ORACLE

Oracle® Database
Data Warehousing Guide

11gRelease 2 (11.2)
E25554-02

July 2013

Oracle Database Data Warehousing Guide, 11g Release 2 (11.2)
E25554-02

Copyright © 2001, 2013, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Paul Lane

Contributor: ~ Patrick Amor, Hermann Baer, Mark Bauer, Subhransu Basu, Srikanth Bellamkonda, Randy
Bello, Paula Bingham, Tolga Bozkaya, Lucy Burgess, Donna Carver, Rushan Chen, Benoit Dageville, John
Haydu, Lilian Hobbs, Hakan Jakobsson, George Lumpkin, Alex Melidis, Valarie Moore, Cetin Ozbutun,
Ananth Raghavan, Jack Raitto, Ray Roccaforte, Sankar Subramanian, Gregory Smith, Margaret Taft, Murali
Thiyagarajan, Ashish Thusoo, Thomas Tong, Mark Van de Wiel, Jean-Francois Verrier, Gary Vincent,
Andreas Walter, Andy Witkowski, Min Xiao, Tsae-Feng Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUOIACE ... et s et s e e XiX
AN S Lo T VLT ORRTRRRRRRT XiX
Documentation AcCesSSIDILityccccciiiiiiiiiiiiiiiiii e XiX
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans XiX
(@03 4N T£=3 115 o) 0 I RTR TR RTRRN XX

What's New in Oracle DatabasS@? ... een XXi
Oracle Database 11g Release 2 (11.2) New Features in Data Warehousing...........c.ccccccoeeininnan. XXi
Oracle Database 11g Release 1 (11.1) New Features in Data Warehousing............ccccccccoecccenee. Xxii

Part | Concepts

1 Data Warehousing Concepts

What is a Data Warehouse?ccccouriiiiininiiiiniieitnreeetee ettt 1-1
SUDJECt OFIENEEA. ...t 1-2
INtEGIAted ... 1-2
INONVOLATILE ...ttt et s 1-2
TIMeE VATIANT «..ooviiiiie s 1-2
Contrasting OLTP and Data Warehousing Environmentsccccooovieiiioineeicciccecne, 1-2

Data Warehouse ArChiteCtUresocoeccoiririiiiiniiiiieiiiiece ettt 1-3
Data Warehouse Architecture: Basic..........coooviiiiiiiiiiniiiiiiiic, 1-4
Data Warehouse Architecture: with a Staging Areacccooooeeiiiiiiiiiiiccc 1-4
Data Warehouse Architecture: with a Staging Area and Data Martsccccooevviieeinicnnnn, 1-5

Extracting Information from a Data Warehouse ..o 1-6
OLAP ... 1-6

Full Integration of Multidimensional Technologycccccoiiiiiiiiiiiiiiiiciiens 1-6
Ease of Application Development...........cccccoeiiiiiiiiiiiiiiiiiiieee e 1-6
Ease of Administration..........cccooviiiiiiiiiiiiii s 1-7
SECUTILY ..t 1-7
Unmatched Performance and Scalabilitycooeviiiiriiiiiiiiii 1-7
Reduced COStS ... 1-7
Querying Dimensional ObjJects.........cccccciiiiiiiiiiiiiiiiiiiiiicccc e 1-8
Efficient Storage and Uniform Availability of Summary Data........cccccocoeueeniiiiiicniiccinnen 1-8
Tools for Creating and Managing Dimensional Objects.........c.ccccouorriiiiiiieiiiiicicie 1-8
Data MININEoovevieiiiiiic s 1-8

Oracle Data Mining FUNctionalityc.cccoeiiiiiiiiiiniiiccccecs 1-9
Oracle Data Mining INterfaces ... 1-9

Partll Logical Design

2 Logical Design in Data Warehouses

Logical Versus Physical Design in Data Warehouses................cccccccooiiiniiinninii, 2-1
Creating a Logical DeSign...........ccoiuiiiiiiiiiiiiiiiic e 2-2
Data Warehousing SChemas..............ccooiiiiiiiiiiiii e 2-2
STAT SCHEMAS ... 2-3
Other Data Warehousing SChemas..........c.cccccuicuiiiiiiiiieinicrceeeeeeeeee e 2-3
Data Warehousing ODbjects............cccccooviiiiiiiiiiiiii 2-3
Data Warehousing Objects: Fact Tables...........coooiiiiiiiii e, 2-4
Requirements of Fact Tables..........cccccociiiiiiiiiiiiiccceeceeeee e 2-4

Data Warehousing Objects: Dimension Tables.............cccoocoiiiieiiiiiiiic 2-4
HiErarchiesccovviiiiiiiiiiiiiic s 2-4

Typical Dimension HIerarchy ... 2-5

Data Warehousing Objects: Unique Identifiers ..., 2-5
Data Warehousing Objects: Relationshipscccooueiiiiiiiiiii 2-5
Example of Data Warehousing Objects and Their Relationshipscccccoeeueecicicniiennes 2-5

Part Il Physical Design

3 Physical Design in Data Warehouses

Moving from Logical to Physical Designcccccccoviviiiiiiniiiiiiiies 3-1
Physical D@SINoouiiiiiiiii e 3-1
Physical Design STIUCIUIESccoiiiuiiiiiiiiiiiiiic s 3-2
TADIESPACES ... 3-2
Tables and Partitioned Tablesccieierieiiniiiieiecieeetee ettt ae s e s saensesseennas 3-3
Table COMPTESSIONcovviiiiriiiicirc s 3-3

VB S .o eiietteitiettete et et st e e st et e et e e e st e st e estesse e st e sseansesseanseeseenseaseenseaseenseeneenseeneenseentenseensensaensenseenseneenes 3-4
Integrity CONSEIAINtS.......ceviviiiiiiiiiiiciccc s 3-4
Indexes and Partitioned INAEXES..........cvecuiiiiiiiiiieiiieecieetecteee ettt ettt e v aeeaeennas 3-4
MaAtErialiZEA VIEWSeovveeieiiciieiieiieiietecetet ettt ettt e s e b e s essessesaeseaseaseesassessessessessassassesessensens 3-4
DIIMNIEINISIONS ...ttt ettt ettt et site st e st e s teesat e s be e beesabeesseesasesssaesssesabaesssannseensaesssesnsaenn 3-4

4 Hardware and I/O Considerations in Data Warehouses

Overview of Hardware and I/0O Considerations in Data Warehousescccccccceeiinnnnn 4-1
Configure I/0O for Bandwidth not Capacitycccoeeuvieiiiiniiiniicc 4-1
Stripe Far and WIdecccciiiiiiiiiiccccce e 4-2
Use REAUNAANCY ...ocvviiiiiiicei ettt 4-2
Test the I/O System Before Building the Database............cccocooooeiiiiiiiiiniie 4-2
Plan fOr GIOWth......cocviiiiiiici s 4-3

Storage Managementooooiiiiiiiii s 4-3

5 Partitioning in Data Warehouses

Overview of Partitioning in Data Warehousesccccccccciiiiiiiiiii 5-1

6 Parallel Execution in Data Warehouses

What is Parallel EXecution?ccccooiiiiiiiiiniiiii s 6-1
Why Use Parallel EXecution?.............cccocoiiiiiiiiiiiiiic e 6-2
When to Implement Parallel EXeCUIONcoiuimiiiiiiiiiiiiiiiiiiiiiciccca 6-2
When Not to Implement Parallel EXeCUtIONcccouruiiiiiiiieiicieicc e 6-2
Automatic Degree of Parallelism and Statement Queuing.............ccccccceoevivviiiniiiiiiiin, 6-3
In-Memory Parallel EXeCUtion ..o s 6-4
7 Indexes

Using Bitmap Indexes in Data Warehouses................ccooiiiiniiiiiiiiiiccecs 7-1
Benefits for Data Warehousing Applicationsccoooerieieioiiiciiiiincecccc e 7-2
CardINAlILY ..c.ovoveeeieicieieiececce e 7-2
How to Determine Candidates for Using a Bitmap IndeX..........cccccooorriiiniiicnicinne 7-4

Bitmap Indexes and INULLS...........ccoiiiiiiic 7-4
Bitmap Indexes on Partitioned Tables ... 7-5
Using Bitmap Join Indexes in Data Warehouses.............c.ccouoviiieiiiiiiiciccicc 7-5
Four Join Models for Bitmap Join INdexescccoeiiiiiiiiiiiiniiiiiiis 7-5

Bitmap Join Index Restrictions and Requirements ... 7-7

Using B-Tree Indexes in Data Warehouses..............c.cccoooviviinininniinn, 7-8
Using Index COMPIESSIONccviviiiiiiiiiiiiiiii s 7-8
Choosing Between Local Indexes and Global Indexes................ccccccvviimiiniiiiiininiins 7-8

8 Integrity Constraints

Why Integrity Constraints are Useful in a Data Warehouseccccccooiiininniiin, 8-1
Overview 0f CoNStraint States............ccovieciiiiiiiiiiceceeeeee et ss e e e s e s e ssesseens 8-2
Typical Data Warehouse Integrity Constraints...............c.cccoovviniiininnnnnice, 8-2
UNIQUE Constraints in a Data WarehoUSe.........c.ocuveieerieeeieieeeeieceeveeeeeteete et eve v s 8-2
FOREIGN KEY Constraints in a Data Warehousecccoveeieiievienieciinieeeeeveeeesee e 8-3
RELY CONSIIAINTS ..eeutiiitiieiiieeiieciieeie et este et eeteeeveestteesteestsesseesseessseesseessseesssesssessssesssessseesssesssensseeans 8-4
INOT NULL CONSEIAINESveevteiieeieieeieieeseesiesteieetesiesstesseessessesssessessessesssessesssessesssessesssesseessessessees 8-4
Integrity Constraints and ParalleliSmccoouoiiiiiiiiiicie e 8-5
Integrity Constraints and Partitioning...........c.coeevvinnnnininieec e 8-5
VIEW CONSETAINESevieiieieieieeiieieeeeteet e et et e et e e sseesse s tesseessenseesseseenseseessessesssessesssessesssensenssensennes 8-5

9 Basic Materialized Views

Overview of Data Warehousing with Materialized Views.............ccccccoooivniiiiniiin 9-1
Materialized Views for Data Warehousesccccvieieiiiniiiniiiiiiiiciccceeees 9-2
Materialized Views for Distributed Computingcccoeeveiveiiiiiiiieiieicceecee 9-2
Materialized Views for Mobile COMPULNGccceuemimiimiiiiiiiiciicicceeecieeiceeeeeneeeeaeneeeeenes 9-2
The Need for Materialized VIEWS.........cccocoviiiiiiiiiiiiiiiiiiiiic s 9-2
Components of Summary Management............ccccccuiuiueueiiiiiiiieiiiiieeeeeeeeeeseeeennes 9-3
Data Warehousing TerminolOZYccccceuruririiieiririiiieirierieerrereeeees e 9-5

vi

Materialized View Schema Design.........ccccoviiiiiiiiiiiiiiiiiiiiiiice 9-5

Schemas and Dimension Tables.............cccccoiiiiiiiiiiiis 9-6
Materialized View Schema Design Guidelinescccccoceueeiiiiiiiiineieceeceeeeeens 9-6
Loading Data into Data Warehousescouoiriiiiiiic 9-7
Overview of Materialized View Management Tasksccccooioieiiiiiiiiiniiiiccc e, 9-8
Types of Materialized VIEWScccoiiiiiiiiiiic s 9-8
Materialized Views with Aggregates...........ccoooiiiiiiicioic e, 9-9
Requirements for Using Materialized Views with Aggregatescccccccoooveinenii 9-11
Materialized Views Containing ONnly JOINS........ccccceueuiuiiiinirniiiirrrccrrreseeseeeeese s 9-11
Materialized Join Views FROM Clause Considerationscccceceeeererenenieneneneeenennens 9-12

Nested Materialized VIEWS........ccccciiiiiiiiiiniiiiiiiiiii s 9-12
Why Use Nested Materialized VIEWS? ..o 9-12
Nesting Materialized Views with Joins and Aggregatesccccoouoieiiiniiiiciiiicicine, 9-13

Nested Materialized View Usage Guidelines..........c.cccooooeiiiiiiiiiiiiiiieiic 9-14
Restrictions When Using Nested Materialized VIeWs.........ccccccovviiiirvnininnnnnnene 9-14
Creating Materialized VIEWS ... 9-14
Creating Materialized Views with Column Alias Lists..........cccooiioiiiiiiii 9-15
Naming Materialized VIEWS........cccccciuiiiiiiiiiiiiccceeeeeeeee e 9-16
Storage And Table COMPIeSSIONcceuiiiiiicieieicci e 9-16
BUIld MEROAS ... s 9-17
Enabling QuUery REWTIte.c.ccoiuiiiiiiiiiiiiiiecceeceeeieete e 9-17
Query Rewrite ReStrictionS.......ooouiuiiiiiiiiicc 9-18
Materialized View ReStrictions..........ccccciiiiiiiiiiiiiiiiiiiiicces 9-18
General Query Rewrite ReStrictions.........ccccceuiuiiuiiiiiiiiiiicicicccccceeeeeceeeeeeeeaes 9-18
Refresh OPHIONSc.oueviiiiiiiiii s 9-18
General Restrictions on Fast Refresh...........cccccccoooiiiiii, 9-20
Restrictions on Fast Refresh on Materialized Views with Joins Onlycccccceeueuenneeee. 9-21
Restrictions on Fast Refresh on Materialized Views with Aggregatescccococo.... 9-21
Restrictions on Fast Refresh on Materialized Views with UNION ALL 9-23
Achieving Refresh Goals..........ccccciuiuiiiiiiiiiiiiicccccee s 9-23
Refreshing Nested Materialized VIEWScccooeuiiiiiiiiiiiiiiiic 9-24
ORDER BY CLAUSE.......oviuiiiiiiiciieiriticieiriticie sttt et et 9-24
Materialized VIEW LOZScccoiuiiimiiiiiiiiicciccccccceteee e 9-24
Using the FORCE Option with Materialized View Logscccocoeeiiiiiniieiiiiiciie 9-25
Materialized View Log PUIGING..........cccccciiiiiiiiiiiiiiiiccccs 9-25

