags. The and tags in
HTML, for instance, marks a range of words which are to be rendered in boldface.

Zone sections can be nested within one another, can overlap, and can occur more than
once in a document.

CTX_DDL.ADD_ZONE_SECTION (

group_name in varchar?2,
section_name in varchar2,
tag in varchar?2

)i

group_name
Specify the name of the section group to which section_name is added.

section_name

Specify the name of the section to add to the group_name. Use this name to identify
the section in WITHIN queries. Avoid using names that contain non-alphanumeric
characters such as _, because most of these characters are special must be escaped in
queries. Section names are case-insensitive.

Within the same group, zone section names and field section names cannot be the
same. The terms Paragraph and Sentence are reserved for special sections.

Section names need not be unique across tags. You can assign the same section name
to more than one tag, making details transparent to searches.

tag

Specify the pattern which marks the start of a section. For example, if <H1> is the
HTML tag, specify H1 for tag. The start tag you specify must be unique within a
section group.

Oracle Text knows what the end tags look like from the group_type parameter you
specify when you create the section group.

If group_name is an HTML_SECTION_GROUP, you can create zone sections for the META
tag's NAME/CONTENT attribute pairs. To do so, specify tag as meta@namevalue where
namevalue is the value of the NAME attribute whose CONTENT attributes are to be indexed
as a section. Refer to the example.

If group_name is an XML_SECTION_GROUP, you can optionally qualify tag with a
document type (root element) in the form (doctype) tag. Doing so makes section_
name sensitive to the XML document type declaration. Refer to the example.

Creating HTML Sections

The following example defines a section group called htmgroup of type HTML_SECTION_
GROUP. It then creates a zone section in htmgroup called headline identified by the
<H1> tag:

7-28 Oracle Text Reference

ADD_ZONE_SECTION

Notes

begin

ctx_ddl.create_section_group ('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');

end;

After indexing with section group htmgroup, query within the heading section by
issuing a query as follows:

'Oracle WITHIN heading'

Creating Sections for <META NAME> Tags

You can create zone sections for HTML META tags when you use the HTML_SECTION_
GROUP.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a zone section that indexes all CONTENT attributes for the META tag whose NAME
value is author:

begin

ctx_ddl.create_section_group ('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'author', 'meta@author');
end

After indexing with section group htmgroup, query the document as follows:

'ken WITHIN author'

Creating Document Type Sensitive Sections (XML Documents Only)

You have an XML document set that contains the <book> tag declared for different
document types (DTDs). You want to create a distinct book section for each document

type.
Assume that myDTDname is declared as an XML document type as follows:

<!DOCTYPE myDTDname>
<myDTDname>

(Note: the DOCTYPE must match the top-level tag.)

Within myDTDname, the element <book> is declared. For this tag, create a section named
mybooksec that is sensitive to the tag's document type as follows:

begin

ctx_ddl.create_section_group ('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec', ' (myDTDname)book');
end;

Repeated Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For example,
if <H1> denotes a heading section, they can repeat in the same documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

CTX_DDL Package 7-29

ADD_ZONE_SECTION

Assuming that these zone sections are named Heading, the query Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN Heading
does not.

Overlapping Sections

Zone sections can overlap each other. For example, if and <I> denote two different
zone sections, they can overlap in document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Sections
Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within
sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as
follows in documents doc1 and doc2:

docl:

<bookl> <author>Scott Tiger</author> This is a cool book to read.</bookl>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

' (Scott within author) within bookl'

This query returns only docl.

Related Topics
"WITHIN" on page 3-60

"Section Group Types" on page 2-66
"CREATE_SECTION_GROUP" on page 7-38
"ADD_FIELD_SECTION" on page 7-4
"ADD_SPECIAL_SECTION" on page 7-18
"REMOVE_SECTION" on page 7-67
"DROP_SECTION_GROUP" on page 7-48

7-30 Oracle Text Reference

COPY_POLICY

COPY_POLICY

Creates a new policy from an existing policy or index.

Syntax
ctx_ddl.copy_policy(
source_policy VARCHAR2,
policy_name VARCHAR2);

source_policy
The name of the policy or index being copied.

policy_name
The name of the new policy copy.

The preference values are copied from the source_policy. Both the source policy or
index and the new policy must be owned by the same database user.

CTX_DDL Package 7-31

CREATE_INDEX_SET

CREATE_INDEX_SET

Creates an index set for CTXCAT index types. Name this index set in the parameter
clause of CREATE INDEX when you create a CTXCAT index.

Syntax

CTX_DDL.CREATE_INDEX_SET (set_name in varchar2);

set_name
Specify the name of the index set. Name this index set in the parameter clause of
CREATE INDEX when you create a CTXCAT index.

7-32 Oracle Text Reference

CREATE_POLICY

CREATE_POLICY

Syntax

Example

Creates a policy to use with the CTX_DOC.POLICY_* procedures and the ORA: CONTAINS
function. ORA: CONTAINS is a function you use within an XPATH query expression with
existsNode().

See Also: Oracle XML DB Developer’s Guide

CTX_DDL.CREATE_POLICY (

policy_name IN VARCHAR2,

filter IN VARCHAR2 DEFAULT NULL,
section_group IN VARCHAR2 DEFAULT NULL,
lexer IN VARCHAR2 DEFAULT NULL,
stoplist IN VARCHAR2 DEFAULT NULL,
wordlist IN VARCHAR2 DEFAULT NULL) ;

policy_name
Specify the name for the new policy. Policy names and Text indexes share the same
namespace.

filter
Specify the filter preference to use.

section_group
Specify the section group to use. You can specify any section group that is supported
by CONTEXT index.

lexer
Specify the lexer preference to use. Your INDEX_THEMES attribute must be disabled.

stoplist
Specify the stoplist to use.

wordlist
Specify the wordlist to use.

Create mylex lexer preference named mylex.

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');

ctx_ddl.set_attribute ('mylex', 'index_themes', 'NO');
ctx_ddl.set_attribute ('mylex', 'index_text', 'YES');
end;

Create a stoplist preference named mystop.

begin
ctx_ddl.create_stoplist('mystop', 'BASIC_STOPLIST');
ctx_ddl.add_stopword('mystop', 'because');
ctx_ddl.add_stopword('mystop', 'nonetheless');
ctx_ddl.add_stopword('mystop', 'therefore');

end;

CTX_DDL Package 7-33

CREATE_POLICY

Create a wordlist preference named 'mywordlist'.

begin
ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist', 'FUZZY_MATCH', 'ENGLISH');
ctx_ddl.set_attribute('mywordlist', 'FUZZY_SCORE', '0');
ctx_ddl.set_attribute('mywordlist', 'FUZZY_NUMRESULTS', '5000');
ctx_ddl.set_attribute('mywordlist', 'SUBSTRING_INDEX', 'TRUE');
ctx_ddl.set_attribute('mywordlist', 'STEMMER', 'ENGLISH');

end;

exec ctx_ddl.create_policy('my_policy', NULL, NULL, 'mylex', 'mystop',
'mywordlist');
or

exec ctx_ddl.create_policy(policy name => 'my_policy',
lexer => 'mylex',
stoplist => 'mystop',
wordlist => 'mywordlist');

Then enter the following existsNode () query with your own defined policy:

select id from xmltab
where existsNode(doc, '/book/chapter|[ora:contains (summary, "dog or cat",
"my_policy") >0]', 'smlns:ora="http://xmlns.oracle.com/xdb" ')=1;

Update the policy with the following:

exec ctx_ddl.update_policy(policy_name => 'my_policy', lexer => 'my_new_lex');

Drop the policy with the following:

exec ctx_ddl.drop_policy(policy_name => 'my_policy');

7-34 Oracle Text Reference

CREATE_PREFERENCE

CREATE_PREFERENCE

Syntax

Examples

Creates a preference in the Text data dictionary. Specify preferences in the parameter
string of CREATE INDEX or ALTER INDEX.

Caution: CTX_DDL.CREATE_PREFERENCE does not respect the current
schema as set by ALTER SESSION SET current_schema. Therefore, if you
need to create or delete a preference owned by another user, then you
must explicitly state this, and you must have the CREATE ANY TABLE
system privilege.

CTX_DDL.CREATE_PREFERENCE (preference_name in varchar2,
object_name in varchar2);

preference_name
Specify the name of the preference to be created.

object_name
Specify the name of the preference type.

See Also: For a complete list of preference types and their
associated attributes, see Chapter 2, "Oracle Text Indexing
Elements"

Creating Text-only Index

The following example creates a lexer preference that specifies a text-only index. It
does so by creating a BASIC_LEXER preference called my_lexer with CTX_DDL.CREATE_
PREFERENCE. It then calls CTX_DDL.SET_ATTRIBUTE twice, first specifying YES for
the INDEX_TEXT attribute, then specifying NO for the INDEX_THEMES attribute.

begin

ctx_ddl.create_preference('my_lexer', 'BASIC_LEXER');
ctx_ddl.set_attribute('my_lexer', 'INDEX_TEXT', 'YES');
ctx_ddl.set_attribute('my_lexer', 'INDEX_THEMES', 'NO');
end;

Specifying File Data Storage

The following example creates a data storage preference called mypref that tells the
system that the files to be indexed are stored in the operating system. The example
then uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute of to the directory
/docs.

begin

ctx_ddl.create_preference('mypref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('mypref', 'PATH', '/docs');

end;

See Also: For more information about data storage, see
"Datastore Types" on page 2-2

CTX_DDL Package 7-35

CREATE_PREFERENCE

Creating Master/Detail Relationship

Use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE.
Use CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference. The following
example shows how this is done:

begin

ctx_ddl.create_preference('my_detail_pref', 'DETAIL_DATASTORE');
ctx_ddl.set_attribute('my_detail_pref', 'binary', 'true');
ctx_ddl.set_attribute('my_detail_pref', 'detail_table', 'my_detail');
ctx_ddl.set_attribute('my_detail pref', 'detail_key', ‘'article_id');
ctx_ddl.set_attribute('my_detail pref', 'detail_lineno', 'seq');
ctx_ddl.set_attribute('my_detail_pref', 'detail_text', 'text');

end;

See Also: For more information about master/detail, see
"DETAIL_DATASTORE" on page 2-6

Specifying Storage Attributes

The following examples specify that the index tables are to be created in the foo
tablespace with an initial extent of 1K:

begin
ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
ctx_ddl.set_attribute('mystore', 'I_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'K_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'R_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'S_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'N_TABLE_CLAUSE',

'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'I_INDEX_CLAUSE',

'tablespace foo storage (initial 1K)');
end;

See Also: Storage Types on page 2-64

Creating Preferences with No Attributes

When you create preferences with types that have no attributes, you need only create
the preference, as in the following example which sets the filter to the NULL_FILTER:

begin
ctx_ddl.create_preference('my null_filter', 'NULL_FILTER');
end;

Notes

If s_table_clause is specified for a storage preference in an index without SDATA, then
it has no effect on the index, and the index creation will still succeed.