Using Oracle Enterprise Managerccccococeiiiiiiiceieieieieeeeiee e sseeeens 9-26
Using Materialized Views with NLS Parameters..........cccoovieiiiiiciiiiiicieicccece 9-26
Adding Comments to Materialized VIEWS.........ccccccoeuvviiiiiiiiniiiniiiinicccs 9-26
Registering Existing Materialized Views ..., 9-27
Choosing Indexes for Materialized VIeWs............cccocooiiiiiiiiiiiiice 9-28
Dropping Materialized VIEWSccccceuviiiiiiiiiiiiiiiiiiiicc s 9-29
Analyzing Materialized View Capabilities ... 9-29
Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedureccccocovniiinnnnciiinennnn 9-29
DBMS_MVIEW.EXPLAIN_MVIEW Declarations............cccccccceueuriricicniniiiceeieieieennens 9-30

Using MV_CAPABILITIES_TABLEccccoviiiiiniiicse s 9-30
MV_CAPABILITIES_TABLE.CAPABILITY_NAME Detailscccccoecevinimiinniiniiinnns 9-32
MV_CAPABILITIES_TABLE Column Details.........cccccoeieueirniciriniicinniieereccennes 9-33

10 Advanced Materialized Views

11

Partitioning and Materialized VIeWscccccoiiiiiiiiiiia 10-1
Partition Change Tracking ... eeees 10-1
Partition Keycociiiiiiii 10-2

Join Dependent EXPIeSSiOnNcouiiueiiiiiicieieiccie e 10-3
Partition MarkeT ... 10-4

Partial REWTITEcoiuiiiiiiiiiiciccc s 10-5
Partitioning a Materialized VIEWccooiiiiiiiiii e 10-5
Partitioning a Prebuilt Table...........ccccoiiiiiiiiiiiicecccceeee e 10-5
Benefits of Partitioning a Materialized VIeWc.ccccoooiiiiiiiiii 10-6

Rolling Materialized VIEWScccoouiiiiiiiiiicc 10-6
Materialized Views in Analytic Processing Environmentsccccooeiiiiniiinniinnnnee, 10-7
CUDES ..ottt s 10-7
Benefits of Partitioning Materialized VIEWSccccoiimiiiiiiiiiiccc 10-7
Compressing Materialized VIEWS........c.cccccciuiiiiiiiiiininiiiiccceeer s 10-8
Materialized Views with Set Operators ... 10-8
Examples of Materialized Views Using UNION ALL..........ccccoooiiiiiiiiiiniiceeae, 10-8
Materialized Views and Models ..o 10-9
Invalidating Materialized VIeWSccccoooiiiiiiiiic 10-10
Security Issues with Materialized VIeWS ... 10-11
Querying Materialized Views with Virtual Private Database (VPD)........cccccooviiiiicnne. 10-11
Using Query Rewrite with Virtual Private Databasecccoooeoiiiiiicii 10-11
Restrictions with Materialized Views and Virtual Private Database...........c.ccccceoevence. 10-12
Altering Materialized VIeWs..........ccccooviiiniiiiiiii 10-12

Dimensions

What are Dimensions?............cccocoooiiiiiiiii s 11-1
Creating DImensions ...t 11-3
Dropping and Creating Attributes with Columns.............ccoooi, 11-6
Multiple HIErarchi@scccococeucuimiiiiiiiiiciiiciicicccieieiecteeeeie et seees 11-7
Using Normalized Dimension Tables...........cccooiiiiiii e, 11-8
Viewing Dimensions.........cccoiiiiiiiiii s 11-8
Using Oracle Enterprise Managercccccccceiieciieiiiieeieieieeeeeieneeseseseeeseseseeeseseseseeseeeees 11-8
Using the DESCRIBE_DIMENSION Procedure.cccoveeviieiiininiiiiiiiiieieeieeeeeeeeenenens 11-9
Using Dimensions with Constraintscccccocoviininiiiiiic s 11-9
Validating DImensions ..o 11-10
Altering DIMeNSIONSccooviiiiiiiiiiii s 11-10
Deleting DIMenSIONS.............coviiiiiiiiiiiiiii s 11-11

Part IV Managing the Data Warehouse Environment

12 Overview of Extraction, Transformation, and Loading

Overview of ETL in Data WareROUSeS............cc.ocveiiierieiiieiiiiieeeteeeeee ettt eve e 12-1
ETL Basics in Data WarehouSIng.........c.ccccceuiuiiiiiiiiiciccceecieeeee e nenes 12-1

| Eh'quw=Yatu o) a o) i - | v LSS USRS 12-1
Transportation of Data ... 12-2

vii

ETL Too0ls for Data War€ROUSeSoovviieiiiiiieieeeeeeeee ettt ettt saae e eenae e seanes 12-2
Daily Operations in Data Warehouses...........cccooviieiiiiieiiiicecc e 12-2
Evolution of the Data WarehOUSe............oovivviiiieiiiceiieeeeee ettt ere e enns 12-2

13 Extraction in Data Warehouses

Overview of Extraction in Data Warehouses..............ccccooviiiiiiiiiccccccccce e 13-1
Introduction to Extraction Methods in Data Warehouses..............ccocoooiiiiiiiiiiiiiiinns 13-2
Logical Extraction Methodsc.couoiiiii 13-2
FUIL EXETACHION ..ottt 13-2
Incremental EXtractioncoiiiiiiiiiiiiiiiiiccc s 13-2
Physical Extraction Methodscoiiiiiiii 13-2
Online EXTactioncooviiiiiiiiiiici s 13-3

Offline EXtractioncoiuiiiiiiiiiiiiiiiiccic s 13-3
Change Data Capturecouoiiririeicc s 13-3
TIMESTAINPS ...t 13-4
Partitioningcooceeiiiiiii e 13-4
TTIGEOTS oottt s 13-4

Data Warehousing Extraction Examples.............cccccocoooiiininiinic 13-5
Extraction Using Data Filesc.cccooiiiiiiii 13-5
Extracting into Flat Files Using SQL*PIUSccoooiiiiiiiiiiiiceec e 13-5
Extracting into Flat Files Using OCI or Pro*C Programs...........cccccceeevvvrvcnvveeennennnes 13-7
Exporting into Export Files Using the Export Utilitycccccooiiiiiiiiii 13-7
Extracting into Export Files Using External Tablesccccocoooiiiii 13-7
Extraction Through Distributed Operations............ccccoceeuvrrrirrninrniniirrereeeeereeeeeeeenes 13-8

14 Transportation in Data Warehouses

Overview of Transportation in Data Warehousesccccceeeeeeineineeneincinccnccnecrecneeeens 14-1
Introduction to Transportation Mechanisms in Data Warehouses.............c.ccccoccenicnccnccnenne 14-1
Transportation Using Flat Files...........cccooiiiiiiiii 14-1
Transportation Through Distributed Operations..........c.cccccccueueucieureniiicineeeceeeeeeeeeees 14-2
Transportation Using Transportable Tablespaces............cccoviiiiiiiiiieiiiiiiiicieeiccnens 14-2
Transportable Tablespaces Example..........cccoooiioiiiiiiiniiiiccc 14-2

Other Uses of Transportable TableSpacesccccoceiuiuiciieiicieieiccceeecceeeeneenenens 14-4

15 Loading and Transformation

Overview of Loading and Transformation in Data Warehouses..............c.cccccccoovniinnnnn 15-1
TransfOrmMation FLIOWc.ccocciiriieiieieiceieie ettt ettt st ae st et e eaa et e e e e s e eseesasseessenneas 15-1
Multistage Data Transformation ... 15-2
Pipelined Data Transformationcccccoceeiiiieiniiiicceeeeeeeeeee e 15-2
STAGING ATC.....cviviviiiiiieicicicieeee s 15-3
Loading MechaniSmS...........ocociiiiiiiiiiniiicireecete ettt 15-3
Loading a Data Warehouse with SQL*Loader..........ccccccceeurirririiirinniniiirrcrcrereeeeseeecenes 15-3
Loading a Data Warehouse with External Tables............ccccocooiiiiiiiiiiiii, 15-4
Loading a Data Warehouse with OCI and Direct-Path APIscccccccevvvninnninininne 15-6
Loading a Data Warehouse with EXport/ImMport..........cccccoevviviiiinnniiirnrcccereceeeeenes 15-6
Transformation MeChANISINSccoiieiiiiiiicciceeeete ettt sa e e a et e e sa e s e e sa e seesaeseenes 15-6

viii

16

Transforming Data Using SQL..........c.cccoiiiiiiiiiiiii s 15-6

CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT 15-6
Transforming Data Using UPDATE..........ccccccccoiiiiiiiicccecceeceeeeeeeeeeeeeeeeeeeees 15-7
Transforming Data Using MERGE.........c...cccoooiiiiiii 15-7
Transforming Data Using Multitable INSERTccccooiiiiiiiiiic 15-7
Transforming Data Using PL/SQLcccccccoiiiiiiiiiiiiicceeceeeeeeeeeeeeeeeeeeseneeneeenees 15-9
Transforming Data Using Table FUNCHONS ..o, 15-10
What is a Table FUNCHON?........ccccoviiiiiiiiiiiiiiias 15-10

Error Logging and Handling Mechanisms.............cccoccoooiiniiiiniiinccne 15-16
Business Rule Violationscccoceieiiiiiiiiiiiii s 15-16
Data Rule Violations (Data EITors)cocceoeerieireineinieinieinicenectseseseesieeere s e ee 15-17
Handling Data Errors in PL/SQL.......ccccccoiiiiiiiiiiieceeeceeeeeeeeeeeeeeeeee s 15-17
Handling Data Errors with an Error Logging Table...........cccccoooiiiiiii 15-17
Loading and Transformation Scenarios.............cccoooiiiiiiiiiiiiiicce 15-19
Key LOOKUP SCENATIO.......oiviiiiiiiiiiiiiiii s 15-19
Business Rule Violation SCeNArio..........cccoviviiiiiiiiiiiiiiiiiii e 15-19
Data EITOr SCENATIOSucveiiiiiieiiietceceetc st ses s 15-20
Pivoting SCENATIOSc.ciiiiiiiiiiiiiicciii e 15-22

Maintaining the Data Warehouse

Using Partitioning to Improve Data Warehouse Refresh...............cccooniiniin, 16-1
Refresh SCENQATIOScccvviiiiiiiiiiiiciiiiccc s 16-4
Scenarios for Using Partitioning for Refreshing Data Warehouses............ccccooooiiinnni. 16-5
Refresh SCeNario 1.......ccoiiiiiiiiiiiiii s 16-5
Refresh SCenario 2. 16-6
Optimizing DML Operations During Refresh..................ccccooiii 16-6
Implementing an Efficient MERGE Operationcccccevvrvvinininnninrrneeseeeseeeeeeeeenes 16-6
Maintaining Referential INtegritycccooeuiiiiiiiiiiiii 16-9
Purging Data........ccuoiiiiiii s 16-9
Refreshing Materialized VIewWs...........cccccoiiiiniiiiiica 16-10
Complete Refresh.........ccooiiiiiiiiiiii 16-11
Fast REfIESIovvviiiicici ettt 16-11
Partition Change Tracking (PCT) Refresh ... 16-11
ON COMMIT Refreshcccoviviiiiiiiiiiiiiiiiiiii s 16-12
Manual Refresh Using the DBMS_MVIEW Package............cccccoeivniiiininiinieiicceeccee 16-12
Refresh Specific Materialized Views with REFRESHccccccccccciiiiinnniiincccrene 16-13
Refresh All Materialized Views with REFRESH_ALL_MVIEWS......cccccovvviiiiiiiiieeceeeenee 16-13
Refresh Dependent Materialized Views with REFRESH_DEPENDENTccccccoceunee. 16-14
Using Job Queues for Refresh ... 16-15
When Fast Refresh is POSSIDIE ..o 16-15
Recommended Initialization Parameters for Parallelism............ccccccocoiiiiiiiiiiiiiinnnes 16-15
Monitoring a Refreshc.cccociiiiiiiiice s 16-16
Checking the Status of a Materialized VIeWc..cccooviiiiiiiiiiniic e 16-16
Viewing Partition FreShness..........c.cccooviiiiiiiiiiiiiiiiiiccccccccces 16-16
Scheduling REfIEShcccviviiiiiir e 16-18
Tips for Refreshing Materialized Views with Aggregates..........c.cccocoovvviiiniinicinicnicne, 16-19
Tips for Refreshing Materialized Views Without Aggregatescccooevriviriniiiinennne. 16-21

Tips for Refreshing Nested Materialized VieWs..........cccccoviiiiiiiiciiiii 16-22

Tips for Fast Refresh with UNION ALL........ccccooviiiiiiiiiiiiicccesceseeeens 16-22
Tips for Fast Refresh with Commit SCN-Based Materialized View Logsc.cccccevuvenencne. 16-23
Tips After Refreshing Materialized VIeWscccooouoiiiiiiiiiii 16-23
Using Materialized Views with Partitioned Tables..............cccccooiiiii, 16-23
Fast Refresh with Partition Change Trackingc.cccccccoeeveeiiininnincrrcrreeeeeeeeeeeeaes 16-23
PCT Fast Refresh Scenario 1 ... 16-24

PCT Fast Refresh Scenario 2. 16-25

PCT Fast Refresh Scenario 3 ... 16-26

Fast Refresh with CONSIDER FRESHccccocoviiiiiiiiniiiiiiiics 16-26

17 Change Data Capture

Overview of Change Data Capture............ccccviiiiiniiiiiniiii s 17-2
Capturing Change Data Without Change Data Capture............ccccocevviiininiinniiiinn 17-2
Capturing Change Data with Change Data Capture..........cccccccecuerviiinvnnrnrccrreccene 17-3
Publish and Subscribe Model...........ccccoiiiiiiiiiiiiiiii s 17-4

PUBLSRET ... 17-4
SUDSCIIDTS ...vviitiiit s 17-6

Change Sources and Modes of Change Data Capturecccocoooriiiiiiiiiiiiceieens 17-8
Synchronous Change Data Captureooeeueiiiciiiiiiicecc e 17-8
Asynchronous Change Data Captureccccoceeuvirririiiinnrnncreceer s 17-9

Asynchronous HotLog Mode............oiiiiiiiiii s 17-10
Asynchronous Distributed HotLog Modeccoooiiiiiiiiiicccce 17-10
Asynchronous AUtOLOZ MOde ..o s 17-11

CRaNGEe Sets ..o 17-14
Valid Combinations of Change Sources and Change Sets..........c.coocoeiiiiiiiniiicici, 17-15

Change Tables...........cccoviiiiiii e 17-15

Getting Information About the Change Data Capture Environment..............cccocoooiinnnne. 17-16

Preparing to Publish Change Dataccoooiiiiiiiiiiina 17-17
Creating a User to Serve As a Publisher ... 17-18

Granting Privileges and Roles to the Publisher ..o 17-18
Creating a Default Tablespace for the Publisher...........ccccooooiiii 17-18
Password Files and Setting the REMOTE_LOGIN_PASSWORDFILE Parameter 17-19
Determining the Mode in Which to Capture Data.........c.ccooooiiiiiiiiiii 17-19
Setting Initialization Parameters for Change Data Capture Publishingcccccccoeennne.. 17-20
Initialization Parameters for Synchronous Publishing...........c.cccccoevvvininnnnnnncne. 17-20
Initialization Parameters for Asynchronous HotLog Publishingc..ccccccoevennnnn 17-20
Initialization Parameters for Asynchronous Distributed HotLog Publishing.............. 17-21
Initialization Parameters for Asynchronous AutoLog Publishing............ccccccccieinee. 17-23
Adjusting Initialization Parameter Values When Oracle Streams Values Change.............. 17-26
Tracking Changes to the CDC ENVIironmentccccccevvivivinininnnnnnnnnnscscccseceaes 17-26

Publishing Change Data..............ccccooiiiiiiiii e 17-26
Performing Synchronous Publishing ..o 17-26
Performing Asynchronous HotLog Publishing..........c.cccocoeiiiiiiiiiiiiiiiiiiccccccnes 17-29
Performing Asynchronous Distributed HotLog Publishing...........c.cccoeevvnnnnnnnnncnne. 17-32
Performing Asynchronous AutoLog Publishing............c.ccccoiiiiie, 17-38

Subscribing to Change Data ... 17-44

Managing Published Data..............ccoooiiiiii s 17-48

Managing Asynchronous Change SOUICesccoceuoioirieieiiciciniciccec 17-48
Enabling And Disabling Asynchronous Distributed HotLog Change Sources............ 17-48
Managing Asynchronous Change Setscccooiiiiiiiic e, 17-49
Creating Asynchronous Change Sets with Starting and Ending Dates......................... 17-49
Enabling and Disabling Asynchronous Change Setsc.ccccceceirvicnnvnenreneenes 17-50
Stopping Capture on DDL for Asynchronous Change Sets..........c.cccoooeveiiiiiicininnnnan 17-50
Recovering from Errors Returned on Asynchronous Change Setscccccceveneenen 17-51
Managing Synchronous Change Sets..........c.cccccerrirriiirnnnirreerrr s 17-54
Enabling and Disabling Synchronous Change Sets...........cccccooiiiiiiiniiiice 17-54
Managing Change Tables...........ccoooiiiiii 17-54
Creating Change TabIesc.cccccvuiiiiiriiiiiiiere s 17-54
Understanding Change Table Control Columnscccoueiieiiiiiicccce 17-55
Understanding TARGET_COLMAP$ and SOURCE_COLMAPS$ Values..................... 17-57
Using Change Markers...........ccooiiiiiiiiieeeeeeeee et seaeseseseseesaees 17-59
Controlling Subscriber Access to Change Tables.............ccooeiiiiiiiiiiiie 17-60
Purging Change Tables of Unneeded Data...........ccceueiiiiiiiiiiiiieic 17-61
Dropping Change TabIes.........ccccccoiiuiiiiiiiinicrreeeeeeeee s 17-62
Exporting and Importing Change Data Capture Objects Using Oracle Data Pump 17-63
Restrictions on Using Oracle Data Pump with Change Data Capture..........c.c..cco.c...... 17-63
Examples of Oracle Data Pump Export and Import Commandscccceeevvvrirennnce. 17-64
Publisher Considerations for Exporting and Importing Change Tables....................... 17-64
Re-Creating AutoLog Change Data Capture Objects After an Import Operation....... 17-65
Impact on Subscriptions When the Publisher Makes Changes............cccccevvvrvnncrncncncnne. 17-66
Considerations for Synchronous Change Data Capturec.ccococoiiiiiiiiiiiiiiins 17-66
Restriction on Direct-Path INSERT............ccccccoiiiiiiiiiiiiiine 17-66
Datatypes and Table Structures Supported for Synchronous Change Data Capture......... 17-67
Limitation on Restoring Source Tables from the Recycle Bin..........ccccoooviiiiiininininnne. 17-67
Considerations for Asynchronous Change Data Capture...............ccccoeiiiiiiiiiiiiiinnn. 17-67
Asynchronous Change Data Capture and Redo Log Filesccccccovviniinnnnnnnnncne. 17-68
Asynchronous Change Data Capture and Supplemental Loggingccccoovereieiinnennnee. 17-70
Asynchronous Change Data Capture and Oracle Streams Components............c.cccceeveence. 17-70
Datatypes and Table Structures Supported for Asynchronous Change Data Capture...... 17-71
Restrictions for NOLOGGING and UNRECOVERABLE Operationscccocoevvvinininnnn. 17-72
Implementation and System Configuration ..., 17-72
Database Configuration Assistant Considerationsc.ccccccceeeurreierrnennnnnrrerneenes 17-72
Summary of Supported Distributed HotLog Configurations and Restrictions................... 17-73
Oracle Database Releases for Source and Staging Databases............cccoooeveeiriinininnnnn 17-73
Upgrading a Distributed HotLog Change Source to Oracle Release 11 (11.1 or 11.2). 17-73
Hardware Platforms and Operating Systems..........ccccccovivviiinininncns 17-74
Requirements for Multiple Publishers on the Staging Databasec.c..ccccoovunieinnnne. 17-74
Requirements for Database Links.........ccccccociiiiiiiiniiccccrcc e 17-74

Part V Data Warehouse Performance

xi

18 Basic Query Rewrite

Overview of QUery REWTItec.ccoiiiiiiiiiiii e 18-1
When Does Oracle Rewrite @ QUETY?........cooiiiiiiiiiiiicieeeeee et 18-2
Ensuring that Query Rewrite Takes Effect............cccooooiiiiiic 18-2
Initialization Parameters for Query Rewrite..........ccccovvviiiiiiniiiniiiiiii, 18-3
Controlling QUETY REWTIEE ... 18-3
Accuracy of QUEry REWTIteccceviiiiiiiiiiiiiiiiiicc s 18-3
Privileges for Enabling Query ReWTite..........ccccccciiiiiiiiiiiiiiiis 18-4
Sample Schema and Materialized VIEWS..........ccccccciiiiiiiiiiiiniiiccccrerceeeeeeee s 18-5
How to Verify Query Rewrite Occurred ... 18-6
Example of Query ReWTite ... 18-6

19 Advanced Query Rewrite

How Oracle ReWTites QUETIESc.cciiuiiiiriiiiiiiieieiete ettt sttt sttt sttt ese et eaeebeebe b eenean 19-1
Cost-Based OptmMIZationc.ccciuiiuiuiiiiiiiicceeeeeeeeee et seees 19-2
General Query Rewrite Methods ..., 19-3

When are Constraints and Dimensions Needed?ccocooiinc 19-3
Checks Made by QUery REWTIec.ccuiiiiiiiiiiiiiiiiciccereec s 19-4
Join Compatibility ChecK..........coooueiiiiiiiiii e 19-4
Data Sufficiency Check ... 19-8
Grouping Compatibility Checkccooiiiiiiiiiccccree s 19-9
Aggregate Computability Check........c.coooii 19-9
Query Rewrite Using DImMeNSIONS........cciiuiiiuiiiiiicicicicicicieeiei i 19-9
Benefits of Using DIMeNSIONSc.ccccuiuiueiriiiiiiiiiiiiicicicieieieeeeeeeeee e eeeaes 19-9
How to Define DImeNSIONSc.cceiuiiiiiiiiiiiiiiiiiiiiiiciccces s 19-10

Types of QUery REWTIteccoiiiiiiiiiiiiii e 19-11
Text Match REWTIte ...t 19-11
JOIN BACK ..ttt ettt b bt sttt ettt ettt e he b 19-12
Aggregate Computabilityccooouoiiiiii 19-14
AGEregate ROIIUP ...c.couiiiiiiiicc st 19-15
Rollup Using @ DIMeNSION........ccoeviiiiiiiiiiiiiiiiciiinicic s 19-16
When Materialized Views Have Only a Subset of Data...........ccooooviiiiiine, 19-16

Query Rewrite Definitions.......c.cccceueiiiiiiiriririiiirirccrre e 19-17
Selection Categories.........ccviiiiiiieiiiiiiiiiii 19-17
Examples of Query Rewrite Selection............ccccccuviiiiiiiiiniiiiiciiiiiiinnccaes 19-18
Handling of the HAVING Clause in Query Rewrite.........cccccccceciiiiiniiinniiirnes 19-20
Query Rewrite When the Materialized View has an IN-Listcccooooeiiiinnnnn 19-21
Partition Change Tracking (PCT) REWTiIte.........cccccciiiiiiiiiiiiiiiiiiiiriiccccccaes 19-21
PCT Rewrite Based on Range Partitioned Tablesccccovoiiiiniiiiiiiciiiccnes 19-22
PCT Rewrite Based on Range-List Partitioned Tables............cccccccovvvvninnnnnnnn 19-23
PCT Rewrite Based on List Partitioned Tables..........cccccoouoiniiiiiiiniiiiiiiccces 19-25
PCT Rewrite and PMARKER ..o 19-28
PCT Rewrite Using Rowid as PMARKER..........cccoooiiiiii 19-29
Multiple Materialized VIEWS.........ccccceviriiiiiiiniiiiiiiiiiiiiisc e 19-30

Other Query Rewrite Considerations ... 19-37
Query Rewrite Using Nested Materialized VIeWs.......c.c.ccooiiiiiiiiiiiiiiiie, 19-37
Query Rewrite in the Presence of Inline VIews ..o 19-38

Xii

Query Rewrite Using Remote Tablesccccooiiiiiiiiiiiiiiiiiiene 19-39

Query Rewrite in the Presence of Duplicate Tables.........c.c.ccooriiiiiiiiiiiii, 19-40
Query Rewrite Using Date FOIAINGccooviiiiiiiiiiiirr e 19-41
Query Rewrite Using View CONStraintscooerueiiiicieieiicicicccc s 19-43
View Constraints Restrictions..........ccoceoiiiiiiiiiniiniiiiccsccc s 19-44
Query Rewrite Using Set Operator Materialized VIEWScccoovvrvinninnnininicccccccnes 19-44
UNION ALL MaTKETovuiiiiiiiiiiiiiiici s nssnnis 19-46
Query Rewrite in the Presence of Grouping Sets ... 19-47
Query Rewrite When Using GROUP BY EXtensions...........ccocceeeeiiecciiccccceneenenes 19-47
Hint for Queries with Extended GROUP BYcccoeoiiiieiiiicieeeee et 19-51
Query Rewrite in the Presence of Window Functions............ccccooiiiiiiiiiiiici 19-51
Query Rewrite and Expression MatChingcccocoviviiinnnninninci e 19-51
Query Rewrite Using Partially Stale Materialized Views..........cccoooiiiieiiiiiieiiiinnnn 19-52
Cursor Sharing and Bind Variables.............cccooiiic 19-54
Handling Expressions in QuUery REWTite...........cccoovviiiiiiiiniiinrcree e 19-55
Advanced Query Rewrite Using Equivalencescccccoooiiiiiiiiiiciccccns 19-56
Creating Result Cache Materialized Views with Equivalences...............cccoooooiiiiiinnns 19-58
Verifying that Query Rewrite has Occurred.............ccooiiiiiiiie 19-60
Using EXPLAIN PLAN with Query ReWrite.......c.ccoooiieiiiiiiii 19-60
Using the EXPLAIN_REWRITE Procedure with Query Rewritecccoooviriiiiinnne. 19-61
DBMS_MVIEW .EXPLAIN_REWRITE Syntax.........cccocoevvuiiviiiiiiiiiriieniniceenenenns 19-61
Using REWRITE_TABLEccooiiiiiiiiiiiinsss s nssnnis 19-62
USING @ VAITAY ...cvoviviiiiiiiiiicieit s 19-63
EXPLAIN_REWRITE Benefit StatiStiCS...cccveeeeouieieeeeeeeeeeeeeeeeeeeeeeeeeeeereeseeaeeseeseeessneesennens 19-65
Support for Query Text Larger than 32KB in EXPLAIN_REWRITE.............ccccccoureea 19-65
EXPLAIN_REWRITE and Multiple Materialized Views..........ccccoooiiiiiiiiiiiinnnnns 19-65
EXPLAIN_REWRITE OUtPUL....cooiiiiiiiiiiiiiieiic e 19-66
Design Considerations for Improving Query Rewrite Capabilities............cccooorriiinnniin. 19-67
Query Rewrite Considerations: CONStraintsccccoueerueieioiicicieiiiciceccece 19-67
Query Rewrite Considerations: DIMenSions...........ccovuvuvrrniririnininieiii e 19-67
Query Rewrite Considerations: Outer JOINS.cooceuiiiiieieiiiicieccc 19-68
Query Rewrite Considerations: Text Match...........c.cocoooeiiiiii 19-68
Query Rewrite Considerations: AGEregatescccccecirrieiiiiiinirineerrersreseeeeeeesee s 19-68
Query Rewrite Considerations: Grouping Conditions..........ccccceeiieieiiiiciciniiceiece e 19-68
Query Rewrite Considerations: Expression Matchingccccoeevviiinininniiiccee, 19-68
Query Rewrite Considerations: Date FOIdINg...........cccovvvirnnnininininiiicccciccccccccnnes 19-69
Query Rewrite Considerations: Statisticsooieeieiiiiiiiiiic e, 19-69
Query Rewrite Considerations: HINtS.........ccccovuiiviiiiiiiiiiiiiinnicicccccccnne 19-69
REWRITE and NOREWRITE HINtScccocouruiiiiiiiiiiiiicceescnnenes 19-69
REWRITE_OR_ERROR HiNt.....coooviiiimiiiiiiiiiiiiissscssscsesenssinis 19-70
Multiple Materialized View Rewrite Hints.........cccooooviiiiiiiiiiciicc 19-70
EXPAND_GSET_TO_UNION Hintcoovviiiiiiiiiiiiiiiiccc s 19-70