Related Topics
"SET_ATTRIBUTE" on page 7-73

"DROP_PREFERENCE" on page 7-47
"CREATE INDEX" on page 1-36

7-36 Oracle Text Reference

CREATE_PREFERENCE

"ALTER INDEX" on page 1-2
Chapter 2, "Oracle Text Indexing Elements"

CTX_DDL Package 7-37

CREATE_SECTION_GROUP

CREATE_SECTION_GROUP

Creates a section group for defining sections in a text column.

When you create a section group, you can add to it zone, field, or special sections with
ADD_ZONE_SECTION, ADD_FIELD_SECTION, ADD_MDATA_SECTION, or ADD_
SPECIAL_SECTION.

When you index, name the section group in the parameter string of CREATE INDEX
or ALTER INDEX.

After indexing, query within your defined sections with the WITHIN operator.

Syntax
CTX_DDL.CREATE_SECTION_GROUP (
group_name in varchar?2,

group_type in varchar2
)i

group_name
Specify the section group name to create as [user.]section_group_name. This
parameter must be unique within an owner.

group_type
Specify section group type. The group_type parameter can be one of:

Section Group Preference Description

NULL_SECTION_GROUP Use this group type when you define no sections or when
you define only SENTENCE or PARAGRAPH sections.
This is the default.

BASIC_SECTION_GROUP Use this group type for defining sections where the start

and end tags are of the form <A> and .

Note: This group type dopes not support input such as
unbalanced parentheses, comments tags, and attributes.
Use HTML_SECTION_GROUP for this type of input.

HTML_SECTION_GROUP Use this group type for indexing HTML documents and
for defining sections in HTML documents.

XML_SECTION_GROUP Use this group type for indexing XML documents and for
defining sections in XML documents.

7-38 Oracle Text Reference

CREATE_SECTION_GROUP

Example

Related Topics

Section Group Preference

Description

AUTO_SECTION_GROUP

PATH_SECTION_GROUP

NEWS_SECTION_GROUP

Use this group type to automatically create a zone section
for each start-tag/end-tag pair in an XML document. The
section names derived from XML tags are case sensitive as
in XML.

Attribute sections are created automatically for XML tags
that have attributes. Attribute sections are named in the
form attribute@tag.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section
groups:

You cannot add zone, field, or special sections to an
automatic section group.

Automatic sectioning does not index XML document types
(root elements.) However, you can define stop sections
with document type.

The length of the indexed tags, including prefix and
namespace, cannot exceed 64 bytes. Tags longer than this
are not indexed.

Use this group type to index XML documents. Behaves
like the AUTO_SECTION_GROUP.

The difference is that with this section group you can do
path searching with the INPATH and HASPATH operators.
Queries are also case-sensitive for tag and attribute names.

Use this group for defining sections in newsgroup
formatted documents according to RFC 1036.

The following command creates a section group called htmgroup with the HTML

group type.
begin

ctx_ddl.create_section_group ('htmgroup', 'HTML_SECTION_GROUP');

end;

The following command creates a section group called auto with the AUTO_SECTION_
GROUP group type to be used to automatically index tags in XML documents.

begin

ctx_ddl.create_section_group('auto', 'AUTO_SECTION_GROUP');

end;

"WITHIN" on page 3-60

"Section Group Types" on page 2-66
"ADD_ZONE_SECTION" on page 7-28
"ADD_FIELD_SECTION" on page 7-4
"ADD_MDATA_SECTION" on page 7-12
"ADD_SPECIAL_SECTION" on page 7-18
"REMOVE_SECTION" on page 7-67

CTX_DDL Package 7-39

CREATE_SECTION_GROUP

"DROP_SECTION_GROUP" on page 7-48

7-40 Oracle Text Reference

CREATE_SHADOW_INDEX

CREATE_SHADOW_INDEX

Syntax

Example

Creates index metadata (or policy) for the specified index. If the index is not
partitioned, then it also creates the index tables. This procedure is only supported in
Enterprise Edition of Oracle Database.

The following changes are not supported:

» Transition from non-composite domain index to composite, or changing the
composite domain index columns.

= Rebuild indexes that have partitioned index tables, for example, $I, $P, $K.

Note: For a partitioned index, you must first call this procedure to
create the shadow index metadata. This procedure will not create
index tables. It has no effect on query, DML, sync, or optimize
operations.

CTX_DDL.CREATE_SHADOW_INDEX (
1dx_name IN VARCHAR2,
parameter_string IN VARCHAR2 DEFAULT NULL,
parallel_degree IN NUMBER, DEFAULT 1

)

idx_name
The name of a valid CONTEXT indextype.

parameter_string
For non-partitioned index, the same string as in ALTER INDEX. For partitioned index,
the same string as in ALTER INDEX PARAMETER.

parallel_degree
Reserved for future use. Specify the degree of parallelism. Parallel operation is not
currently supported.

Example 7-1 Scheduled Global Index Recreate (Incremental Rebuild)

In this example, you have the finest control over each stage of RECREATE_INDEX_
ONLINE. Since SYNC_INDEX can take a time limit, you can limit SYNC_INDEX during
non-business hours and incrementally recreate the index.

/* create lexer and original index */

exec ctx_ddl.create_preference('us_lexer', 'basic_lexer');

create index idx on tbl(text) indextype is ctxsys.context
parameters('lexer us_lexer');

/* create a new lexer */

begin
ctx_ddl.create_preference('e_lexer', 'basic_lexer');
ctx_ddl.set_attribute('e_lexer', 'base_letter', 'ves');
ctx_ddl.create_preference('m_lexer', 'multi_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'default', 'us_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'e', 'e_lexer');

CTX_DDL Package 7-41

CREATE_SHADOW_INDEX

Notes

Related Topics

end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* create shadow index */
exec ctx_ddl.create_shadow_index('idx"',
'replace lexer m_lexer language column lang NOPOPULATE') ;

declare
idxid integer;
begin
/* figure out shadow index name */
select idx_id into idxid from ctx_user_indexes
where idx_name ='IDX';
/* populate pending */
ctx_ddl.populate_pending ('RIO$'||idxid) ;
/* time limited sync */
ctx_ddl.sync_index (idx_name =>'RIO$'||idxid,
maxtime =>480);
/* more sync until no pending rows for the shadow index */
end;
/* swap in the shadow index */
exec ctx_ddl.exchange_shadow_index('idx');

The index name for the shadow index is RI0O$index_id. By default it will also populate
index tables for non-partitioned indexes, unless NOPOPULATE is specified in CREATE
INDEX or in ALTER INDEX. For a local partitioned index, it will only create index
metadata without creating the index tables for each partition. Each index can have
only one shadow index.

When building a non-partitioned index online, you can first call this procedure to
create index metadata and index tables. If you specify POPULATE, then this procedure
will populate the index, but will not do swapping. You can schedule the swapping at a
later, preferred time.

If you specify NOPOPULATE, it will only create metadata for the index tables, but will not
populate them. You must perform POPULATE_PENDING (CTX_DDL.POPULATE_
PENDING) to populate the pending queues after running this procedure, and then
sync the indexes. This is referred to as incremental recreate.

Queries are all processed normally when this procedure is running.

If POPULATE is specified, then DML is blocked for a very short time at the beginning of
populate, after which all further DML is logged into an online pending queue and
processed later.

Sync with CTX_DDL.SYNC_INDEX runs normally on the index. OPTIMIZE_INDEX
runs without doing anything, but does not return an error.

See also POPULATE | NOPOPULATE in ALTER INDEX and CREATE INDEX in Chapter 1,
"Oracle Text SQL Statements and Operators", and CTX_DDL.DROP_SHADOW_
INDEX, CTX_DDL.EXCHANGE_SHADOW_INDEX, CTX_DDL.SYNC_INDEX, and
CTX_DDL.POPULATE_PENDING in this chapter.

7-42 Oracle Text Reference

CREATE_STOPLIST

CREATE_STOPLIST

Syntax

Examples

Use this procedure to create a new, empty stoplist. Stoplists can contain words or
themes that are not to be indexed.

You can also create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you index a table that contains documents in
different languages, such as English, German, and Japanese. When you do so, the text
table must contain a language column.

Add either stopwords, stopclasses, or stopthemes to a stoplist using ADD_
STOPWORD, ADD_STOPCLASS, or ADD_STOPTHEME. Specify a stoplist in the
parameter string of CREATE INDEX or ALTER INDEX to override the default stoplist
CTXSYS.DEFAULT_STOPLIST.

CTX_DDL.CREATE_STOPLIST (
stoplist_name IN VARCHAR2,
stoplist_type IN VARCHAR2 DEFAULT 'BASIC_STOPLIST');

stoplist_name
Specify the name of the stoplist to be created.

stoplist_type
Specify BASIC_STOPLIST to create a stoplist for a single language. This is the default.

Specify MULTI_STOPLIST to create a stoplist with language-specific stopwords.

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when using
the multi-lexer.

Note: When indexing a multi-language table with a
multi-language stoplist, the table must have a language column.

Example 7-2 Single Language Stoplist
The following example creates a stoplist called mystop:

begin
ctx_ddl.create_stoplist('mystop', 'BASIC_STOPLIST');
end;

Example 7-3 Multi-Language Stoplist

The following example creates a multi-language stoplist called multistop and then
adds tow language-specific stopwords:

begin

ctx_ddl.create_stoplist('multistop', 'MULTI_STOPLIST');
ctx_ddl.add_stopword('mystop', 'Die','german');
ctx_ddl.add_stopword('mystop', 'Or', 'english');

end;

CTX_DDL Package 7-43

CREATE_STOPLIST

Related Topics
"ADD_STOPWORD" on page 7-24

"ADD_STOPCLASS" on page 7-20
"ADD_STOPTHEME" on page 7-23
"DROP_STOPLIST" on page 7-50

"CREATE INDEX" on page 1-36

"ALTER INDEX" on page 1-2

Appendix E, "Oracle Text Supplied Stoplists"

7-44 Oracle Text Reference

DROP_INDEX_SET

DROP_INDEX_SET

Drops a CTXCAT index set created with CTX_DDL.CREATE_INDEX_SET.

Syntax

CTX_DDL.DROP_INDEX_SET (
set_name IN VARCHAR2
)i

set_name
Specify the name of the index set to drop.

Dropping an index set drops all of the sub-indexes it contains.

CTX_DDL Package 7-45

DROP_POLICY

DROP_POLICY

Drops a policy created with CTX_DDL.CREATE_POLICY.