20 Schema Modeling Techniques

Schemas in Data WarehiOUSeSooooviiieeiiieeee et e e e e naeeeeereeeenneas 20-1
TRIrd NOIMAL FOIIM.....ooiiiiiiiiiiieeceeeeee ettt ettt eaae e e e tae s eaae s ssaveesentesesssnessnnneesnseesennes 20-1
Optimizing Third Normal Form QUETIEsccccccceiiiiiiiiiiiiniiiiiiiiiincnccceses 20-2

xiii

L 7 Ve Lo 1 T=) o - Y- F SRR 20-2

Snowflake SChemas..........ccccoiiiiiiiiiiiii s 20-3
Optimizing Star QUETIes...........cccccoiiiiiiiiiiiii s 20-4
Tuning Star QUETIESviuiiiiicice 20-4
Using Star Transformation..........ccooiiii 20-4
Star Transformation with a Bitmap IndeX.........cccccceiuiiiiiiiiiiiiiccccceeeeees 20-5
Execution Plan for a Star Transformation with a Bitmap Indexcccccooevviviinnnnnnn 20-6

Star Transformation with a Bitmap Join IndeX.......cccoooii 20-7
Execution Plan for a Star Transformation with a Bitmap Join Indexcccccceeeennnne. 20-7

How Oracle Chooses to Use Star Transformation ..., 20-8

Star Transformation ReStriCtionscccccciiiiiiiiiiiiiiiiiices 20-8

21 SQL for Aggregation in Data Warehouses

Overview of SQL for Aggregation in Data Warehouses.................cccococoiiiiiiiiiniiiiin, 21-1
Analyzing Across Multiple DIMeNSions.........c.cccoccciiiiiiiicniceceeeceeeeeeeeeeeeeeeeeeeeees 21-2
Optimized Performarnce ... 21-3
AN Aggregate SCENATIO........ccceuiiiieieieieiei s 21-4
Interpreting NULLS in EXampPles.......c.cooioiiiiiiiiiiiiiccccceeeeeeeeeeneeieene e 21-4

ROLLUP Extension to GROUP BYccccoooiiiiiiiiiiicccts e 21-5
When t0 Use ROLLUP.........cccooiiiiiiiiiirieeie s 21-5
ROLLUP SYNEAX ..cuciiiiiiiiiiiiiiiiicic s 21-5
Partial ROIIUPcvviuiiiiiiiiciccict s 21-6

CUBE Extension t0 GROUP BYccccoiiiiiiiiiicctc vt 21-7
When to Use CUBEcooiiiiii s 21-7
CUBE SYNEAX ...uititiiiiieieici ettt 21-8
Partial CUBEccooiiiiiirice s 21-8
Calculating Subtotals Without CUBEccccccciiiiiicrccreeeceeeeeeeeeeeeeeeeas 21-9

GROUPING FUNCHIOMS.coviiiiiiiiiiiiciiceic ettt a s es s seaenes 21-10
GROUPING FUNCHOM ...ttt 21-10
When to Use GROUPING.........cocouiiiiiiiiiiiitssn s 21-11
GROUPING_ID FUNCHON .o vvveeeeeee ettt eeae e et e et eesaaesssnaessesaessenasessnresesaeessnnees 21-12
GROUP _ID FUNCHO «.ceeiottteeeeeeeeeteee ettt ettt eeeaaat e e s eeaaaeeeessnaaaeeessesaseeessessnssneeessnnnes 21-13

GROUPING SETS EXPI@SSION.......coiuiriiiiieiiiiiieinteenteestete ettt e e 21-14
GROUPING SETS SYIUAX ..vvviririiiiiniiiniiiiiicssicssssss s ssssssessssssssssnes 21-15

CompPosite COIUIMISoooiiiiiiiiii s 21-15

Concatenated GIOUPINGS ..o 21-17
Concatenated Groupings and Hierarchical Data Cubes ..o, 21-18

Considerations when Using Aggregation ... 21-20
Hierarchy Handling in ROLLUP and CUBEcccccoiiiiiiciiccccecccceceeenenes 21-20
Column Capacity in ROLLUP and CUBEcccoooiiiiic 21-21
HAVING Clause Used with GROUP BY EXtensions...........cccccevvvivivinniniininnnncnnicnenecaes 21-21
ORDER BY Clause Used with GROUP BY EXtensions..........cccccoeeiviiinriiinnniicceieecenennn, 21-21
Using Other Aggregate Functions with ROLLUP and CUBE..........c.ccccoooiiiiiiiiine, 21-22

Computation Using the WITH Clause...............ccccoooiiiiiiiiiiiiiiiccciceceeeeenennas 21-22

Working with Hierarchical Cubes in SQL ..o 21-22
Specifying Hierarchical Cubes in SQL.........cccccoviiiiiiiiiiiiiicns 21-22
Querying Hierarchical Cubes in SQL..........ccccooiiiiiiiiiiiiiiiciccccccnne 21-23

Xiv

SQL for Creating Materialized Views to Store Hierarchical Cubescccccovvennine 21-24
Examples of Hierarchical Cube Materialized VieWsccccooviiiiiiiiiiiiiins 21-24

22 SQL for Analysis and Reporting

Overview of SQL for Analysis and Reporting ..o, 22-1
Ranking, Windowing, and Reporting Functions...............ccccooi, 22-3
RANKING ..ottt 22-3
RANK and DENSE_RANK FUNCHONScccoiiiiiiiiiiiiices 22-4
Bottom N RaNKINGc.c.oviiiiiiiiiiiiiccee s 22-8
CUME_DIST FUNCHONec ettt et eeates et e e et e sesaeeessaessssaeesssaessnnseessnsesennes 22-8
PERCENT_RANK FUNCHONcoeiiiiiiiciiiiiii e 22-9
INTILE FUNCHONcvitiieteieieteeteeeeee s 22-9
ROW_NUMBER FUNCHON ...ovviviiiiiiiiiiissscssnsnnis 22-10
WINAOWINE .ottt e 22-11
Treatment of NULLSs as Input to Window Functions.............ccccccoieoiiiiiiciincccnns 22-12
Windowing Functions with Logical Offset ..o 22-12
Centered Aggregate FUNCHONcoooiiiiiiii 22-13
Windowing Aggregate Functions in the Presence of Duplicatesccccccccueueniuennnne. 22-14
Varying Window Size for Each ROW ..o 22-15
Windowing Aggregate Functions with Physical Offsets ..o 22-15
REPOTHING ..ottt 22-16
RATIO_TO_REPORT FUNCHOMN. ..ot 22-17
LAG/LEAD. ...ttt 22-18
LAG/LEAD SYNEAX ..ot sss s 22-18
FIRST_VALUE, LAST_VALUE, and NTH_VALUE Functionscccccocevvvnnninnnninne 22-19
FIRST_VALUE and LAST_VALUE Functionsccccceceeviniiiiniiiiicccnes 22-20
NTH_VALUE FUNCHON ...cottttet ittt ettt ettt e eeeeateeeseesaaseeessssssaeesssssssseessssssssesessssnnes 22-20
Advanced Aggregates for Analysis...........ccccoociiiiiiiiiiii 22-21
LISTAGG FUNCHON ...t 22-22
LISTAGG as AgGregate. ... 22-22
LISTAGG as Reporting Aggregate ..ottt 22-22
FIRST /LAST FUNCHOTNS ...ttt ettt ettt et s etae e e eae e st e seaaeeesaeessanessenaeesnseesanees 22-23
FIRST/LAST As Regular Ag@regatescooeiiiiiiiiiiciiiciceeeeencneeeneenenenes 22-23
FIRST/LAST As Reporting Aggregatescoceueverucieiiiicieiicceccee s 22-24
INVErSe PerCeNtilec.ooiiiiiuiiiiiicicictcctc ettt 22-24
Normal Aggregate SYNEaAXcccccceuiiiiiiiiiiiiiireeecereee s 22-25
Inverse Percentile Example Basiscccccovveviiiiniiiiiiiiiiiiiiie 22-25

As Reporting Aggregates.........occviiviiiiiiiniiiiiiiieccc s 22-26
ReStIICHONS ...ttt 22-27
Hypothetical RANK ... 22-27
Linear ReGIeSSIONc.cciviiiiiiiiiiiiiicccc s 22-29
REGR_COUNT FUNCHON .ttt ettt eeeetee e eee ettt eeessaseeeesssensaeeeesssnssseesssssssssesssssnes 22-29
REGR_AVGY and REGR_AVGX FUNCHONScoovviiiiiiiieieeeeeeeeeeeeeeeee e 22-29
REGR_SLOPE and REGR_INTERCEPT FUnctions...........ccccoeueieiniininiininiiiicinncnnes 22-29
REGR_R2 FUNCHON . tvttieeeeetiee ettt ettt ettt e e e e e eaateeeessasseeessssssseesssssnnseesssssnssesessssnnns 22-29
REGR_SXX, REGR_SYY, and REGR_SXY FUNCtioNSccccceevvviiniiiiiiiiiiniiaes 22-29
Linear Regression Statistics EXamples...........ccccooeciiiininiiiiniiiiinicnccnnseeaes 22-30

XV

23

XVi

Sample Linear Regression Calculationcccoeviiuiiiiiiiiciiicc e 22-30

Statistical AgEIegates.........oooiiiiiriiiiiice 22-30
Descriptive Statistics.......cooviiiiiiiiiiiii s 22-31
Hypothesis Testing - Parametric Testscocooeieiiiiiiiiiiiicc e 22-31
Crosstab StatiStiCSsccceviiiiiiiiiiiii e 22-31
Hypothesis Testing - Non-Parametric TeStSccccccoceucieuiciiiniiiicrcceereeerceaes 22-31
Non-Parametric Correlation...........c.occeeeiiiiiininiiiiicc s 22-32

User-Defined Aggregates. ..o 22-32

Pivoting Operations.............cccooiiiiiiiiiiiiiniii e 22-33

Example: PIVOINEccuiiiiiieieiice 22-33

Pivoting on Multiple COIUMINS.........cooiiiriiiicieci e 22-34

Pivoting: Multiple AGEregatesccccoiuiiiiiriiiiiiiirricerrre e 22-34

Distinguishing PIVOT-Generated Nulls from Nulls in Source Dataccccoovrieveininnnen. 22-35

Unpivoting Operationscccccieiiiiiiiiiiiii 22-35

Wildcard and Subquery Pivoting with XML Operationsc.cccccocvcucueceieercecceecrcennnnn 22-37

Data Densification for Reporting.............cccocooviiviiiiiina 22-37

Partition JOIN SYNtaXccoceuiiiiiiiiiieie 22-38

Sample Of SParse Data.......c.cccveuiiiiiiiiriiiiiicrcrr e 22-38

HFIlng Gaps in Datac.cocueiiiiii 22-39

Filling Gaps in TWo DIMeNSioNs..........cccueiiiieiiiiiiciecete et 22-39

Filling Gaps in an INventory Tableccccccoiiiriiiirccrcerere s 22-41

Computing Data Values to Fill Gapscccccoceviiiiiiiiiiiniiiiiiiicccs 22-42

Time Series Calculations on Densified Data..............ccoooooii 22-44

Period-to-Period Comparison for One Time Level: Exampleccccooeoiiiiiinciinccnne. 22-45

Period-to-Period Comparison for Multiple Time Levels: Example.........cccccccoouviniininnnnnn 22-46

Creating a Custom Member in a Dimension: Example..........ccccoooiiiie, 22-50

Miscellaneous Analysis and Reporting Capabilities.............ccccocovnniiiniiin, 22-51

WIDTH_BUCKET FUNCHON.ooiiiiiiiniiiiiiincrsssss s 22-51
WIDTH_BUCKET SYNEAXiiiimiiiiiiiiiiiiiciiiniciiiicesniscie s sssscsssssssssessseans 22-52

Linear ALGEDTIaccccuiuiiiiiiiiiieiciicicieee e 22-54

CASE EXPIESSIONSvuvviiiiiiiiiiiciciittc s s s ssa s seaeais 22-55
Creating HiStOZTIams ... 22-56

Frequent ItemSets ... 22-57

SQL for Modeling
Overview of SQL Modeling ... 23-1

How Data is Processed in @ SQL MOdElcc.coveiieieiieieiiceeee ettt sae e saeeenas 23-3

Why Use SQL MOAELING?......coiuimiiiiiiiiiiiiiiiciciceeeeie et 23-3

SQL Modeling Capabilities..........cccoceuiuiiuiiiiiiiniiieieireeerreerireee s 23-4

Basic Topics in SQL MOdeling ..ot 23-7

BaS SCREOIMIA ...ttt 23-7

MODEL Clause SYNEAX......cccueueuirimeieieieieiereieieieieieieeeieieieseseseeeseseseaesese e aesesesesesessseseseseseassesssssseseses 23-8

Keywords in SQL MOAEINGoouoiiiieieiiii s 23-10
Assigning Values and Null Handling............ccccccoviiiininiicnces 23-10
Calculation Definitioncccceviiiiiiiiiiiii s 23-10

Cell REfEIeNCINGcucvviiecicici b 23-11
Symbolic Dimension References.............cccccccoceieiiiiiiiiinininiiiiinininnnssseaes 23-11

RULES ... 23-12
Single Cell REfEIENCESc.c.cuiuiuiuriiieiiiirccer et 23-12
Multi-Cell References on the Right Side.........ccoouoiiiiiiiiiiie 23-12
Multi-Cell References on the Left Sidecccccovuviviiiiiiiiiiniiiii 23-13
Use of the CV FUNCHOMNc.oviiiiiiiiiiic s 23-13
Use of the ANY Wildcardcccoouviviiiiiiiiiiiiiiic s 23-14
Nested Cell References...........ccooovviiiiiiiiiiiiiiiiii e 23-14

Order of Evaluation of RUIES...........ccoiiiiiiiiiiiic 23-14

Global and Local Keywords for RUIeSs ..o 23-15

UPDATE, UPSERT, and UPSERT ALL Behavior........ccccccoviiiiiiiciiiiiiiceescceeens 23-16
UPDATE Behaviorc.cviiiiiiiiiiicin s 23-16
UPSERT BERAVIOT ..ot 23-16
UPSERT ALL BERAVIOL ...t 23-17

Treatment of NULLs and Missing Cellsc.cccccociiiiiiiniiinirrcrnrceereee s 23-18
Distinguishing Missing Cells from NULLS..........ccccccoeiiriininiiinicceec s 23-19
Use Defaults for Missing Cells and NULLSccccccouoiiiiiiiiiccci 23-19
Using NULLs in a Cell REference ..o 23-20

Reference MOdelsccoviiiiiiiiiiiiiiii 23-20

Advanced Topics in SQL Modelingcccoooiiiiiiiiiiiiie 23-23

FOR LOOPS...c.iiiiiiiiiiiiiiicc et 23-23
Evaluation of Formulas with FOR LOOPS.......ccccccconinininininiiiiiiias 23-26

Iterative MOdels........ccoouiiiiiiiiiiiiiiiii 23-27

Rule Dependency in AUTOMATIC ORDER Models.........cccovvrnnnninnniininccccccecees 23-29

Ordered RUIES..........ccoiiiiiiiiiiiic 23-29

ANalytic FUNCHONScvviiceci e 23-31

Unique Dimensions Versus Unique Single References...........ccoocecoiiiniiiiiinicciinccnne. 23-32

Rules and Restrictions when Using SQL for Modeling...........cccccoovuriiiniiinninnicinieienne. 23-33

Performance Considerations with SQL Modelingcccocooiiiiiiiiiiiins 23-35

Parallel EXECULION.........coiiiiiiiiiiiiic s 23-35

Aggregate ComMPULAtioN...........cooiiiiiiiiii 23-36

Using EXPLAIN PLAN to Understand Model QUeriesccccovuvivivirninnnininnnniniincaes 23-37
Using ORDERED FAST: EXample ..o 23-37
Using ORDERED: EXaMPIe..........cccocoiiiiiiiiiiiiiiiiiiiiii s 23-37
Using ACYCLIC FAST: EXamPpIeccccoviiiiiiniiiiiiiniiiiicccceenas 23-37
Using ACYCLIC: EXaAMPLEc.oviiiiiiiiiictcccccccececee e 23-38
Using CYCLIC: EXampleccoooiiiiiiiiiiis s 23-38

Examples of SQL MOAEIiNgccccooiiiiiiiiiiiiiiiiccicc e 23-38

24 Advanced Business Intelligence Queries

Examples of Business Intelligence Queriesccccccoiiiiiiiiiiiiiiiicccceececeenas 24-1

Glossary

Index

xvii

xviii

Audience

Preface

This preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

This guide is intended for database administrators, system administrators, and
database application developers who design, maintain, and use data warehouses.

To use this document, you need to be familiar with relational database concepts, basic
Oracle server concepts, and the operating system environment under which you are
running Oracle.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

Many of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas
for information on how these schemas were created and how you can use them
yourself.

Note that this book is meant as a supplement to standard texts about data
warehousing. This book focuses on Oracle-specific material and does not reproduce in
detail material of a general nature. For additional information, see:

Xix

s The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)
» Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XX

What's New in Oracle Database?

This section describes the new features of Oracle Database 11g Release 2 (11.2) and
provides pointers to additional information. New features information from previous
releases is also retained to help those users migrating to the current release.

The following section describes new features in Oracle Database:
s Oracle Database 11g Release 2 (11.2) New Features in Data Warehousing
s Oracle Database 11g Release 1 (11.1) New Features in Data Warehousing

Oracle Database 11g Release 2 (11.2) New Features in Data
Warehousing

= Analytic Functions

New SQL analytic functions have been introduced that enable you to list (or
concatenate) measure values within a group (LISTAGG). Another new function
(NTH_VALUE) enables you to retrieve an arbitrary (in other words, nth) record in a
window. Finally, the existing functions LAG and LEAD now have been improved
with the addition of the IGNORE NULLS option.

See Also: Chapter 22, "SQL for Analysis and Reporting" for more
information

» Preprocessing of Files from External Tables

You can now specify a program to be executed that will process files and enable
Oracle Database to use the output. This preprocessing of files enables you to load
large amounts of compressed data without first uncompressing it on a disk.

See Also: Chapter 15, "Loading and Transformation" for more
information

m Materialized View Refresh Enhancements

Materialized view logs can now be purged outside the refresh process, thus
improving performance. An additional performance improvement is with
materialized views that contain aggregates, joins, or both. If you use a WITH
COMMIT SCN clause, materialized view log processing can be optimized, thus
speeding up the refresh process.

XXi

See Also: Chapter 9, "Basic Materialized Views" and Chapter 16,
"Maintaining the Data Warehouse" for more information

Oracle Database 11g Release 1 (11.1) New Features in Data

Warehousing

XXii

Pivot and Unpivot Operators

The PIVOT operator makes it easy to create aggregated cross-tabular output that
condenses many rows into a compact result set useful for reports. For instance,
input data holding sales of one month in each row can be pivoted into output
holding twelve months in each row, with each month in its own column. By
combining multiple input rows into each output row, PIVOT also enables
inter-row comparison without a table self-join. The UNPIVOT operator reshapes
data into a format useful for further relational operations. For example, if a source
data set presents twelve months of sales values in each row, UNPIVOT can reshape
each source row into twelve output rows, each holding one month of sales data.
The unpivoted results are in a more normalized relational form than the source
data, and they can be manipulated with simpler and more efficient SQL.

See Also: Chapter 21, "SQL for Aggregation in Data Warehouses"
for more information

Partition Advisor

The SQL Access Advisor has been enhanced to include partition advice. It
recommends the right strategy to partition tables, indexes, and materialized views
to get best performance from an application.

See Also: Chapter 5, "Partitioning in Data Warehouses" for more
information

Change Data Capture (CDC) Enhancements

CDC is now aware of direct-path load operations and implicit data changes as the
result of partition-maintenance operations. Users can now turn synchronous CDC
on and off as needed. Also, the flexibility of purging change data from change
tables has been improved, so you can specify a date range for which data should
be purged.

Another improvement is that it is easier to maintain a subscription window to
change data. You now have control over the definition of the change subscription,
so the window can be moved forward and backward.

See Also: Chapter 17, "Change Data Capture" for more information

Query Rewrite Enhancements

Query rewrite has been enhanced to support queries containing inline views. Prior
to this release, queries containing inline views could rewrite only if there was an
exact text match with the inline views in the materialized views. Because inline
views no longer need to textually match between the query and the materialized
view, a larger number of queries with inline views can be rewritten. Another
significant query rewrite improvement is the ability to rewrite queries that
reference remote tables.

See Also: Chapter 18, "Basic Query Rewrite" for more information

Refresh Enhancements

Refresh has been enhanced to support automatic index creation for UNION ALL
materialized views, the use of query rewrite during a materialized view's atomic
refresh, and materialized view refresh with set operators. Also, partition change
tracking refresh of UNION ALL materialized views is now possible. Finally, catalog
views have been enhanced to contain information on the staleness of partitioned
materialized views. These improvements will lead to faster refresh performance.

See Also: Chapter 16, "Maintaining the Data Warehouse" for more
information

Oracle OLAP Option Data Warehousing Features

The OLAP Option of the Oracle Database has been enhanced with several features
designed to make OLAP cubes attractive alternatives to tables for managing and
querying aggregate data in the data warehouse. These include:

- Further integration of cubes into the SQL query engine. Advancements
include integration of cubes with the Oracle query optimizer and a cube row
source. These features dramatically increase the efficiency of SQL queries that
select from OLAP cubes and dimensions by pushing joins directly into the
Oracle Database's multidimensional engine, allowing efficient joins between
tables and cubes and by improving overall row /second throughput when
selecting from cubes.

- Automatic query rewrite to cube organized materialized views.
Cube-organized materialized views access data from OLAP cubes rather than
tables. Like table-based materialized views, application can write queries to
detail tables or views and let the database automatically rewrite the query to
pre-aggregated data in the cube.

- Database-managed automatic refresh of cubes. In this release, cubes can be
refreshed using the DBMS_MVIEW.REFRESH program, just like table-based
materialized views. Cubes provide excellent support for FAST (incremental)
refresh.

— Cost-based aggregation. In many situations, cubes are much more efficient at
managing aggregate data as compared to tables. Cost-based aggregation
improves upon these advantages by improving the efficiency of
pre-aggregating and querying aggregate data, and by simplifying the process
of managing aggregate data.

Database administrators who support dimensionally modeled data sets (for

example, star/snowflake schema) for query by business intelligence tools and

applications should consider using OLAP cubes as a summary management
solution because they may offer significant performance advantages.

xXiii

XXiv

Part |

Concepts

This section introduces basic data warehousing concepts.
It contains the following chapter:

» Chapter 1, "Data Warehousing Concepts"

1

Data Warehousing Concepts

This chapter provides an overview of the Oracle data warehousing implementation. It
includes:

s Whatis a Data Warehouse?
s Data Warehouse Architectures
s Extracting Information from a Data Warehouse

Note that this book is meant as a supplement to standard texts about data
warehousing. This book focuses on Oracle-specific material and does not reproduce in
detail material of a general nature. Two standard texts are:

s The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)
s Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

What is a Data Warehouse?

A data warehouse is a relational database that is designed for query and analysis
rather than for transaction processing. It usually contains historical data derived from
transaction data, but can include data from other sources. Data warehouses separate
analysis workload from transaction workload and enable an organization to
consolidate data from several sources. This helps in:

= Maintaining historical records

= Analyzing the data to gain a better understanding of the business and to improve
the business.

In addition to a relational database, a data warehouse environment can include an
extraction, transportation, transformation, and loading (ETL) solution, statistical
analysis, reporting, data mining capabilities, client analysis tools, and other
applications that manage the process of gathering data, transforming it into useful,
actionable information, and delivering it to business users.

See Also: Chapter 12, "Overview of Extraction, Transformation,
and Loading"

A common way of introducing data warehousing is to refer to the characteristics of a
data warehouse as set forth by William Inmon:

= Subject Oriented

= Integrated

s Nonvolatile

Data Warehousing Concepts 1-1

What is a Data Warehouse?

s Time Variant

Subject Oriented

Integrated

Nonvolatile

Time Variant

Data warehouses are designed to help you analyze data. For example, to learn more
about your company's sales data, you can build a data warehouse that concentrates on
sales. Using this data warehouse, you can answer questions such as "Who was our best
customer for this item last year?" or "Who is likely to be our best customer next year?"
This ability to define a data warehouse by subject matter, sales in this case, makes the
data warehouse subject oriented.

Integration is closely related to subject orientation. Data warehouses must put data
from disparate sources into a consistent format. They must resolve such problems as
naming conflicts and inconsistencies among units of measure. When they achieve this,
they are said to be integrated.

Nonvolatile means that, once entered into the data warehouse, data should not
change. This is logical because the purpose of a data warehouse is to enable you to
analyze what has occurred.

A data warehouse's focus on change over time is what is meant by the term time
variant. In order to discover trends and identify hidden patterns and relationships in
business, analysts need large amounts of data. This is very much in contrast to online
transaction processing (OLTP) systems, where performance requirements demand
that historical data be moved to an archive.

Contrasting OLTP and Data Warehousing Environments

Figure 1-1 illustrates key differences between an OLTP system and a data warehouse.

Figure 1-1 Contrasting OLTP and Data Warehousing Environments

OLTP Data Warehouse

Complex data

structures Multidimensional
(3NF databases) data structures
Few Indexes Many
Many Joins Some
Normalized Duplicated Denormalized
DBMS Data DBMS
Rare Derived Data Common
and Aggregates

1-2 Oracle Database Data Warehousing Guide

Data Warehouse Architectures

One major difference between the types of system is that data warehouses are not
usually in third normal form (3NF), a type of data normalization common in OLTP
environments.

Data warehouses and OLTP systems have very different requirements. Here are some
examples of differences between typical data warehouses and OLTP systems:

s Workload

Data warehouses are designed to accommodate ad hoc queries and data analysis.
You might not know the workload of your data warehouse in advance, so a data
warehouse should be optimized to perform well for a wide variety of possible
query and analytical operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

s Data modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly or
weekly) using bulk data modification techniques. The end users of a data
warehouse do not directly update the data warehouse except when using
analytical tools, such as data mining, to make predictions with associated
probabilities, assign customers to market segments, and develop customer
profiles.

In OLTP systems, end users routinely issue individual data modification
statements to the database. The OLTP database is always up to date, and reflects
the current state of each business transaction.

= Schema design

Data warehouses often use denormalized or partially denormalized schemas (such
as a star schema) to optimize query and analytical performance.

OLTP systems often use fully normalized schemas to optimize
update/insert/delete performance, and to guarantee data consistency.

s Typical operations

A typical data warehouse query scans thousands or millions of rows. For example,
"Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example,
"Retrieve the current order for this customer."

s Historical data

Data warehouses usually store many months or years of data. This is to support
historical analysis and reporting.

OLTP systems usually store data from only a few weeks or months. The OLTP
system stores only historical data as needed to successfully meet the requirements
of the current transaction.

Data Warehouse Architectures

Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

s Data Warehouse Architecture: Basic

» Data Warehouse Architecture: with a Staging Area

Data Warehousing Concepts 1-3

Data Warehouse Architectures

s Data Warehouse Architecture: with a Staging Area and Data Marts

Data Warehouse Architecture: Basic

Figure 1-2 shows a simple architecture for a data warehouse. End users directly access
data derived from several source systems through the data warehouse.

Figure 1-2 Architecture of a Data Warehouse

Data Sources Warehouse Users

Operational
System

—F—

d—0
Metadata

Summary
Data

—

Raw Data

Operational Reporting
System
—
| =————]
Flat Files Mining

In Figure 1-2, the metadata and raw data of a traditional OLTP system is present, as is
an additional type of data, summary data. Summaries are very valuable in data
warehouses because they pre-compute long operations in advance. For example, a
typical data warehouse query is to retrieve something such as August sales. A
summary in an Oracle database is called a materialized view.

Data Warehouse Architecture: with a Staging Area

You must clean and process your operational data before putting it into the
warehouse, as shown in Figure 1-3. You can do this programmatically, although most
data warehouses use a staging area instead. A staging area simplifies building
summaries and general warehouse management. Figure 1-3 illustrates this typical
architecture.