Syntax

CTX_DDL.DROP_POLICY (
policy_name IN VARCHAR2
)i

policy_name
Specify the name of the policy to drop.

7-46 Oracle Text Reference

DROP_PREFERENCE

DROP_PREFERENCE

The DROP_PREFERENCE procedure deletes the specified preference from the Text data
dictionary. Dropping a preference does not affect indexes that have already been
created using that preference.

Syntax

CTX_DDL . DROP_PREFERENCE (

preference_name IN VARCHAR2

)i

preference_name

Specify the name of the preference to be dropped.
Example

The following example drops the preference my_lexer.

begin

ctx_ddl.drop_preference('my_lexer');

end;
Related Topics

See also CTX_DDL.CREATE_PREFERENCE.

CTX_DDL Package 7-47

DROP_SECTION_GROUP

DROP_SECTION_GROUP

The DROP_SECTION_GROUP procedure deletes the specified section group, as well as all
the sections in the group, from the Text data dictionary.

Syntax

CTX_DDL. DROP_SECTION_GROUP (

group_name IN VARCHAR2

)i

group_name

Specify the name of the section group to delete.
Example

The following example drops the section group htmgroup and all its sections:

begin

ctx_ddl.drop_section_group ('htmgroup') ;

end;
Related Topics

See also CTX_DDL.CREATE_SECTION_GROUP.

7-48 Oracle Text Reference

DROP_SHADOW_INDEX

DROP_SHADOW_INDEX

Syntax

Example

Related Topics

Drops a shadow index for the specified index. When you drop a shadow index, if it is
partitioned, then its metadata and the metadata of all this shadow index's partitions
are dropped. This procedure also drops all the shadow index tables and cleans up any
online pending queue.

CTX_DDL.DROP_SHADOW_INDEX (
1dx_name in VARCHAR2
)i

idx_name
The name of a valid CONTEXT indextype.

The following example drops the shadow index myshadowidx:

begin
ctx_ddl.drop_shadow_index ('myshadowidx') ;
end;

See also CTX_DDL.CREATE_SHADOW_INDEX.

CTX_DDL Package 7-49

DROP_STOPLIST

DROP_STOPLIST

Drops a stoplist from the Text data dictionary. When you drop a stoplist, you must
re-create or rebuild the index for the change to take effect.

Syntax

CTX_DDL.DROP_STOPLIST (stoplist_name in varchar2);

stoplist_name
Specify the name of the stoplist.

Example
The following example drops the stoplist mystop:

begin
ctx_ddl.drop_stoplist('mystop');
end;

Related Topics
See also CTX_DDL.CREATE_STOPLIST.

7-50 Oracle Text Reference

EXCHANGE_SHADOW_INDEX

EXCHANGE_SHADOW_INDEX

Syntax

Example

Notes

This procedure swaps the index (or index partition) metadata and index (or index
partition) data.

For non-partitioned indexes, this procedure swaps both the metadata and the index
data, and processes the online pending queue.

CTX_DDL.EXCHANGE_SHADOW_INDEX (
1dx_name IN VARCHAR2
partition_name IN VARCHAR2 default NULL
)i

idx_name
Specify the name of the CONTEXT indextype.

partition_name
Specify the name of the shadow index partition. May also be NULL.

Example 7-4 Global Index Recreate with Scheduled Swap

This example demonstrates running CTX_DDL . EXCHANGE_SHADOW_INDEX during
non-business hours when query failures and DML blocking can be tolerated.

/* create lexer and original index */

exec ctx_ddl.create_preference('us_lexer', 'basic_lexer');

create index idx on tbl(text) indextype is ctxsys.context
parameters ('lexer us_lexer');

/* create a new lexer */

begin
ctx_ddl.create_preference('e_lexer', 'basic_lexer');
ctx_ddl.set_attribute('e_lexer', 'base_letter', 'yes');
ctx_ddl.create_preference('m lexer', 'multi_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'default', 'us_lexer');
ctx_ddl.add_sub_lexer('m_lexer',6 'e',6 'e_lexer');

end;

/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* recreate index online with the new multip-lexer */
exec ctx_ddl.create_shadow_index('idx',

'replace lexer m_lexer language column lang');
exec ctx_ddl.exchange_shadow_index('idx');

Using EXCHANGE_SHADOW_INDEX with Non-partitioned Indexes

For non-partitioned indexes, this procedure will swap both metadata and index data,
and will process the online pending queue.

CTX_DDL Package 7-51

EXCHANGE_SHADOW_INDEX

Queries will return column not indexed errors when swapping metadata and index data,
but queries are processed normally when processing online pending queue. The
period of errors being raised should be short.

If you specify POPULATE when you create the shadow index, and if many DML
operations have been issued since the creation of the shadow index, then there could
be a large pending queue. However, if you use incremental recreate, that is, specify
NOPOPULATE when you create the shadow index, and you then populate the pending
queue and sync, then the online pending queue is always empty no matter how many
DML operations have occurred since CREATE_SHADOW_INDEX was issued.

When this procedure is running, DML will first fail with an error about index being in
in-progress status. After that DML could be blocked (hang) if there are rows in online
pending queue that need to be reapplied.

Note: When this procedure is running, DML statements will fail with
an error that the index is in "in-progress status." If, when this error
occurs, there are rows in the online pending queue that need to be
reapplied, then the DML could be blocked and hang.

Using EXCHANGE_SHADOW_INDEX with Partitioned Indexes

For partitions that are recreated with NOSWAP: when the index is partitioned, and if
partition_name is a valid index partition, then this procedure will swap the index
partition data and the index partition metadata, and will process the online pending
queue for this partition.

This procedure swaps only one partition at a time. When you run this procedure on
partitions that are recreated with NOSWAP:

= Queries that span multiple partitions will not return consistent results across all
partitions.

= Queries on the partition that is being swapped will return errors.
= Queries on partitions that are already swapped will be based on the new index.

= Queries on the partitions that haven't been swapped will be based on the old
index.

If the partition_name is NULL, then this procedure will swap the index metadata. Run
this procedure as the last step when recreating a local partitioned index online.

Related Topics

See also CTX_DDL.RECREATE_INDEX_ONLINE, CTX_DDL.CREATE_SHADOW _
INDEX, and CTX_DDL.DROP_SHADOW_INDEX.

7-52 Oracle Text Reference

OPTIMIZE_INDEX

OPTIMIZE_INDEX

Use this procedure to optimize the index. Optimize your index after you synchronize
it. Optimizing an index removes old data and minimizes index fragmentation, which
can improve query response time. Querying and DML may proceed while
optimization takes place.

You can optimize in fast, full, rebuild, token, or token-type mode.
= Fast mode compacts data but does not remove rows.
» Full mode compacts data and removes rows.

s Optimize in rebuild mode rebuilds the $1I table (the inverted list table) in its
entirety. Rebuilding an index is often significantly faster than performing a full
optimization, and is more likely to result in smaller indexes, especially if the index
is heavily fragmented.

Rebuild optimization creates a more compact copy of the $I table, and then
switches the original $I table and the copy. The rebuild operation will therefore
require enough space to store the copy as well as the original. (If redo logging is
enabled, then additional space is required in the redo log as well.) At the end of
the rebuild operation, the original $I table is dropped, and the space can be
reused.

Optimize in rebuild mode supports partitioning on the $1I table via the i_table_
clause attribute of the basic_storage preference with the following limitations:

— The i_index_clause must specify using a local btree index if the $I table is
partitioned.

- Partitioning schemes on the token_first, token_last, or token_count
columns are not allowed.

= In token mode, specify a specific token to be optimized (for example, all rows with
documents containing the word elections). Use this mode to optimize index tokens
that are frequently searched, without spending time on optimizing tokens that are
rarely referenced. An optimized token can improve query response time (but only
for queries on that token).

» Token-type optimization is similar to token mode, except that the optimization is
performed on field sections or MDATA sections (for example, sections with an <>
tag). This is useful in keeping critical field or MDATA sections optimal.

A common strategy for optimizing indexes is to perform regular token optimizations
on frequently referenced terms, and to perform rebuild optimizations less frequently.
(Use CTX_REPORT.QUERY_LOG_SUMMARY to find out which queries are made
most frequently.) You can perform full, fast, or token-type optimizations instead of
token optimizations.

Some users choose to perform frequent time-limited full optimizations along with
occasional rebuild optimizations.

Note: Optimizing an index can result in better response time only
if you insert, delete, or update documents in the base table after
your initial indexing operation.

CTX_DDL Package 7-53

OPTIMIZE_INDEX

Using this procedure to optimize the index is recommended over using the ALTER
INDEX statement.

Optimization of a large index may take a long time. To monitor the progress of a
lengthy optimization, log the optimization with CTX_OUTPUT.START_LOG and
check the resultant logfile from time to time.

Note that, unlike serial optimize full, CTX_DDL.OPTIMIZE_INDEX () run with optlevel
of FULL and parallel_degree > 1 is not resumable. That is, it will not resume from
where it left after a time-out or failure.

Note: There is a very small window of time when a query might fail
in CTX_DDL.OPTIMIZE_INDEX REBUILD mode when the $I table is being
swapped with the optimized shadow $I table.

Syntax
CTX_DDL.OPTIMIZE_INDEX (
idx_name IN VARCHARZ,
optlevel IN VARCHAR2,
maxtime IN NUMBER DEFAULT NULL,
token IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
token_type IN NUMBER DEFAULT NULL,

parallel_degree IN NUMBER DEFAULT 1);
)i

idx_name
Specify the name of the index. If you do not specify an index name, then Oracle Text
chooses a single index to optimize.

optlevel

Specify optimization level as a string. You can specify one of the following methods for
optimization:

optlevel value Description

FAST or CTX_DDL.OPTLEVEL_FAST This method compacts fragmented rows. However, old
data is not removed.

FAST optimization is not supported for CTXCAT indexes.
FAST optimization will not optimize $S index table.

FULL or CTX_DDL.OPTLEVEL_FULL In this mode you can optimize the entire index or a
portion of the index. This method compacts rows and
removes old data (deleted rows). Optimizing in full mode
runs even when there are no deleted rows.

Full optimization is not supported for CTXCAT indexes.

REBUILD or CTX_DDL.OPTLEVEL_ This optlevel rebuilds the $I table (the inverted list table)

REBUILD to produce more compact token info rows. Like FULL
optimize, this mode also deletes information pertaining to
deleted rows of the base table.

REBUILD is not Supported for CTCAT, CTXRULE, or CTXXPATH
indexes.

REBUILD is not supported when the $1I table is partitioned.