1-4 Oracle Database Data Warehousing Guide

Data Warehouse Architectures

Figure 1-3 Architecture of a Data Warehouse with a Staging Area

Data Staging
Sources Area Warehouse Users

Operational

System Analysis

3

Operational
System

—————

Flat Files

Data Warehouse Architecture: with a Staging Area and Data Marts

Although the architecture in Figure 1-3 is quite common, you may want to customize
your warehouse's architecture for different groups within your organization. You can
do this by adding data marts, which are systems designed for a particular line of
business. Figure 14 illustrates an example where purchasing, sales, and inventories
are separated. In this example, a financial analyst might want to analyze historical data

for purchases and sales or mine historical data to make predictions about customer
behavior.

Figure 1-4 Architecture of a Data Warehouse with a Staging Area and Data Marts

Data Staging Data
Sources Area Warehouse Marts Users
8
Operational Purchasing Analysis
System
Summary |Raw Data
Data
Operational Sales
System

— -

Flat Files Inventory Mining

Note: Data marts are an important part of many data warehouses,
but they are not the focus of this book.

Data Warehousing Concepts 1-5

Extracting Information from a Data Warehouse

Extracting Information from a Data Warehouse

OLAP

You can extract information from the masses of data stored in a data warehouse by
analyzing the data. The Oracle Database provides several ways to analyze data:

= A wide array of statistical functions, including descriptive statistics, hypothesis
testing, correlations analysis, test for distribution fit, cross tabs with Chi-square
statistics, and analysis of variance (ANOVA); these functions are described in the
Oracle Database SQL Language Reference.

= OLAP
s Data Mining

Oracle Database offers the industry's first and only embedded OLAP server. Oracle
OLAP provides native multidimensional storage and speed-of-thought response times
when analyzing data across multiple dimensions. The database provides rich support
for analytics such as time series calculations, forecasting, advanced aggregation with
additive and non additive operators, and allocation operators. These capabilities make
the Oracle database a complete analytical platform, capable of supporting the entire
spectrum of business intelligence and advanced analytical applications.

Oracle OLAP uses a multidimensional data model to perform complex statistical,
mathematical, and financial analysis of historical data in real time. Oracle OLAP is
fully integrated in the database, so that you can use standard SQL administrative,
querying, and reporting tools.

For more information regarding OLAP, see Oracle OLAP User’s Guide.

Full Integration of Multidimensional Technology

By integrating multidimensional objects and analytics into the database, Oracle
provides the best of both worlds: the power of multidimensional analysis along with
the reliability, availability, security, and scalability of the Oracle database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:
s The OLAP engine runs within the kernel of Oracle Database.

= Dimensional objects are stored in Oracle Database in their native
multidimensional format.

» Cubes and other dimensional objects are first class data objects represented in the
Oracle data dictionary.

= Data security is administered in the standard way, by granting and revoking
privileges to Oracle Database users and roles.

= Applications can query dimensional objects using SQL.

The benefits to your organization are significant. Oracle OLAP offers the power of
simplicity. One database, standard administration and security, standard interfaces
and development tools.

Ease of Application Development

Oracle OLAP makes it easy to enrich your database and your applications with
interesting analytic content. Native SQL access to Oracle multidimensional objects and
calculations greatly eases the task of developing dashboards, reports, business
intelligence (BI) and analytical applications of any type compared to systems that offer

1-6 Oracle Database Data Warehousing Guide

Extracting Information from a Data Warehouse

proprietary interfaces. Moreover, SQL access means that the power of Oracle OLAP
analytics can be used by any database application, not just by the traditional limited
collection of OLAP applications.

Ease of Administration

Because Oracle OLAP is completely embedded in the Oracle database, there is no
administration learning curve as is typically associated with standalone OLAP servers.
You can leverage your existing DBA staff, rather than invest in specialized
administration skills.

One major administrative advantage of Oracle's embedded OLAP technology is
automated cube maintenance. With standalone OLAP servers, the burden of
refreshing the cube is left entirely to the administrator. This can be a complex and
potentially error-prone job. The administrator must create procedures to extract the
changed data from the relational source, move the data from the source system to the
system running the standalone OLAP server, load and rebuild the cube. The DBA
must take responsibility for the security of the deltas (changed values) during this
process as well.

With Oracle OLAP, in contrast, cube refresh is handled entirely by the Oracle
database. The database tracks the staleness of the dimensional objects, automatically
keeps track of the deltas in the source tables, and automatically applies only the
changed values during the refresh process. The DBA simply schedules the refresh at
appropriate intervals, and Oracle Database takes care of everything else.

Security

With Oracle OLAP, standard Oracle Database security features are used to secure your
multidimensional data.

In contrast, with a standalone OLAP server, administrators must manage security
twice: once on the relational source system and again on the OLAP server system.
Additionally, they must manage the security of data in transit from the relational
system to the standalone OLAP system.

Unmatched Performance and Scalability

Business intelligence and analytical applications are dominated by actions such as
drilling up and down hierarchies and comparing aggregate values such as
period-over-period, share of parent, projections onto future time periods, and a
myriad of similar calculations. Often these actions are essentially random across the
entire space of potential hierarchical aggregations. Because Oracle OLAP
pre-computes or efficiently computes on the fly all aggregates in the defined
multidimensional space, it delivers unmatched performance for typical business
intelligence applications.

Oracle OLAP queries take advantage of Oracle shared cursors, dramatically reducing
memory requirements and increasing performance.

When Oracle Database is installed with Real Application Clusters (Oracle RAC),
OLAP applications receive the same benefits in performance, scalability, fail over, and
load balancing as any other application.

Reduced Costs

All these features add up to reduced costs. Administrative costs are reduced because
existing personnel skills can be leveraged. Moreover, the Oracle database can manage
the refresh of dimensional objects, a complex task left to administrators in other
systems. Standard security reduces administration costs as well. Application

Data Warehousing Concepts 1-7

Extracting Information from a Data Warehouse

Data Mining

development costs are reduced because the availability of a large pool of application
developers who are SQL knowledgeable, and a large collection of SQL-based
development tools means applications can be developed and deployed more quickly.
Any SQL-based development tool can take advantage of Oracle OLAP. Hardware
costs are reduced by Oracle OLAP's efficient management of aggregations, use of
shared cursors, and Oracle RAC, which enables highly scalable systems to be built
from low-cost commodity components.

Querying Dimensional Objects

Oracle OLAP adds power to your SQL applications by providing extensive analytic
content and fast query response times. A SQL query interface enables any application
to query cubes and dimensions without any knowledge of OLAP.

The OLAP option automatically generates a set of relational views on cubes,
dimensions, and hierarchies. SQL applications query these views to display the
information-rich contents of these objects to analysts and decision makers. You can
also create custom views that comply with the structure expected by your
applications, using the system-generated views like base tables.

Analysts can choose any SQL query and analysis tool for selecting, viewing, and
analyzing the data You can use your favorite tool or application, or use one of the tools
supplied with Oracle Database, such as Oracle Application Express and Business
Intelligence Publisher.

Efficient Storage and Uniform Availability of Summary Data

Cube materialized views bring the fast update and fast query capabilities of the OLAP
option to applications that query detail relational tables, as well as to applications that
query cubes directly.

A single cube materialized view can replace many of the relational materialized views
of summaries on a fact table, providing uniform response time to all summary data
through query rewrite. Applications experience excellent query performance.

Cube materialized views are cubes that have been enhanced to use the automatic
refresh and query rewrite features of Oracle Database. Summary data is generated and
stored in a cube, and query rewrite automatically redirects queries to the cube
materialized views.

Many of the same data dictionary views and PL/SQL packages that support relational
materialized views also support cube materialized views. Moreover, a group of
PL/SQL subprograms in DBMS_CUBE supports the rapid deployment of cube
materialized views from existing relational materialized views.

Tools for Creating and Managing Dimensional Objects

Analytic Workspace Manager is the primary tool for creating, developing, and
managing dimensional objects in Oracle Database.

Oracle OLAP is contained in the database and its resources are managed using the
same tools, such as Oracle Enterprise Manager Database Control, Automatic
Workload Repository, and Automatic Database Diagnostic Monitor.

Data mining uses large quantities of data to create models. These models can provide
insights that are revealing, significant, and valuable. For example, you can use data
mining to:

1-8 Oracle Database Data Warehousing Guide

Extracting Information from a Data Warehouse

= Predict those customers likely to change service providers.
= Discover the factors involved with a disease.
s Identify fraudulent behavior.

Data mining solves many kinds of business problems. For example, data mining can
be used to predict customers likely to attrite.

Oracle Data Mining performs data mining in the Oracle Database. Oracle Data Mining
does not require data movement between the database and an external mining server,
thereby eliminating redundancy, improving efficient data storage and processing,
ensuring that up-to-date data is used, and maintaining data security.

For detailed information about Oracle Data Mining, see Oracle Data Mining Concepts.

Oracle Data Mining Functionality

Oracle Data Mining supports the major data mining functions. There is at least one
algorithm for each data mining function.

Oracle Data Mining supports the following data mining functions:

s Classification: Grouping items into discrete classes and predicting which class an
item belongs to; classification algorithms are Decision Tree, Naive Bayes,
Generalized Linear Models (Binary Logistic Regression), and Support Vector
Machines.

= Regression: Approximating and predicting continuous numeric values; the
algorithms for regression are Support Vector Machines and Generalized Linear
Models (Multivariate Linear Regression).

= Anomaly Detection: Detecting anomalous cases, such as fraud and intrusions; the
algorithm for anomaly detection is one-class Support Vector Machines.

= Attribute Importance: Identifying the attributes that have the strongest
relationships with the target attribute (for example, customers likely to churn); the
algorithm for attribute importance is Minimum Descriptor Length.

s Clustering: Finding natural groupings in the data that are often used for
identifying customer segments; the algorithms for clustering are k-Means and
O-Cluster.

= Associations: Analyzing "market baskets", items that are likely to be purchased
together; the algorithm for associations is a priori.

» Feature Extraction: Creating new attributes (features) as a combination of the
original attributes; the algorithm for feature extraction is Non-Negative Matrix
Factorization.

In addition to mining structured data, Oracle Data Mining permits mining of text data
(such as police reports, customer comments, or physician's notes) or spatial data.

Oracle Data Mining Interfaces

Oracle Data Mining APIs provide extensive support for building applications that
automate the extraction and dissemination of data mining insights.

Data mining activities such as model building, testing, and scoring are accomplished
through a PL/SQL AP], a Java API, and SQL Data Mining functions. The Java APl is
compliant with the data mining standard JSR 73. The Java API and the PL/SQL API

are fully interoperable.

Data Warehousing Concepts 1-9

Extracting Information from a Data Warehouse

Oracle Data Mining allows the creation of a supermodel, that is, a model that contains
the instructions for its own data preparation. The embedded data preparation can be
implemented automatically and/or manually. Embedded Data Preparation supports
user-specified data transformations; Automatic Data Preparation supports
algorithm-required data preparation, such as binning, normalization, and outlier
treatment.

SQL Data Mining functions support the scoring of classification, regression, clustering,
and feature extraction models. Within the context of standard SQL statements,
pre-created models can be applied to new data and the results returned for further
processing, just like any other SQL query.

Predictive Analytics automates the process of data mining. Without user intervention,
Predictive Analytics routines manage data preparation, algorithm selection, model
building, and model scoring so that the user can benefit from data mining without
having to be a data mining expert.

Oracle Data Miner is the graphical user interface for Oracle Data Mining. Oracle Data
Miner guides you through the data preparation, data mining, model evaluation, and
model scoring process. For more information about the Oracle Data Mining interfaces,
see Oracle Data Mining Concepts.

1-10 Oracle Database Data Warehousing Guide

Part li

Logical Design

This section deals with the issues in logical design in a data warehouse.
It contains the following chapter:

= Chapter 2, "Logical Design in Data Warehouses"

2

Logical Design in Data Warehouses

This chapter explains how to create a logical design for a data warehousing
environment and includes the following topics:

= Logical Versus Physical Design in Data Warehouses
= Creating a Logical Design
= Data Warehousing Schemas

= Data Warehousing Objects

Logical Versus Physical Design in Data Warehouses

Your organization has decided to build a data warehouse. You have defined the
business requirements and agreed upon the scope of your application, and created a
conceptual design. Now you need to translate your requirements into a system
deliverable. To do so, you create the logical and physical design for the data
warehouse. You then define:

» The specific data content

= Relationships within and between groups of data

s The system environment supporting your data warehouse
s The data transformations required

s The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the
logical design, you look at the logical relationships among the objects. In the physical
design, you look at the most effective way of storing and retrieving the objects as well
as handling them from a transportation and backup/recovery perspective.

Orient your design toward the needs of the end users. End users typically want to
perform analysis and look at aggregated data, rather than at individual transactions.
However, end users might not know what they need until they see it. In addition, a
well-planned design allows for growth and changes as the needs of users change and
evolve.

By beginning with the logical design, you focus on the information requirements and
save the implementation details for later.

Logical Design in Data Warehouses 2-1

Creating a Logical Design

Creating a Logical Design

A logical design is conceptual and abstract. You do not deal with the physical
implementation details yet. You deal only with defining the types of information that
you need.

One technique you can use to model your organization's logical information
requirements is entity-relationship modeling. Entity-relationship modeling involves
identifying the things of importance (entities), the properties of these things
(attributes), and how they are related to one another (relationships).

The process of logical design involves arranging data into a series of logical
relationships called entities and attributes. An entity represents a chunk of
information. In relational databases, an entity often maps to a table. An attribute is a
component of an entity that helps define the uniqueness of the entity. In relational
databases, an attribute maps to a column.

To ensure that your data is consistent, you must use unique identifiers. A unique
identifier is something you add to tables so that you can differentiate between the
same item when it appears in different places. In a physical design, this is usually a
primary key.

While entity-relationship diagramming has traditionally been associated with highly
normalized models such as OLTP applications, the technique is still useful for data
warehouse design in the form of dimensional modeling. In dimensional modeling,
instead of seeking to discover atomic units of information (such as entities and
attributes) and all of the relationships between them, you identify which information
belongs to a central fact table and which information belongs to its associated
dimension tables. You identify business subjects or fields of data, define relationships
between business subjects, and name the attributes for each subject.

See Also: Chapter 11, "Dimensions" for further information
regarding dimensions

Your logical design should result in (1) a set of entities and attributes corresponding to
fact tables and dimension tables and (2) a model of operational data from your source
into subject-oriented information in your target data warehouse schema.