7-54 Oracle Text Reference

OPTIMIZE_INDEX

optlevel value

Description

TOKEN or CTX_DDL.OPTLEVEL_
TOKEN

TOKEN_TYPE or CTX_
DDL.OPTLEVEL_TOKEN_TYPE

This method lets you specify a specific token to be
optimized. Oracle Text does a full optimization on the
token you specify with token. If no token type is provided,
0 (zero) will be used as the default.

Use this method to optimize those tokens that are searched
frequently.

Token optimization is not supported for CTXCAT, CTXRULE,
and CTXXPATH indexes.

This optlevel optimizes on demand all tokens in the index
matching the input token type.

When optlevel is TOKEN_TYPE, token_type must be
provided.TOKEN_TYPE performs FULL optimize on any
token of the input foken_type. Like a TOKEN optimize,
TOKEN_TYPE optimize does not change the FULL optimize
state, and runs to completion on each invocation.

Token_type optimization is not supported for CTXCAT,
CTXRULE, and CTXXPATH indexes.

The behavior of CTX_DDL.OPTIMIZE_INDEX with respect to the $S index table is as

follows:

Will Optimize

$S Index Table
optlevel value Yes/No Notes

FAST or CTX_DDL.OPTLEVEL_ No
FAST

FULL or CTX_DDL.OPTLEVEL_ Yes
FULL

REBUILD or CTX_ Yes
DDL.OPTLEVEL_REBUILD

TOKEN or CTX_ No
DDL . OPTLEVEL_TOKEN

TOKEN_TYPE or CTX_ Yes
DDL.OPTLEVEL_TOKEN_TYPE

The optimize process will optimize $I table first.
Once $I table optimize is finished, CTX_
DDL.OPTIMIZE_INDEX will continue on to
optimize $S index table.

MAXTIME will also be honored. Once CTX_
DDL.OPTIMIZE_INDEX completes optimizing $S
rows for a given SDATA_ID, it will check MAXTIME
and exit if total elapsed time (including time
taken to optimize $I) exceeds specified MAXTIME.
The next CTX_DDL.OPTIMIZE_INDEX with
optlevel=>'FULL' will pick up where it left off.

$S table optimize will be done in serial.

$S optimize will start after $I rebuild finishes.

$S optimize in this case will be processed the
same way as $S optimize in FULL mode. $S table
is optimized in place, not rebuilt.

Note: If for some reason $S optimize exits
abnormally, then it is recommended that you
use optlevel=>TOKEN_TYPE to optimize $S to
avoid rebuilding the $I table again.

$S table optimize will be done in serial.

You can optimize $S rows for a given SDATA_ID
by setting optlevel => TOKEN_TYPE and the
TOKEN_TYPE parameter to the target SDATA_ID.

CTX_DDL Package 7-55

OPTIMIZE_INDEX

Examples

Notes

maxtime
Specify maximum optimization time, in minutes, for FULL optimize.

When you specify the symbol CTX_DDL.MAXTIME_UNLIMITED (or pass in NULL), the
entire index is optimized. This is the default.

token
Specify the token to be optimized.

part_name
If your index is a local index, then you must specify the name of the index partition to
synchronize otherwise an error is returned.

If your index is a global, non-partitioned index, then specify NULL, which is the
default.

token_type
Specify the token_type to be optimized.

parallel_degree

Specify the parallel degree as a number for parallel optimization. The actual parallel
degree depends on your resources. Note that when using REBUILD, setting parallel_
degree to a value greater than 1 still results in serial execution.

Because the following optlevel values are executed serially, this setting is ignored for
them:

s TOKEN or CTX_DDL.OPTLEVEL_TOKEN

s FAST or CTX_DDL.OPTLEVEL_FAST

The following two examples are equivalent ways of optimizing an index using fast
optimization:
begin
ctx_ddl.optimize_index('myidx', 'FAST');
end;

begin
ctx_ddl.optimize_index('myidx',CTX_DDL.OPTLEVEL_FAST) ;
end;

The following example optimizes the index token Oracle:

begin
ctx_ddl.optimize_index('myidx', 'token', TOKEN=>'Oracle');
end;

To optimize all tokens of field section MYSEC in index MYINDEX:

begin
ctx_ddl.optimize_index('myindex', ctx_ddl.optlevel_ token_type,
token_type=> ctx_report.token_type('myindex', 'field mysec text'));end;

You can run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX at the same time. You
can also run CTX_DDL. SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX with parallelism at
the same time. However, you should not:

7-56 Oracle Text Reference

OPTIMIZE_INDEX

= Run CTX_DDL.SYNC_INDEX with parallelism at the same time as CTX_DDL.OPTIMIZE_
INDEX

= Run CTX_DDL.SYNC_INDEX with parallelism at the same time as CTX_DDL.OPTIMIZE_
INDEX with parallelism.

If you should run one of these combinations, no error is generated; however, one
operation will wait until the other is done.

Related Topics
See also CTX_DDL.SYNC_INDEX and ALTER INDEX.

CTX_DDL Package 7-57

POPULATE_PENDING

POPULATE_PENDING

Syntax

Notes

Related Topics

This procedure populates the pending queue with every rowid in the base table or
table partition. This procedure is only supported for CONTEXT indexes.

This procedure is valuable for large installations that cannot afford to have the
indexing process run continuously, and, therefore, need finer control over creating text
indexes. The preferred method is to create an empty index, place all the rowids into
the pending queue, and build the index through CTX_DDL.SYNC_INDEX.

ctx_ddl.populate_pending (

idx_name IN VARCHAR2,

part_name IN VARCHAR2 DEFAULT NULL
)i

idx_name
Name of the CONTEXT indextype.

part_name
Name of the index partition, if any. Must be provided for local partitioned indexes and
must be NULL for global, non-partitioned indexes.

The SYNC_INDEX is blocked for the duration of the processing. The index unit must be
totally empty (idx_docid_count =0, idx_nextid = 1). The rowids of rows waiting to
be indexed are inserted into table ctxsys.dr$pending. You should ensure that there is
sufficient space in this table to hold the rowids of the base table.

See also SYNC_INDEX, CREATE_SHADOW_INDEX, DROP_SHADOW_INDEX,
EXCHANGE_SHADOW_INDEX, RECREATE_INDEX_ONLINE.

7-58 Oracle Text Reference

RECREATE_INDEX_ONLINE

RECREATE_INDEX_ONLINE

Syntax

Examples

Recreates the specified index, or recreates the passed-in index partition if the index is
local partitioned. For global non-partitioned indexes, this is a one-step procedure. For
local partitioned indexes, this procedure must be run separately on every partition
after first using CREATE_SHADOW_INDEX to create a shadow policy (or metadata).
This procedure is only supported in Enterprise Edition of Oracle Database.

The following changes are not supported:

s Transitioning from non-composite domain index to composite, or changing the
composite domain index columns.

= Rebuilding indexes that have partitioned index tables, for example, SI, $P, $K.

CTX_DDL.RECREATE_INDEX_ONLINE (
1dx_name IN VARCHAR2,
parameter_string IN VARCHAR2 default NULL,
parallel_degree IN NUMBER default 1,
partition_name IN VARCHAR2 default NULL
)

idx_name
The name of a valid CONTEXT indextype.

parameter_string

If the index is a global non-partitioned index, specify the same index-level parameter
string as in ALTER INDEX. Must start with REPLACE, if it is not NULL. Optionally specify
SWAP or NOSWAP. The default is SWAP.

parallel_degree
Reserved for future use. Specify the degree of parallelism. Parallel operation is not
supported in the current release.

partition_name

Specify the name of a valid index partition for a local partitioned index. Otherwise, the
default is NULL. If the index is partitioned, then first pass a partition name, and then
specify the partition-level parameter string for ALTER INDEX REBUILD PARTITION.

Example 7-5 Recreate Simple Global Index

The following example creates an index idx with a BASIC_LEXER-based preference us_
lexer. It then recreates the index with a new MULTI_LEXER based preference m_lexer in
one step. You can use this one step approach when you do not mind that a query
might fail for a small window of time at the end of the operation, and DML might get
blocked at the beginning for a short time and again at the end.

/* create lexer and original index */

exec ctx_ddl.create_preference('us_lexer', 'basic_lexer');

create index idx on tbl(text) indextype is ctxsys.context
parameters ('lexer us_lexer');

/* create a new lexer */

CTX_DDL Package 7-59

RECREATE_INDEX_ONLINE

begin
ctx_ddl.create_preference('e_lexer', 'basic_lexer');
ctx_ddl.set_attribute('e_lexer', 'base_letter', 'ves');
ctx_ddl.create_preference('m_lexer', 'multi_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'default', 'us_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'e','e_lexer');

end;

/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* recreate index online with the new multip-lexer */
exec ctx_ddl.recreate_index_online('idx"',
'replace lexer m_lexer language column lang');

Example 7-6 Local Index Recreate with All-At-Once Swap

The following example creates a local partitioned index idxp with a basic lexer us_
lexer. It has two index partitions idx_pl and idx_p2. It then recreates a local
partitioned index idxp online with partition idx_p1, which will have a new storage
preference new_store. The swapping of the partition metadata and index partition
data occur at the end. In this example, queries spanning multiple partitions return
consistent results across partitions when recreate is in process, except at the end when
EXCHANGE_SHADOW_INDEX is running. The extra space required is the combined
index size of partition idx_pl and idx_p2.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer', 'basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
(partition idx_pl,
partition idx_p2)
parameters ('lexer us_lexer');

/* create new preferences */

begin
ctx_ddl.create_preference('my_store', 'basic_storage');
ctx_ddl.set_attribute('my_store', 'i_table_clause', 'tablespace tbs');

end;

/

begin
ctx_ddl.create_preference('e_lexer', 'basic_lexer');
ctx_ddl.set_attribute('e_lexer', 'base_letter', 'ves');
ctx_ddl.create_preference('m lexer', 'multi_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'default', 'us_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'e', 'e_lexer');

end;

/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer */
exec ctx_ddl.create_shadow_index('idxp', null,
'replace lexer m_lexer language column lang');

/* recreate every index partition online without swapping */
exec ctx_ddl.recreate_index_online('idxp"',
'replace storage my_store NOSWAP', 1, 'idx_pl');
exec ctx_ddl.recreate_index_online('idxp', 'replace NOSWAP', 1, 'idx_p2');

7-60 Oracle Text Reference

RECREATE_INDEX_ONLINE

/* exchange in shadow index partition all at once */
exec ctx_ddl.exchange_shadow_index('idxp',

'idx_pl') /* exchange index partition data*/
exec ctx_ddl.exchange_shadow_index('idxp',

'idx_p2') /* exchange index partition data*/

/* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index('idxp"')

Example 7-7 Local Index Recreate with Per-Partition Swap

This example performs the same tasks as Example 7-6, "Local Index Recreate with
All-At-Once Swap", except that each index partition is swapped in as it is completed.
Queries across all partitions may return inconsistent results in this example.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer', 'basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
(partition idx_pl,
partition idx p2)
parameters ('lexer us_lexer');