You can create the logical design using a pen and paper, or you can use a design tool
such as Oracle Warehouse Builder (specifically designed to support modeling the ETL
process).

See Also: Oracle Warehouse Builder documentation set

Data Warehousing Schemas

A schema is a collection of database objects, including tables, views, indexes, and
synonyms. You can arrange schema objects in the schema models designed for data
warehousing in a variety of ways. Most data warehouses use a dimensional model.

The model of your source data and the requirements of your users help you design the
data warehouse schema. You can sometimes get the source model from your
company's enterprise data model and reverse-engineer the logical data model for the
data warehouse from this. The physical implementation of the logical data warehouse
model may require some changes to adapt it to your system parameters—size of
computer, number of users, storage capacity, type of network, and software.

2-2 Oracle Database Data Warehousing Guide

Data Warehousing Objects

Star Schemas

The star schema is the simplest data warehouse schema. It is called a star schema
because the diagram resembles a star, with points radiating from a center. The center
of the star consists of one or more fact tables and the points of the star are the
dimension tables, as shown in Figure 2-1.

Figure 2-1 Star Schema

products times

sales
(amount_sold,
quantity_sold)

Fact Table
customers channels

Dimension Table Dimension Table

The most natural way to model a data warehouse is as a star schema, where only one
join establishes the relationship between the fact table and any one of the dimension
tables.

A star schema optimizes performance by keeping queries simple and providing fast
response time. All the information about each level is stored in one row.

Other Data Warehousing Schemas

Some schemas in data warehousing environments use third normal form rather than
star schemas. Another schema that is sometimes useful is the snowflake schema,
which is a star schema with normalized dimensions in a tree structure. Another
alternative is provided by OLAP, which supports dimensional data types such as
cubes and dimensions within Oracle Database.

See Also: Chapter 20, "Schema Modeling Techniques" for further
information regarding star and snowflake schemas in data
warehouses, Oracle Database Concepts for further conceptual
material, Oracle OLAP User’s Guide for more information regarding
OLAP schemas

Data Warehousing Objects

Fact tables and dimension tables are the two types of objects commonly used in
dimensional data warehouse schemas.

Fact tables are the large tables in your data warehouse schema that store business
measurements. Fact tables typically contain facts and foreign keys to the dimension
tables. Fact tables represent data, usually numeric and additive, that can be analyzed
and examined. Examples include sales, cost, and profit.

Dimension tables, also known as lookup or reference tables, contain the relatively
static data in the data warehouse. Dimension tables store the information you
normally use to contain queries. Dimension tables are usually textual and descriptive
and you can use them as the row headers of the result set. Examples are customers
or products.

Logical Design in Data Warehouses 2-3

Data Warehousing Objects

Data Warehousing Objects: Fact Tables

A fact table typically has two types of columns: those that contain numeric facts (often
called measurements), and those that are foreign keys to dimension tables. A fact table
contains either detail-level facts or facts that have been aggregated. Fact tables that
contain aggregated facts are often called summary tables. A fact table usually contains
facts with the same level of aggregation. Though most facts are additive, they can also
be semi-additive or non-additive. Additive facts can be aggregated by simple
arithmetical addition. A common example of this is sales. Non-additive facts cannot be
added at all. An example of this is averages. Semi-additive facts can be aggregated
along some of the dimensions and not along others. An example of this is inventory
levels, where you cannot tell what a level means simply by looking at it.

Requirements of Fact Tables

You must define a fact table for each star schema. From a modeling standpoint, the
primary key of the fact table is usually a composite key that is made up of all of its
foreign keys.

Data Warehousing Objects: Dimension Tables

A dimension is a structure, often composed of one or more hierarchies, that
categorizes data. Dimensional attributes help to describe the dimensional value. They
are normally descriptive, textual values. Several distinct dimensions, combined with
facts, enable you to answer business questions. Commonly used dimensions are
customers, products, and time.

Dimension data is typically collected at the lowest level of detail and then aggregated
into higher level totals that are more useful for analysis. These natural rollups or
aggregations within a dimension table are called hierarchies.

Hierarchies

Hierarchies are logical structures that use ordered levels to organize data. A hierarchy
can be used to define data aggregation. For example, in a time dimension, a hierarchy
might aggregate data from the month level to the quarter level to the year level. A
hierarchy can also be used to define a navigational drill path and to establish a family
structure.

Within a hierarchy, each level is logically connected to the levels above and below it.
Data values at lower levels aggregate into the data values at higher levels. A
dimension can be composed of more than one hierarchy. For example, in the product
dimension, there might be two hierarchies—one for product categories and one for
product suppliers.

Dimension hierarchies also group levels from general to granular. Query tools use
hierarchies to enable you to drill down into your data to view different levels of
granularity. This is one of the key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business
structures. For example, a divisional multilevel sales organization.

Hierarchies impose a family structure on dimension values. For a particular level
value, a value at the next higher level is its parent, and values at the next lower level
are its children. These familial relationships enable analysts to access data quickly.

Levels A level represents a position in a hierarchy. For example, a time dimension
might have a hierarchy that represents data at the month, quarter, and year levels.

2-4 Oracle Database Data Warehousing Guide

Data Warehousing Objects

Levels range from general to specific, with the root level as the highest or most general
level. The levels in a dimension are organized into one or more hierarchies.

Level Relationships Level relationships specify top-to-bottom ordering of levels from
most general (the root) to most specific information. They define the parent-child
relationship between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For
example, the database can aggregate an existing sales revenue on a quarterly base to a
yearly aggregation when the dimensional dependencies between quarter and year are
known.

Typical Dimension Hierarchy
Figure 2-2 illustrates a dimension hierarchy based on customers.

Figure 2-2 Typical Levels in a Dimension Hierarchy

region
1

subregion

country_name

customer

See Also: Chapter 11, "Dimensions" and Chapter 18, "Basic Query
Rewrite" for further information regarding hierarchies

Data Warehousing Objects: Unique Identifiers

Unique identifiers are specified for one distinct record in a dimension table. Artificial
unique identifiers are often used to avoid the potential problem of unique identifiers
changing. Unique identifiers are represented with the # character. For example,
#customer_id.

Data Warehousing Objects: Relationships

Relationships guarantee business integrity. An example is that if a business sells
something, there is obviously a customer and a product. Designing a relationship
between the sales information in the fact table and the dimension tables products and
customers enforces the business rules in databases.

Example of Data Warehousing Objects and Their Relationships

Figure 2-3 illustrates a common example of a sales fact table and dimension tables
customers, products, promotions, times, and channels.

Logical Design in Data Warehouses 2-5

Data Warehousing Objects

Figure 2-3 Typical Data Warehousing Objects

products
#prod_id

Relationship

Fact Table

sales
cust_id
prod_id

customers
#cust_id
cust_last_name
cust_city
cust_state_provinc

— Hierarchy

o)

times

Dimension Table

promotions

channels

Dimension Table

2-6 Oracle Database Data Warehousing Guide

Dimension Table

Part lli

Physical Design

This section deals with the physical design of a data warehouse.

It contains the following chapters:

Chapter 3, "Physical Design in Data Warehouses"

Chapter 4, "Hardware and I/O Considerations in Data Warehouses"
Chapter 5, "Partitioning in Data Warehouses"

Chapter 6, "Parallel Execution in Data Warehouses"

Chapter 7, "Indexes"

Chapter 8, "Integrity Constraints"

Chapter 9, "Basic Materialized Views"

Chapter 10, "Advanced Materialized Views"

Chapter 11, "Dimensions"

3

Physical Design in Data Warehouses

This chapter describes the physical design of a data warehousing environment, and
includes the following topics:

= Moving from Logical to Physical Design
= Physical Design

Moving from Logical to Physical Design

Logical design is what you draw with a pen and paper or design with Oracle
Warehouse Builder or Oracle Designer before building your data warehouse. Physical
design is the creation of the database with SQL statements.

During the physical design process, you convert the data gathered during the logical
design phase into a description of the physical database structure. Physical design
decisions are mainly driven by query performance and database maintenance aspects.
For example, choosing a partitioning strategy that meets common query requirements
enables Oracle Database to take advantage of partition pruning, a way of narrowing a
search before performing it.

See Also:

» Chapter 5, "Partitioning in Data Warehouses" for further
information regarding partitioning

» Oracle Database Concepts for further conceptual material
regarding all design matters

Physical Design

During the logical design phase, you defined a model for your data warehouse
consisting of entities, attributes, and relationships. The entities are linked together
using relationships. Attributes are used to describe the entities. The unique identifier
(UID) distinguishes between one instance of an entity and another.

Figure 3-1 illustrates a graphical way of distinguishing between logical and physical
designs.

Physical Design in Data Warehouses 3-1

Physical Design

Figure 3—-1 Logical Design Compared with Physical Design

Logical Physical (as Tablespaces)
] I [
Entities Tables Indexes
| —— [[
) . Integrity Materialized
Relationships Constraints Views
- Primary Key
[- Foreign Key | ——
- Not Null
Attributes Dimensions
| —_— |
[Columns
Unique I}
Identifiers

During the physical design process, you translate the expected schemas into actual
database structures. At this time, you must map:

= Entities to tables

= Relationships to foreign key constraints

= Attributes to columns

= Primary unique identifiers to primary key constraints

= Unique identifiers to unique key constraints

Physical Design Structures

Tablespaces

Once you have converted your logical design to a physical one, you must create some
or all of the following structures:

= Tablespaces

= Tables and Partitioned Tables
n Views

» Integrity Constraints

s Dimensions

Some of these structures require disk space. Others exist only in the data dictionary.
Additionally, the following structures may be created for performance improvement:

s Indexes and Partitioned Indexes

m Materialized Views

A tablespace consists of one or more datafiles, which are physical structures within the
operating system you are using. A datafile is associated with only one tablespace.
From a design perspective, tablespaces are containers for physical design structures.

Tablespaces need to be separated by differences. For example, tables should be
separated from their indexes and small tables should be separated from large tables.

3-2 Oracle Database Data Warehousing Guide

Physical Design

Tablespaces should also represent logical business units if possible. Because a
tablespace is the coarsest granularity for backup and recovery or the transportable
tablespaces mechanism, the logical business design affects availability and
maintenance operations.

You can now use ultralarge data files, a significant improvement in very large
databases.

See Also: Chapter 4, "Hardware and I/O Considerations in Data
Warehouses" for information regarding tablespaces

Tables and Partitioned Tables

Tables are the basic unit of data storage. They are the container for the expected
amount of raw data in your data warehouse.

Using partitioned tables instead of nonpartitioned ones addresses the key problem of
supporting very large data volumes by allowing you to divide them into smaller and
more manageable pieces. The main design criterion for partitioning is manageability,
though you also see performance benefits in most cases because of partition pruning
or intelligent parallel processing. For example, you might choose a partitioning
strategy based on a sales transaction date and a monthly granularity. If you have four
years' worth of data, you can delete a month's data as it becomes older than four years
with a single, fast DDL statement and load new data while only affecting 1/48th of the
complete table. Business questions regarding the last quarter only affect three months,
which is equivalent to three partitions, or 3/48ths of the total volume.

Partitioning large tables improves performance because each partitioned piece is more
manageable. Typically, you partition based on transaction dates in a data warehouse.
For example, each month, one month's worth of data can be assigned its own partition.

Table Compression

You can save disk space, increase memory efficiency, and improve query performance
by compressing heap-organized tables. This often leads to better scalability and query
performance. You can enable compression at the tablespace, table, or partition level. A
typical type of heap-organized table you should consider for table compression is
partitioned tables. Although compressed tables or partitions are updatable, there is
some overhead in updating these tables, and high update activity may work against
compression by causing some space to be wasted.

OLTP table compression is best suited for tables with significant update activity.
Hybrid Columnar Compression, a feature of certain Oracle storage systems, utilizes a
combination of both row and columnar methods for storing data. When data is loaded,
groups of rows are stored in columnar format, with the values for a given column
stored and compressed together. Storing column data together, with the same data
type and similar characteristics, drastically increases the storage savings achieved
from compression. Hybrid Columnar Compression provides multiple levels of
compression and is best suited for tables or partitions with minimal update activity.

See Also:

» Oracle Database VLDB and Partitioning Guide

s Chapter 16, "Maintaining the Data Warehouse"
» Oracle Database Administrator’s Guide

s Oracle Database Concepts for more information about Hybrid
Columnar Compression

Physical Design in Data Warehouses 3-3

Physical Design

Views

A view is a tailored presentation of the data contained in one or more tables or other
views. A view takes the output of a query and treats it as a table. Views do not require
any space in the database.

See Also: Oracle Database Concepts

Integrity Constraints

Integrity constraints are used to enforce business rules associated with your database
and to prevent having invalid information in the tables. Integrity constraints in data
warehousing differ from constraints in OLTP environments. In OLTP environments,
they primarily prevent the insertion of invalid data into a record, which is not a big
problem in data warehousing environments because accuracy has already been
guaranteed. In data warehousing environments, constraints are only used for query
rewrite. NOT NULL constraints are particularly common in data warehouses. Under
some specific circumstances, constraints need space in the database. These constraints
are in the form of the underlying unique index.

See Also: Chapter 8, "Integrity Constraints"

Indexes and Partitioned Indexes

Indexes are optional structures associated with tables or clusters. In addition to the
classical B-tree indexes, bitmap indexes are very common in data warehousing
environments. Bitmap indexes are optimized index structures for set-oriented
operations. Additionally, they are necessary for some optimized data access methods
such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning
strategy is not dependent upon the table structure. Partitioning indexes makes it easier
to manage the data warehouse during refresh and improves query performance.

See Also: Chapter 7, "Indexes" and Chapter 16, "Maintaining the
Data Warehouse"

Materialized Views

Dimensions

Materialized views are query results that have been stored in advance so long-running
calculations are not necessary when you actually execute your SQL statements. From a
physical design point of view, materialized views resemble tables or partitioned tables
and behave like indexes in that they are used transparently and improve performance.

See Also: Chapter 9, "Basic Materialized Views"

A dimension is a schema object that defines hierarchical relationships between
columns or column sets. A hierarchical relationship is a functional dependency from
one level of a hierarchy to the next one. A dimension is a container of logical
relationships and does not require any space in the database. A typical dimension is
city, state (or province), region, and country.