/* create new preferences */

begin
ctx_ddl.create_preference('my_store', 'basic_storage');
ctx_ddl.set_attribute('my_store', 'i_table_clause', 'tablespace tbs');

end;

/

begin
ctx_ddl.create_preference('e_lexer', 'basic_lexer');
ctx_ddl.set_attribute('e_lexer', 'base_letter', 'yes');
ctx_ddl.create_preference('m lexer', 'multi_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'default', 'us_lexer');
ctx_ddl.add_sub_lexer('m_lexer',6 'e',6 'e_lexer');

end;

/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index('idxp"',
'replace lexer m_lexer language column lang');

/* recreate every index partition online and swap (default) */
exec ctx_ddl.recreate_index_online('idxp',
'replace storage my_store', 1, 'idx_pl');
exec ctx_ddl.recreate_index_online('idxp', 'replace SWAP', 1, 'idx_p2',

/* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index('idxp"')

Example 7-8 Scheduled Local Index Recreate with All-At-Once Swap

This example shows the incremental recreation of a local partitioned index, where
partitions are all swapped at the end.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer', 'basic_lexer');

CTX_DDL Package 7-61

RECREATE_INDEX_ONLINE

create index idxp on tblp(text) indextype is ctxsys.context local
(partition idx_pl,
partition idx_p2)

parameters ('lexer us_lexer');

/* create new preferences */

begin
ctx_ddl.create_preference('my_store', 'basic_storage');
ctx_ddl.set_attribute('my_store', 'i_table_clause', 'tablespace tbs');

end;

/

begin
ctx_ddl.create_preference('e_lexer', 'basic_lexer');
ctx_ddl.set_attribute('e_lexer', 'base_letter', 'yes');
ctx_ddl.create_preference('m lexer', 'multi_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'default', 'us_lexer');
ctx_ddl.add_sub_lexer('m_lexer', 'e', 'e_lexer');

end;

/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index('idxp',
'replace lexer m_lexer language column lang');
/* create shadow partition with new storage preference */

exec ctx_ddl.recreate_index_online('idxp', 'replace storage ctxsys.default_storage
nopopulate', 1, 'idx_pl');
exec ctx_ddl.recreate_index_online('idxp', 'replace storage ctxsys.default_storage

nopopulate', 1, 'idx_p2');

declare
idxid integer;
ixpid integer;
begin
select idx_id into idxid from ctx_user_indexes
where idx_name = 'IDXP';
select ixp_id into ixpid from ctx_user_index_partitions
where ixp_index_name = 'IDXP'
and ixp_index_partition_name = 'IDX_P1l';
/* populate pending */
ctx_ddl.populate_pending ('RIOS$'||idxid, 'RIOS'||idxid||'#'|]|ixpid);
/* incremental sync
ctx_ddl.sync_index ('RIO$'||idxid, null, 'RIOS'||idxid||'#'||ixpid,
maxtime=>400) ;
/* more incremental sync until no more pending rows */

select ixp_id into ixpid from ctx_user_index_partitions
where ixp_index_name = 'IDXP'
and ixp_index_partition_name = 'IDX_P2';
/* populate pending */
ctx_ddl.populate_pending ('RIO$'||idxid, 'RIO$'||idxid||'#'||ixpid);
/* incremental sync
ctx_ddl.sync_index ('RIO$'||idxid, null, 'RIOS'||idxid||'#'||ixpid,
maxtime=>400) ;
/* more incremental sync until no more pending rows */
end;
/

7-62 Oracle Text Reference

RECREATE_INDEX_ONLINE

exec ctx_ddl.exchange_shadow_index('idxp', 'idx_pl');
exec ctx_ddl.exchange_shadow_index('idxp', 'idx_p2');
exec ctx_ddl.exchange_shadow_index('idxp');

Notes

Example 7-9 Schedule Local Index Recreate with Per-Partition Swap

For incremental recreate where partitions are swapped as they becomes available,
follow the steps in example Example 7-8, "Scheduled Local Index Recreate with
All-At-Once Swap", except instead of waiting until all syncs are finished before
starting exchange shadow index, EXCHANGE_SHADOW _INDEX is done for each
partition right after sync is finished.

Using RECREATE_INDEX_ONLINE with Global Non-partitioned Indexes

For global indexes, this procedure provides a one-step process to recreate an index
online. It recreates an index, with new preference values, while preserving base table
DML and query capability during the recreate process.

Note: Because the new index is created alongside the existing index,
this operation requires additional storage roughly equal to the size of
the existing index.

DML Behavior

Because this procedure is performed online, DML on the base table are permitted
during this operation, and are processed as normal. All DML statements that occur
during RECREATE_INDEX_ONLINE are logged into an online pending queue.

Towards the end of the recreate operation, there will be a short duration when DML
will fail with an error being raised stating that the index is in an in-progress status.
DML may hang again during the process, and the duration will depend on how many
DML are logged in the online pending queue since the start of the recreate process.

Note that after the recreate index operation is complete, new information, from all the
DML that becomes pending since RECREATE_INDEX_ONLINE started, may not be
immediately reflected. As with creating an index with INDEXTYPE IS ctxsys.context
ONLINE, the index should be synchronized after the recreate index operation is
complete, to bring it fully up-to-date.

See Also:

CTX_DDL.CREATE_SHADOW_INDEX and CTX_DDL.EXCHANGE_
SHADOW_INDEX for information about how to manually go through each
stage of recreation, and to schedule each step to run at a preferred time

The ONLINE parameter under "Syntax for CONTEXT Index Type" on page 1-37

Sync and Optimize Behavior

Syncs issued against the index during the recreate operation are processed against the
old, existing data. Syncs are also blocked during the same window when queries
return errors. Optimize commands issued against the index during the recreate
operation return immediately without error and without processing.

Query Behavior

During the recreate operation, the index can be queried normally most of the time.
Queries return results based on the existing index and policy (or metadata) until after
the final swap.

CTX_DDL Package 7-63

RECREATE_INDEX_ONLINE

There is a short interval towards the end of RECREATE_INDEX_ONLINE when queries will
return an error indicating that the column is not indexed. This duration should be
short for regular queries. It is mainly the time taken for swapping data segments of the
shadow index tables and the index tables, plus the time to delete all the rows in the
pending queue. This is the same window of time when DML will fail.

During RECREATE_INDEX_ONLINE, if you issue DML statements and synchronize them,
then you will be able to see the new rows when you query on the existing index.
However, after RECREATE_INDEX_ONLINE finishes (swapping completes and query is on
the new index) and before sync is performed, it is possible that you will not be able to
query on the new rows, which once could be queried on the old index.

Note: Transactional queries are not supported.

Using RECREATE_INDEX_ONLINE with Local Partitioned Indexes

If the index is local partitioned, you cannot recreate index in one step. You must first
create a shadow policy, and then run this procedure for every partition. You can
specify SWAP or NOSWAP to indicate whether RECREATE_INDEX_ONLINE partition will
swap the index partition data and index partition metadata or not. If the partition was
built with NOSWAP, then another call to EXCHANGE_SHADOW_INDEX must be invoked later
against this partition.

This procedure can also be used to update the metadata (for example, storage
preference) of each partition when you specify NOPOPULATE in the parameter string.
This is useful for incremental building of a shadow index through time-limited sync.

If NOPOPULATE is specified, then NOSWAP is silently enforced.

NOSWAP Behavior

During the recreate of the index partition, since no swapping is performed, queries on
the partition are processed regularly. Until the swapping stage is reached, queries
spanning multiple partitions return consistent results across partitions.

DML and sync are processed normally. Running optimize on partitions that are being
recreated, or that have been built (but not swapped), simply returns without doing
anything. Running optimize on a partition that has not been rebuilt processes
normally.

As with a global index, when all of the partitions use NOSWAP, the additional storage
requirement is roughly equal to the size of the existing index.

SWAP Behavior

Because index partition data and metadata are swapped after index recreate, queries
that span multiple partitions will not return consistent results from partition to
partition, but will always be correct with respect to each index partition. There is also a
short interval towards the end of partition recreate, when the index partition is
swapped, during which a query will return a "column not indexed" error.

When partitions are recreated with SWAP, the additional storage requirement for the
operation is equal to the size of the existing index partition.

DML on the partition is blocked. Sync is also blocked during swapping.

Related Topics

See also CREATE_SHADOW_INDEX on page 7-41 and DROP_SHADOW_INDEX on
page 7-49, and EXCHANGE_SHADOW_INDEX on page 7-51, as well as Oracle Text
Application Developer’s Guide.

7-64 Oracle Text Reference

REMOVE_INDEX

REMOVE_INDEX

Syntax

Removes the index with the specified column list from a CTXCAT index set preference.

Note: This procedure does not remove a CTXCAT sub-index from
the existing index. To do so, you must drop your index and

re-index with the modified index set preference.

CTX_DDL.REMOVE_INDEX (

set_name IN VARCHAR2,
column_list IN VARCHAR2
language IN VARCHAR2 default NULL
)i
set_name

Specify the name of the index set.

column_list

Specify the name of the column list to remove.

CTX_DDL Package 7-65

REMOVE_MDATA

REMOVE_MDATA

Syntax

Example

Related Topics

Notes

Use this procedure to remove metadata values, which are associated with an MDATA
section, from a document. Only the owner of the index is allowed to call ADD_
MDATA and REMOVE_MDATA.

CTX_DDL.REMOVE_MDATA (

1dx_name IN VARCHAR2,
section_name IN VARCHAR2,
values SYS.ODCIVARCHAR2LIST,
rowids SYS.ODCIRIDLIST,
[part_name] IN VARCHAR2]

)i

idx_name

Name of the text index that contains the named rowids.

section_name
Name of the MDATA section.

values
List of metadata values. If a metadata value contains a comma, the comma must be
escaped with a backslash.

rowids
Rowids from which to remove the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and
must be NULL for global, non-partitioned indexes.

This example removes the MDATA value blue from the MDATA section BGCOLOR.

ctx_ddl.remove_mdata('idx_docs', 'bgcolor', 'blue', 'rows');

See also "ADD_MDATA" on page 7-9; "ADD_MDATA_SECTION" on page 7-12;
"MDATA" on page 3-28; as well as the Section Searching chapter of Oracle Text
Application Developer’s Guide.

These updates are updates directly on the index itself, not on the actual contents stored
in the base table. Therefore, they will not survive when the Text index is rebuilt.

7-66 Oracle Text Reference

REMOVE_SECTION

REMOVE_SECTION

Syntax 1

Syntax 2

Example

Related Topics

The REMOVE_SECTION procedure removes the specified section from the specified
section group. You can specify the section by name or ID. View section ID with the
CTX_USER_SECTIONS view.

Use the following syntax to remove a section by section name:

CTX_DDL.REMOVE_SECTION (
group_name in varchar2,
section_name in varchar?2

)i

group_name
Specify the name of the section group from which to delete section_name.

section_name
Specify the name of the section to delete from group_name.

Use the following syntax to remove a section by section ID:

CTX_DDL.REMOVE_SECTION (
group_name in varchar2,
section_id in number

)i

group_name
Specify the name of the section group from which to delete section_id.

section_id
Specify the section ID of the section to delete from group_name.

The following example drops a section called Title from the htmgroup:

begin
ctx_ddl.remove_section('htmgroup', 'Title');
end;

"ADD_FIELD_SECTION" on page 7-4
"ADD_SPECIAL_SECTION" on page 7-18
"ADD_ZONE_SECTION" on page 7-28

CTX_DDL Package 7-67

REMOVE_STOPCLASS

REMOVE_STOPCLASS

Removes a stopclass from a stoplist.

Syntax

CTX_DDL.REMOVE_STOPCLASS (
stoplist_name in varchar2,
stopclass in varchar2

)i

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the name of the stopclass to be removed.

Example
The following example removes the stopclass NUMBERS from the stoplist mystop.

begin
ctx_ddl.remove_stopclass('mystop', 'NUMBERS');
end;

Related Topics
"ADD_STOPCLASS" on page 7-20

7-68 Oracle Text Reference

REMOVE_STOPTHEME

REMOVE_STOPTHEME

Removes a stoptheme from a stoplist.

Syntax

CTX_DDL.REMOVE_STOPTHEME (
stoplist_name in varchar2,
stoptheme in varchar2

)i

stoplist_name
Specify the name of the stoplist.

stoptheme
Specify the stoptheme to be removed from stoplist_name.

Example

The following example removes the stoptheme banking from the stoplist mystop:

begin
ctx_ddl.remove_stoptheme('mystop', 'banking');
end;

Related Topics
"ADD_STOPTHEME" on page 7-23

CTX_DDL Package 7-69

REMOVE_STOPWORD

REMOVE_STOPWORD

Syntax

Example

Related Topics

Removes a stopword from a stoplist. To have the removal of a stopword be reflected in
the index, you must rebuild your index.

CTX_DDL.REMOVE_STOPWORD (

stoplist_name in varchar2,

stopword in varchar2,

language in varchar2 default NULL
)

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be removed from stoplist_name.

language

Specify the language of stopword to remove when the stoplist you specify with
stoplist_name is of type MULTI_STOPLIST. You must specify the globalization support
name or abbreviation of an Oracle Text-supported language. You can also remove ALL
stopwords.

The following example removes a stopword because from the stoplist mystop:

begin
ctx_ddl.remove_stopword('mystop', 'because');
end;

"ADD_STOPWORD" on page 7-24

7-70 Oracle Text Reference

REMOVE_SUB_LEXER

REMOVE_SUB_LEXER

Syntax

Example

Related Topics

Removes a sub-lexer from a multi-lexer preference. You cannot remove the lexer for
DEFAULT.

CTX_DDL.REMOVE_SUB_LEXER (

lexer_name 1in varchar2,

language in varchar2 default NULL
)i

lexer_name
Specify the name of the multi-lexer preference.

language
Specify the language of the sub-lexer to remove. You must specify the globalization
support name or abbreviation of an Oracle Text-supported language.

The following example removes a sub-lexer german_lexer of language german:

begin
ctx_ddl.remove_sub_lexer('german_lexer', 'german');
end;

on page 7-26 on page 7-26

CTX_DDL Package 7-71

REPLACE_INDEX_METADATA

REPLACE_INDEX_METADATA

Syntax

Notes

Related Topics

Use this procedure to replace metadata in local domain indexes at the global (index)
level.

Note: The ALTER INDEX PARAMETERS command performs the same
function as this procedure and can replace more than just metadata.
For that reason, using ALTER INDEX PARAMETERS is the preferred
method of replacing metadata at the global (index) level and should
be used in place of this procedure when possible. For more
information, see "ALTER INDEX PARAMETERS Syntax" on page 1-3.

CTX_REPLACE_INDEX_ METADATA may be deprecated in a future release
of Oracle Text.

CTX_DDL.REPLACE_INDEX_METADATA (idx_name IN VARCHAR2,
parameter_string IN VARCHAR2) ;

idx_name
Specify the name of the index whose metadata you want to replace.

parameter_string
Specify the parameter string to be passed to ALTER INDEX. This must begin with
'REPLACE METADATA'.

ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA') does not work for a local
partitioned index at the index (global) level; you cannot, for example, use that ALTER
INDEX syntax to change a global preference, such as filter or lexer type, without
rebuilding the index. Therefore, CTX_DDL.REPLACE_INDEX METADATA is provided as a
method of overcoming this limitation of ALTER INDEX.

Though it is meant as a way to replace metadata for a local partitioned index, CTX_
DDL.REPLACE_INDEX_ METADATA can be used on a global, non-partitioned index, as well.

REPLACE_INDEX_METADATA cannot be used to change the sync type at the partition level;
that is, parameter_string cannot be 'REPLACE METADATA SYNC'. For that purpose, use
ALTER INDEX REBUILD PARTITION to change the sync type at the partition level.

See also "ALTER INDEX PARAMETERS Syntax" on page 1-3 and "ALTER INDEX
REBUILD Syntax" on page 1-4.

7-72 Oracle Text Reference

SET_ATTRIBUTE

SET_ATTRIBUTE

Syntax

Example

Sets a preference attribute. Use this procedure after you have created a preference with
CTX_DDL.CREATE_PREFERENCE.

CTX_DDL.SET_ATTRIBUTE (preference_name IN VARCHAR2Z,
attribute_name IN VARCHAR2,
attribute_value IN VARCHAR2);

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

attribute_value
Specify the attribute value. Specify boolean values as TRUE or FALSE, T or F, YES or NO, Y
or N, ON or OFF, or 1 or 0.

Specifying File Data Storage
The following example creates a data storage preference called filepref that tells the

system that the files to be indexed are stored in the operating system. The example
then uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute to the directory /docs.

begin

ctx_ddl.create_preference('filepref', 'FILE DATASTORE');
ctx_ddl.set_attribute('filepref', 'PATH', '/docs');

end;

See Also: For more information about data storage, see
"Datastore Types" on page 2-2

For more examples of using SET_ATTRIBUTE, see "CREATE_
PREFERENCE" on page 7-35

CTX_DDL Package 7-73

SYNC_INDEX

SYNC_INDEX

Synchronizes the index to process inserts, updates, and deletes to the base table.

Note: Because CTX_DDL.SYNC_INDEX issues implicit commits, calling
CTX_DDL.SYNC_INDEX in a trigger is strongly discouraged. Doing so
can result in errors being raised, as both SYNC_INDEX and post-commit
$R LOB maintenance try to update the same $R LOB.

Syntax
CTX_DDL.SYNC_INDEX (
1dx_name IN VARCHAR2 DEFAULT NULL
memory IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1
maxtime IN NUMBER DEFAULT NULL,
locking IN NUMBER DEFAULT LOCK_WAIT
)i
idx_name

Specify the name of the index to synchronize.

Note: When idx_name is null, all CONTEXT, CTXRULE, and CTXXPATH
indexes that have pending changes are synchronized. You must be
connected as ctxsys to perform this operation. Each index or index
partition is synchronized in sequence, one after the other. Because of
this, the individual syncs are performed with locking set to NOWAIT
and maxtime set to 0. Any values that you specify for locking or
maxtime on the SYNC_INDEX call are ignored. However, the memory and
parallel_degree parameters are passed on to the individual
synchronizations.

memory
Specify the runtime memory to use for synchronization. This value overrides the
DEFAULT_INDEX_MEMORY system parameter.

The memory parameter specifies the amount of memory Oracle Text uses for the
synchronization operation before flushing the index to disk. Specifying a large amount
of memory:

= Improves indexing performance because there is less I/O
= Improves query performance and maintenance because there is less fragmentation

s The indexing memory size specified in the second argument applies to each
parallel slave. For exmaple, if the memory argument is set to 500M and parallel_
degree is set to 2, then ensure that there is at least 1GB of memory available on the
system used for the parallel SYNC_INDEX.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when runtime memory is scarce.

7-74 Oracle Text Reference

SYNC_INDEX

Example

part_name
If your index is a local index, then you must specify the name of the index partition to
synchronize otherwise an error is returned.

If your index is a global, non-partitioned index, then specify NULL, which is the
default.

parallel_degree

Specify the degree to run parallel synchronize. A number greater than 1 turns on
parallel synchronize. The actual degree of parallelism might be smaller depending on
your resources.

maxtime

Indicate a suggested time limit on the operation, in minutes. SYNC_INDEX will process
as many documents in the queue as possible within the time limit. The maxtime value
of NULL is equivalent to CTX_DDL.MAXTIME_UNLIMITED. This parameter is ignored
when SYNC_INDEX is invoked without an index name, in which case maxtime value of 0
is used instead. The locking parameter is ignored for automatic syncs (that is, SYNC ON
COMMIT or SYNC EVERY).

The time limit specified is treated as approximate. The actual time taken may be
somewhat less than or greater than what you specify. The "time clock" for maxtime
does not start until the SYNC lock is acquired.

locking

Configure how SYNC_INDEX deals with the situation where another sync is already
running on the same index or index partition. When locking is ignored because SYNC_
INDEX is invoked without an index name, then locking value of LOCK_NOWAIT is used
instead. The locking parameter is ignored for automatic syncs (that is, SYNC ON COMMIT
or SYNC EVERY).

The options for locking are:

CTX_DDL.LOCK_WAIT If another sync is running, wait until the running sync
is complete, then begin sync. (In the event of not
being able to get a lock, it will wait forever and ignore
the maxtime setting.)

CTX_DDL.LOCK_NOWAIT If another sync is running, immediately returns
without error.

CTX_DDL.LOCK_NOWAIT_ERROR If another sync is running, error "DRG-51313: timeout
while waiting for DML or optimize lock" is raised.

The following example synchronizes the index myindex with 2 megabytes of memory:

begin
ctx_ddl.sync_index('myindex', '2M');
end;

The following example synchronizes the part1 index partition with 2 megabytes of
memory:

begin
ctx_ddl.sync_index('myindex', '2M', 'partl');
end;

CTX_DDL Package 7-75

SYNC_INDEX

Notes

You can run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX at the same time. You
can also run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX with parallelism at
the same time. However, you should not run CTX_DDL. SYNC_INDEX with parallelism at
the same time as CTX_DDL.OPTIMIZE_INDEX, nor CTX_DDL.SYNC_INDEX with parallelism
at the same time as CTX_DDL.OPTIMIZE_ INDEX with parallelism. If you should run one
of these combinations, no error is generated; however, one operation will wait until the
other is done.

Related Topics
"ALTER INDEX" on page 1-2

7-76 Oracle Text Reference

UNSET_ATTRIBUTE

UNSET_ATTRIBUTE

Syntax

Example

Related Topics

Removes a set attribute from a preference.

CTX_DDL.UNSET_ATTRIBUTE (preference_name varchar2,
attribute_name varchar2);

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

Enabling/Disabling Alternate Spelling
The following example shows how you can enable alternate spelling for German and
disable alternate spelling with CTX_DDL.UNSET_ATTRIBUTE:

begin

ctx_ddl.create_preference('GERMAN_LEX', 'BASIC_LEXER');
ctx_ddl.set_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING', 'GERMAN');
end;

To disable alternate spelling, use the CTX_DDL.UNSET_ATTRIBUTE procedure as follows:

begin
ctx_ddl.unset_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING');
end;

"SET_ATTRIBUTE" on page 7-73

CTX_DDL Package 7-77

UPDATE_POLICY

UPDATE_POLICY

Updates a policy created with CREATE_POLICY. Replaces the preferences of the policy.
Null arguments are not replaced.

Syntax
CTX_DDL.UPDATE_POLICY (

policy_name IN VARCHAR2,

filter IN VARCHAR2 DEFAULT NULL,

section_group IN VARCHAR2 DEFAULT NULL,

lexer IN VARCHAR2 DEFAULT NULL,

stoplist IN VARCHAR2 DEFAULT NULL,

wordlist IN VARCHAR2 DEFAULT NULL) ;

policy_name
Specify the name of the policy to update.

filter
Specify the filter preference to use.

section_group
Specify the section group to use.

lexer
Specify the lexer preference to use.

stoplist
Specify the stoplist to use.

wordlist
Specify the wordlist to use.

7-78 Oracle Text Reference

8

CTX_DOC Package

This chapter describes the CTX_D0C PL/SQL package for requesting document services,
such as highlighting extracted text or generating a list of themes for a document.

Many of these procedures exist in two versions: those that make use of indexes, and
those that do not. Those that do not are called "policy-based" procedures. They are
offered because there are times when you may want to use document services on a
single document without creating a Context index in advance. Policy-based
procedures enable you to do this.

The policy_* procedures mirror the conventional in-memory document services and
are used with policy_name replacing index_ name, and document of type VARCHAR2, CLOB,
BLOB, or BFILE replacing textkey. Thus, you need not create an index to obtain document
services output with these procedures.

For the procedures that generate character offsets and lengths, such as HIGHLIGHT and
TOKENS, Oracle Text follows USC-2 codepoint semantics.

The CTX_DOC package includes the following procedures and functions:

Name Description

FILTER Generates a plain text or HTML version of a document.

GIST Generates a Gist or theme summaries for a document.

HIGHLIGHT Generates plain text or HTML highlighting offset information for
a document.

IFILTER Generates a plain text version of binary data. Can be called from
a USER_DATASTORE procedure.

MARKUP Generates a plain text or HTML version of a document with
query terms highlighted.

PKENCODE Encodes a composite textkey string (value) for use in other CTX_

POLICY_FILTER

POLICY_GIST

POLICY_HIGHLIGHT

POLICY_MARKUP

POLICY_SNIPPET

DOC procedures.

Generates a plain text or HTML version of a document, without
requiring an index.

Generates a Gist or theme summaries for a document, without
requiring an index.

Generates plain text or HTML highlighting offset information for
a document, without requiring an index.

Generates a plain text or HTML version of a document with
query terms highlighted, without requiring an index.

Generates a concordance for a document, based on query terms,
without requiring an index.

CTX_DOC Package 8-1

Name

Description

POLICY_THEMES

POLICY_TOKENS

SET_KEY_TYPE

SNIPPET
THEMES
TOKENS

Generates a list of themes for a document, without requiring an
index.

Generates all index tokens for a document, without requiring an
index.

Sets CTX_DOC procedures to accept rowid or primary key
document identifiers.

Generates a concordance for a document, based on query terms.
Generates a list of themes for a document.

Generates all index tokens for a document.

8-2 Oracle Text Reference

FILTER

FILTER

Use the CTX_DOC.FILTER procedure to generate either a plain text or HTML version of
a document. You can store the rendered document in either a result table or in
memory. This procedure is generally called after a query, from which you identify the
document to be filtered.

Note: The resultant HTML document does not include graphics.

Syntax 1: In-memory Result Storage

exec CTX_DOC.FILTER (
index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN OUT NOCOPY CLOB,
plaintext IN BOOLEAN DEFAULT FALSE);

exec CTX_DOC.HIGHLIGHT CLOB_QUERY (
index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN CLOB,
restab IN OUT NOCOPY HIGHLIGHT TAB,
plaintext IN BOOLEAN DEFAULT FALSE);

Syntax 2: Result Table Storage

exec CTX_DOC.FILTER (
index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE);

exec CTX_DOC.HIGHLIGHT CLOB_QUERY (
index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN CLOB,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:
= asingle column primary key value

= encoded specification for a composite (multiple column) primary key. Use CTX_
DOC.PKENCODE

= the rowid of the row containing the document

CTX_DOC Package 8-3

FILTER

Example

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_
TYPE.

restab
You can specify that this procedure store the marked-up text to either a table or to an
in-memory CLOB.

To store results to a table, specify the name of the table. The table to which you want to
store results must exist before you make this call.

See Also: "Filter Table" in Appendix A, "Oracle Text Result
Tables" for more information about the structure of the filter result
table

To store results in memory, specify the name of the CLOB locator. If restab is NULL, then a
temporary CLOB is allocated and returned. You must de-allocate the locator after using
it with DBMS_LOB.FREETEMPORARY ().

If restab is not NULL, then the CLOB is truncated before the operation.

query_id
Specify an identifier to use to identify the row inserted into restab.

When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext

Specify TRUE to generate a plaintext version of the document. Specify FALSE to generate
an HTML version of the document if you are using the AUTO_FILTER filter or indexing
HTML documents.

In-Memory Filter
The following code shows how to filter a document to HTML in memory.

declare

mklob clob;

amt number := 40;
line varchar2(80);

begin
ctx_doc.filter('myindex','l', mklob, FALSE);
-- mklob is NULL when passed-in, so ctx-doc.filter will allocate a temporary
-- CLOB for us and place the results there.
dbms_lob.read(mklob, amt, 1, line);
dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
-- have to de-allocate the temp lob
dbms_1lob. freetemporary (mklob) ;
end;

Create the filter result table to store the filtered document as follows:

create table filtertab (query_id number,
document clob);

To obtain a plaintext version of document with textkey 20, enter the following
statement:

8-4 Oracle Text Reference

FILTER

begin
ctx_doc.filter ('newsindex', '20', 'filtertab', '0', TRUE);
end;

CTX_DOC Package 8-5

GIST

GIST

Use the CTX_DOC.GIST procedure to generate gist and theme summaries for a
document. You can generate paragraph-level or sentence-level gists or theme

sumimaries.

Note: CTX_DOC.GIST requires an installed knowledge base. A
knowledge base may or may not have been installed with Oracle Text.
For more information on knowledge bases, see the Oracle Text

Application Developer’s Guide.

Syntax 1: In-Memory Storage
CTX_DOC.GIST(

index_name IN
textkey IN
restab IN
glevel IN
pov IN
numParagraphs IN
maxPercent IN

VARCHAR2,

VARCHAR2,

OUT CLOB,

VARCHAR2 DEFAULT 'P',
VARCHAR2 DEFAULT 'GENERIC',
NUMBER DEFAULT 16,

NUMBER DEFAULT 10,

num_themes IN NUMBER DEFAULT 50) ;

Syntax 2: Result Table Storage

CTX_DOC.GIST(

index_name IN VARCHAR2,

textkey IN VARCHAR2,

restab IN VARCHAR2,

query_id IN NUMBER DEFAULT 0,
glevel IN VARCHAR2 DEFAULT 'P',
pov IN VARCHAR2 DEFAULT NULL,
numParagraphs IN NUMBER DEFAULT 16,
maxPercent IN NUMBER DEFAULT 10,
num_themes IN NUMBER DEFAULT 50);
index_name

Specify the name of the index associated with the text column containing the

document identified by textkey.

textkey

Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can as follows:

= asingle column primary key value

= an encoded specification for a composite (multiple column) primary key. To
encode a composite textkey, use the CTX_DOC . PKENCODE procedure

= the rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

restab

Specify that this procedure store the gist and theme summaries to either a table or to

an in-memory CLOB.

8-6 Oracle Text Reference

GIST

To store results to a table specify the name of an existing table.

See Also: "Gist Table" in Appendix A, "Oracle Text Result Tables"

To store results in memory, specify the name of the CLOB locator. If restab is NULL, then a
temporary CLOB is allocated and returned. You must de-allocate the locator after using
it.

If restab is not NULL, then the CLOB is truncated before the operation.

query_id
Specify an identifier to use to identify the row(s) inserted into restab.

glevel
Specify the type of gist or theme summary to produce. The possible values are:

= P for paragraph
= S for sentence

The default is P.

pov

Specify whether a gist or a single theme summary is generated. The type of gist or
theme summary generated (sentence-level or paragraph-level) depends on the value
specified for glevel.

To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To
generate a theme summary for a single theme in a document, specify the theme as the
value for pov.

When using result table storage, if you do not specify a value for pov, then this
procedure returns the generic gist plus up to 50 theme summaries for the document.

When using in-memory result storage to a CLOB, you must specify a pov. However, if
you do not specify a pov, then this procedure generates only a generic gist for the
document.

Note: The pov parameter is case sensitive. To return a gist for a
document, specify 'GENERIC' in all uppercase. To return a theme
summary, specify the theme exactly as it is generated for the
document.

Only the themes generated by THEMES for a document can be
used as input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries. The default is 16.

Note: The numParagraphs parameter is used only when this
parameter yields a smaller gist or theme summary size than the gist
or theme summary size yielded by the maxPercent parameter.

This means that the system always returns the smallest size gist or
theme summary.

CTX_DOC Package 8-7

GIST

Examples

maxPercent

Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries as a percentage of the total paragraphs (or
sentences) in the document. The default is 10.

Note: The maxPercent parameter is used only when this
parameter yields a smaller gist or theme summary size than the gist
or theme summary size yielded by the numParagraphs parameter.

This means that the system always returns the smallest size gist or
theme summary.

num_themes

Specify the number of theme summaries to produce when you do not specify a value
for pov. For example, if you specify 10, this procedure returns the top 10 theme
summaries. The default is 50.

If you specify 0 or NULL, then this procedure returns all themes in a document. If the
document contains more than 50 themes, only the top 50 themes show conceptual
hierarchy.

In-Memory Gist

The following example generates a non-default size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then
de-allocates the returned CLOB locator after using it.

set serveroutput on;
declare
gklob clob;
amt number := 40;
line varchar2(80);

begin
ctx_doc.gist('newsindex', '34',gklob, pov => 'GENERIC',numParagraphs => 10);
-- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
-- CLOB for us and place the results there.

dbms_lob.read(gklob, amt, 1, line);
dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
-- have to de-allocate the temp lob

dbms_1lob. freetemporary (gklob) ;
end;

Result Table Gists
The following example creates a gist table called CTX_GIST:
create table CTX_GIST (query_id number,

pov varchar2(80),
gist CLOB) ;

Gists and Theme Summaries

The following example returns a default sized paragraph-level gist for document 34 as
well as the top 10 theme summaries in the document:

8-8 Oracle Text Reference

GIST

begin
ctx_doc.gist('newsindex', '34','CTX_GIST', 1, num_themes=>10);
end;

The following example generates a non-default size gist of at most 10 paragraphs:

begin
ctx_doc.gist('newsindex', '34"', 'CTX_GIST',1,pov =>'GENERIC',numParagraphs=>10);
end;

The following example generates a gist whose number of paragraphs is at most 10
percent of the total paragraphs in document:
begin

ctx_doc.gist('newsindex', '34', 'CTX_GIST',1,pov => 'GENERIC', maxPercent => 10);
end;

Theme Summary
The following example returns a paragraph-level theme summary for insects for
document 34. The default theme summary size is returned.

begin
ctx_doc.gist('newsindex', '34', 'CTX_GIST',1, pov => 'insects');
end;

CTX_DOC Package 8-9

HIGHLIGHT

HIGHLIGHT

Use the CTX_DOC.HIGHLIGHT procedure to generate highlight offsets for a document.
The offset information is generated for the terms in the document that satisfy the
query you specify. These highlighted terms are either the words that satisfy a word
query or the themes that satisfy an ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the
document. The table returned by CTX_DOC.HIGHLIGHT does not include any graphics

found in the original document. Apply the offset information to the same documents
filtered with CTX_DOC.FILTER.

You usually call this procedure after a query, from which you identify the document to
be processed.

You can store the highlight offsets to either an in-memory PL/SQL table or a result
table.

See CTX_DOC.POLICY_HIGHLIGHT on page 8-23 for a version of this procedure that
does not require an index.

Syntax 1: In-Memory Result Storage

exec CTX_DOC.HIGHLIGHT (
index_name IN VARCHAR2,

textkey IN VARCHAR2,
text_query IN VARCHAR2,
restab IN OUT NOCOPY HIGHLIGHT_TAB,

plaintext IN BOOLEAN DEFAULT FALSE) ;

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY (
index_name IN VARCHAR2,

textkey IN VARCHARZ2,
text_query IN CLOB,
restab IN OUT NOCOPY HIGHLIGHT_TAB,

plaintext IN BOOLEAN DEFAULT FALSE) ;

Syntax 2: Result Table Storage

exec CTX_DOC.HIGHLIGHT (
index_name IN VARCHAR2,

textkey IN VARCHAR2,
text_query IN VARCHAR2Z,
restab IN VARCHAR2,

query_id IN NUMBER DEFAULT O,
plaintext IN BOOLEAN DEFAULT FALSE) ;

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY (
index_name IN VARCHAR2,

textkey IN VARCHAR2,
text_query 1IN CLOB,
restab IN VARCHAR2,

query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE) ;

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

8-10 Oracle Text Reference

HIGHLIGHT

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:
= asingle column primary key value

= encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE procedure.

= the rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_
TYPE.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If text_query includes wildcards, stemming, fuzzy matching which result in
stopwords being returned, HIGHLIGHT does not highlight the stopwords.

If text_query contains the threshold operator, the operator is ignored. The HIGHLIGHT
procedure always returns highlight information for the entire result set.

restab

You can specify that this procedure store highlight offsets to either a table or to an
in-memory PL/SQL table.

To store results to a table specify the name of the table. The table must exist before you
call this procedure.

See Also: "Highlight Table" in Appendix A, "Oracle Text Result
Tables" for more information about the structure of the highlight
result table.

To store results to an in-memory table, specify the name of the in-memory table of type
CTX_DOC.HIGHLIGHT_TAB. The HIGHLIGHT TAB datatype is defined as follows:

type highlight_rec is record (
offset number,
length number
)i
type highlight_tab is table of highlight_rec index by binary_integer;

CTX_DOC.HIGHLIGHT clears HIGHLIGHT_TAB before the operation.
query_id
Specify the identifier used to identify the row inserted into restab.

When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext
Specify TRUE to generate a plaintext offsets of the document.

Specify FALSE to generate HTML offsets of the document if you are using the AUTO_
FILTER filter or indexing HTML documents.

CTX_DOC Package 8-11

HIGHLIGHT

Examples

Restrictions

Related Topics

Create Highlight Table
Create the highlight table to store the highlight offset information:
create table hightab(query_id number,

offset number,
length number) ;

Word Highlight Offsets
To obtain HTML highlight offset information for document 20 for the word dog:
begin

ctx_doc.highlight ('newsindex', '20', 'dog', 'hightab', 0, FALSE);
end;

Theme Highlight Offsets

Assuming the index newsindex has a theme component, obtain HTML highlight offset
information for the theme query of politics by issuing the following query:

begin
ctx_doc.highlight ('newsindex', '20', 'about(politics)', 'hightab', 0, FALSE);
end;

The output for this statement are the offsets to highlighted words and phrases that
represent the theme of politics in the document.

CTX_DOC.HIGHLIGHT does not support the use of query templates or highlighting XML
attribute values.

See Also: "POLICY_HIGHLIGHT" on page 8-23, "MARKUP" on
page 8-14, and "SNIPPET" on page 8-35

8-12 Oracle Text Reference

IFILTER

IFILTER

Requirements

Syntax

Example

Use this procedure to filter binary data to text.

This procedure takes binary data (BLOB IN), filters the data with the AUTO_FILTER filter,
and writes the text version to a CLOB. (Any graphics in the original document are
ignored.) CTX_DOC. IFILTER employs the safe callout, and it does not require an index,
as CTX_DOC.FILTER does.

Note: This procedure will not be supported in future releases.
Applications should use CTX_DOC.POLICY_FILTER instead.

Because CTX_DOC.IFILTER employs the safe callout mechanism, the SQL*Net listener
must be running and configured for extproc agent startup.

CTX_DOC.IFILTER(data IN BLOB, text IN OUT NOCOPY CLOB) ;

data
Specify the binary data to be filtered.

text

Specify the destination CLOB. The filtered data is placed in here. This parameter must
be a valid CLOB locator that is writable. Passing NULL or a non-writable CLOB will result
in an error. Filtered text will be appended to the end of existing content, if any.

The document text used in a MATCHES query can be VARCHAR2 or CLOB. It does not accept
BLOB input, so you cannot match filtered documents directly. Instead, you must filter
the binary content to CLOB using the AUTO_FILTER filter. Assuming the document data
is in bind variable :doc_blob:

declare
doc_text clob;

begin
-- create a temporary CLOB to hold the document text
dbms_1lob.createtemporary (doc_text, TRUE, DBMS_LOB.SESSION) ;

-- call ctx_doc.ifilter to filter the BLOB to CLOB data
ctx_doc.ifilter(:doc_blob, doc_text);

-- now do the matches query using the CLOB version
for ¢l in (select * from queries where matches (query_string, doc_text)>0)
loop
-- do what you need to do here
end loop;

dbms_1lob. freetemporary (doc_text) ;
end;

CTX_DOC Package 8-13

MARKUP

MARKUP

The CTX_DOC . MARKUP procedure takes a query specification and a document textkey
and returns a version of the document in which the query terms are marked up. These
marked-up terms are either the words that satisfty a word query or the themes that
satisfy an ABOUT query.

You can set the marked-up output to be either plaintext or HTML. The marked-up
document returned by CTX_DOC.MARKUP does not include any graphics found in the
original document.

You can use one of the pre-defined tag sets for marking highlighted terms, including a
tag sequence that enables HTML navigation.

You usually call CTX_DOC.MARKUP after a query, from which you identify the document
to be processed.

You can store the marked-up document either in memory or in a result table.

See CTX_DOC.POLICY_MARKUP on page 8-25 for a version of this procedure that
does not require an index.

Note: Oracle Text does not guarantee well-formed output from
CTX.DOC.MARKUP, especially for terms that are already marked up
with HTML or XML. In particular, unexpected nesting of markup
tags may occasionally result.

Syntax 1: In-Memory Result Storage
exec CTX_DOC.MARKUP (

index_name IN VARCHAR2,

textkey IN VARCHAR2,

text_query IN VARCHAR2,

restab IN OUT NOCOPY CLOB,

plaintext IN BOOLEAN DEFAULT FALSE,

tagset IN VARCHAR2 DEFAULT 'TEXT DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,

endtag IN VARCHAR2 DEFAULT NULL,

prevtag IN VARCHAR2 DEFAULT NULL,

nexttag IN VARCHAR2 DEFAULT NULL) ;

exec CTX_DOC.MARKUP_CLOB_QUERY (

index_name IN VARCHAR2,

textkey IN VARCHAR2,

text_query IN CLOB,

restab IN OUT NOCOPY CLOB,

plaintext IN BOOLEAN DEFAULT FALSE,

tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,

endtag IN VARCHAR2 DEFAULT NULL,

prevtag IN VARCHAR2 DEFAULT NULL,

nexttag IN VARCHAR2 DEFAULT NULL) ;

Syntax 2: Result Table Storage

exec CTX_DOC.MARKUP (
index_name IN VARCHAR2,

8-14 Oracle Text Reference

MARKUP

textkey IN VARCHAR2,

text_query IN VARCHAR2,

restab IN VARCHAR2,

query_id IN NUMBER DEFAULT O,

plaintext IN BOOLEAN DEFAULT FALSE,

tagset IN VARCHAR2 DEFAULT 'TEXT DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,

endtag IN VARCHAR2 DEFAULT NULL,

prevtag IN VARCHAR2 DEFAULT NULL,

nexttag IN VARCHAR2 DEFAULT NULL) ;

exec CTX_DOC.MARKUP_CLOB_QUERY (

index_name IN VARCHAR2,

textkey IN CLOB,

text_query IN VARCHAR2,

restab IN VARCHAR2,

query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL) ;
index_name

Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the