See Also: Chapter 11, "Dimensions"

3-4 Oracle Database Data Warehousing Guide

4

Hardware and I/O Considerations in Data
Warehouses

This chapter explains some of the hardware and I/O issues in a data warehousing
environment and includes the following topics:

s Overview of Hardware and I/O Considerations in Data Warehouses

m Storage Management

Overview of Hardware and /0 Considerations in Data Warehouses

1/0 performance should always be a key consideration for data warehouse designers
and administrators. The typical workload in a data warehouse is especially I/O
intensive, with operations such as large data loads and index builds, creation of
materialized views, and queries over large volumes of data. The underlying I/O
system for a data warehouse should be designed to meet these heavy requirements.

In fact, one of the leading causes of performance issues in a data warehouse is poor
I/0 configuration. Database administrators who have previously managed other
systems will likely need to pay more careful attention to the I/O configuration for a
data warehouse than they may have previously done for other environments.

This chapter provides the following five high-level guidelines for data-warehouse I/O
configurations:

= Configure I/O for Bandwidth not Capacity

» Stripe Far and Wide

= Use Redundancy

» Test the I/O System Before Building the Database
s Plan for Growth

The I/0O configuration used by a data warehouse depends on the characteristics of the
specific storage and server capabilities, so the material in this chapter is only intended
to provide guidelines for designing and tuning an I/O system.

See Also: Oracle Database Performance Tuning Guide for additional
information on I/O configurations and tuning

Configure 1/0 for Bandwidth not Capacity

Storage configurations for a data warehouse should be chosen based on the I/0
bandwidth that they can provide, and not necessarily on their overall storage capacity.
Buying storage based solely on capacity has the potential for making a mistake,

Hardware and I/O Considerations in Data Warehouses 4-1

Overview of Hardware and I/O Considerations in Data Warehouses

especially for systems less than 500GB is total size. The capacity of individual disk
drives is growing faster than the I/O throughput rates provided by those disks,
leading to a situation in which a small number of disks can store a large volume of
data, but cannot provide the same I/O throughput as a larger number of small disks.

As an example, consider a 200GB data mart. Using 72GB drives, this data mart could
be built with as few as six drives in a fully-mirrored environment. However, six drives
might not provide enough I/O bandwidth to handle a medium number of concurrent
users on a 4-CPU server. Thus, even though six drives provide sufficient storage, a
larger number of drives may be required to provide acceptable performance for this
system.

While it may not be practical to estimate the I/O bandwidth that is required by a data
warehouse before a system is built, it is generally practical with the guidance of the
hardware manufacturer to estimate how much I/O bandwidth a given server can
potentially utilize, and ensure that the selected I/O configuration will be able to
successfully feed the server. There are many variables in sizing the I/O systems, but
one basic rule of thumb is that your data warehouse system should have multiple
disks for each CPU (at least two disks for each CPU at a bare minimum) to achieve
optimal performance.

Stripe Far and Wide

The guiding principle in configuring an I/O system for a data warehouse is to
maximize I/O bandwidth by having multiple disks and channels access each database
object. You can do this by striping the datafiles of the Oracle Database. A striped file is
a file distributed across multiple disks. This striping can be managed by software
(such as a logical volume manager), or within the storage hardware. The goal is to
ensure that each tablespace is striped across a large number of disks (ideally, all of the
disks) so that any database object can be accessed with the highest possible I/O
bandwidth.

Use Redundancy

Because data warehouses are often the largest database systems in a company, they
have the most disks and thus are also the most susceptible to the failure of a single
disk. Therefore, disk redundancy is a requirement for data warehouses to protect
against a hardware failure. Like disk-striping, redundancy can be achieved in many
ways using software or hardware.

A key consideration is that occasionally a balance must be made between redundancy
and performance. For example, a storage system in a RAID-5 configuration may be
less expensive than a RAID-0+1 configuration, but it may not perform as well, either.
Redundancy is necessary for any data warehouse, but the approach to redundancy
may vary depending upon the performance and cost constraints of each data
warehouse.

Test the /O System Before Building the Database

The most important time to examine and tune the I/O system is before the database is
even created. Once the database files are created, it is more difficult to reconfigure the
files. Some logical volume managers may support dynamic reconfiguration of files,
while other storage configurations may require that files be entirely rebuilt to
reconfigure their I/O layout. In both cases, considerable system resources must be
devoted to this reconfiguration.

4-2 Oracle Database Data Warehousing Guide

Storage Management

When creating a data warehouse on a new system, the I/O bandwidth should be
tested before creating all of the database datafiles to validate that the expected I/O
levels are being achieved. On most operating systems, this can be done with simple
scripts to measure the performance of reading and writing large test files.

Plan for Growth

A data warehouse designer should plan for future growth of a data warehouse. There
are many approaches to handling the growth in a system, and the key consideration is
to be able to grow the I/O system without compromising on the I/O bandwidth. You
cannot, for example, add four disks to an existing system of 20 disks, and grow the
database by adding a new tablespace striped across only the four new disks. A better
solution would be to add new tablespaces striped across all 24 disks, and over time
also convert the existing tablespaces striped across 20 disks to be striped across all 24
disks.

Storage Management

Two features to consider for managing disks are Oracle Managed Files and Automatic
Storage Management. Without these features, a database administrator must manage
the database files, which, in a data warehouse, can be hundreds or even thousands of
files. Oracle Managed Files simplifies the administration of a database by providing
functionality to automatically create and manage files, so the database administrator
no longer needs to manage each database file. Automatic Storage Management
provides additional functionality for managing not only files but also the disks. With
Automatic Storage Management, the database administrator would administer a small
number of disk groups. Automatic Storage Management handles the tasks of striping
and providing disk redundancy, including rebalancing the database files when new
disks are added to the system.

See Also: Oracle Database Storage Administrator’s Guide for more
details

Hardware and I/O Considerations in Data Warehouses 4-3

Storage Management

4-4 Oracle Database Data Warehousing Guide

O

Partitioning in Data Warehouses

This chapter provides an introduction to the topic of partitioning in a data
warehousing environment, and includes:

= Overview of Partitioning in Data Warehouses

Overview of Partitioning in Data Warehouses

Data warehouses often contain very large tables and require techniques both for
managing these large tables and for providing good query performance across them.
An important tool for achieving this, as well as enhancing data access and improving
overall application performance is partitioning.

Partitioning offers support for very large tables and indexes by letting you decompose
them into smaller and more manageable pieces called partitions. This support is
especially important for applications that access tables and indexes with millions of
rows and many gigabytes of data. Partitioned tables and indexes facilitate
administrative operations by enabling these operations to work on subsets of data. For
example, you can add a new partition, organize an existing partition, or drop a
partition with minimal to zero interruption to a read-only application.

Partitioning can help you tune SQL statements to avoid unnecessary index and table
scans (using partition pruning). It also enables you to improve the performance of
massive join operations when large amounts of data (for example, several million
rows) are joined together by using partition-wise joins. Finally, partitioning data
greatly improves manageability of very large databases and dramatically reduces the
time required for administrative tasks such as backup and restore.

When adding or creating a partition, you have the option of deferring the segment
creation until the data is first inserted, which is particularly valuable when installing
applications that have a large footprint.

Granularity in a partitioning scheme can be easily changed by splitting or merging
partitions. Thus, if a table's data is skewed to fill some partitions more than others, the
ones that contain more data can be split to achieve a more even distribution.
Partitioning also enables you to swap partitions with a table. By being able to easily
add, remove, or swap a large amount of data quickly, swapping can be used to keep a
large amount of data that is being loaded inaccessible until loading is completed, or
can be used as a way to stage data between different phases of use. Some examples are
current day's transactions or online archives.

A good starting point for considering partitioning strategies is to use the partitioning
advice within the SQL Access Advisor, part of the Tuning Pack. The SQL Access
Advisor offers both graphical and command-line interfaces.

Partitioning in Data Warehouses 5-1

Overview of Partitioning in Data Warehouses

A complementary approach that is commonly used with partitioning is parallel
execution, which speeds up long-running queries, ETL, and some other operations.
For data warehouses with very high loads of parallel statements, parallel statement
queuing can be used to automatically manage the parallel statements.

See Also:

s Chapter 6, "Parallel Execution in Data Warehouses"

» Oracle Database VLDB and Partitioning Guide for a detailed
examination of how and when to use partitioning as well as
parallel execution and parallel statement queuing

» Oracle Database 2 Day + Performance Tuning Guide for details
regarding the SQL Access Advisor

5-2 Oracle Database Data Warehousing Guide

6

Parallel Execution in Data Warehouses

This chapter introduces the idea of parallel execution, which enables you to achieve
good performance with data warehouses, and includes:

s What is Parallel Execution?
s Why Use Parallel Execution?
= Automatic Degree of Parallelism and Statement Queuing

s In-Memory Parallel Execution

What is Parallel Execution?

Databases today, irrespective of whether they are data warehouses, operational data
stores, or OLTP systems, contain a large amount of information. However, finding and
presenting the right information in a timely fashion can be a challenge because of the
vast quantity of data involved.

Parallel execution is the capability that addresses this challenge. Using parallel
execution (also called parallelism), terabytes of data can be processed in minutes, not
hours or days, simply by using multiple processes to accomplish a single task. This
dramatically reduces response time for data-intensive operations on large databases
typically associated with decision support systems (DSS) and data warehouses. You
can also implement parallel execution on OLTP system for batch processing or schema
maintenance operations such as index creation. Parallelism is the idea of breaking
down a task so that, instead of one process doing all of the work in a query, many
processes do part of the work at the same time. An example of this is when four
processes combine to calculate the total sales for a year, each process handles one
quarter of the year instead of a single processing handling all four quarters by itself.
The improvement in performance can be quite significant.

Parallel execution improves processing for:

= Queries requiring large table scans, joins, or partitioned index scans
s Creations of large indexes

= Creation of large tables (including materialized views)

= Bulk inserts, updates, merges, and deletes

You can also use parallel execution to access object types within an Oracle database.
For example, you can use parallel execution to access large objects (LOBs).

Large data warehouses should always use parallel execution to achieve good
performance. Specific operations in OLTP applications, such as batch operations, can
also significantly benefit from parallel execution.

Parallel Execution in Data Warehouses 6-1

Why Use Parallel Execution?

Why Use Parallel Execution?

Imagine that your task is to count the number of cars in a street. There are two ways to
do this. One, you can go through the street by yourself and count the number of cars
or you can enlist a friend and then the two of you can start on opposite ends of the
street, count cars until you meet each other and add the results of both counts to
complete the task.

Assuming your friend counts equally fast as you do, you expect to complete the task
of counting all cars in a street in roughly half the time compared to when you perform
the job all by yourself. If this is the case, then your operations scales linearly. That is,
twice the number of resources halves the total processing time.

A database is not very different from the counting cars example. If you allocate twice
the number of resources and achieve a processing time that is half of what it was with
the original amount of resources, then the operation scales linearly. Scaling linearly is
the ultimate goal of parallel processing, both in counting cars as well as in delivering
answers from a database query.

See Also:

» Oracle Database Concepts for a general introduction to parallelism
concepts

» Oracle Database VLDB and Partitioning Guide for more information
about using parallel execution

When to Implement Parallel Execution

Parallel execution benefits systems with all of the following characteristics:
= Symmetric multiprocessors (SMPs), clusters, or massively parallel systems
» Sufficient I/O bandwidth

s Underutilized or intermittently used CPUs (for example, systems where CPU
usage is typically less than 30%)

= Sufficient memory to support additional memory-intensive processes, such as
sorts, hashing, and 1/O buffers

If your system lacks any of these characteristics, parallel execution might not
significantly improve performance. In fact, parallel execution may reduce system
performance on overutilized systems or systems with small I/O bandwidth.

The benefits of parallel execution can be seen in DSS and data warehousing
environments. OLTP systems can also benefit from parallel execution during batch
processing and during schema maintenance operations such as creation of indexes.
The average simple DML or SELECT statements that characterize OLTP applications
would not see any benefit from being executed in parallel.

When Not to Implement Parallel Execution

Parallel execution is not normally useful for:

= Environments in which the typical query or transaction is very short (a few
seconds or less). This includes most online transaction systems. Parallel execution
is not useful in these environments because there is a cost associated with
coordinating the parallel execution servers; for short transactions, the cost of this
coordination may outweigh the benefits of parallelism.

6-2 Oracle Database Data Warehousing Guide

Automatic Degree of Parallelism and Statement Queuing

= Environments in which the CPU, memory, or I/O resources are heavily utilized.
Parallel execution is designed to exploit additional available hardware resources;
if no such resources are available, then parallel execution does not yield any
benefits and indeed may be detrimental to performance.

Automatic Degree of Parallelism and Statement Queuing

As the name implies, automatic degree of parallelism is where Oracle Database
determines the degree of parallelism (DOP) with which to run a statement (DML,
DDL, and queries) based on the fastest possible plan as determined by the optimizer.
That means that the database parses a query, calculates the cost and then calculates a
DOP to run with. The cheapest plan may be to run serially, which is also an option.
Figure 6-1, "Optimizer Calculation: Serial or Parallel?" illustrates this decision making
process.

Figure 6—1 Optimizer Calculation: Serial or Parallel?

SaL
Statement

Statement is hard parsed If estimated time Optimizer determines ideal
and optimizer determines reater than Degree of Parallelism
the execution plan reshold

Y _.@

r {E,ﬁ;‘{g}i‘ﬁﬂan Actual Degree of Parallelism is
threshold calculated to be the lower of
PARALLEL DEGREE LIMIT
or the ideal
Degres of Parallelism

Statement executes Statement
serially executes
in parallel

Should you choose to use automatic DOP, you may see many more statements
running in parallel, especially if the threshold is relatively low, where low is relative to
the system and not an absolute quantifier.

Because of this expected behavior of more statements running in parallel with
automatic DOP, it becomes more important to manage the utilization of the parallel
processes available. That means that the system should be intelligent about when to
run a statement and verify whether the requested numbers of parallel processes are
available. The requested number of processes in this is the DOP for that statement.

The answer to this management question is parallel statement queuing with the
Database Resource Manager. Parallel statement queuing runs a statement when its
requested DOP is available. For example, when a statement requests a DOP of 64, it
will not run if there are only 32 processes currently free to assist this customer, so the
statement will be placed into a queue.

With Database Resource Manager, you can classify statements into workloads through
consumer groups. Each consumer group can then be given the appropriate priority

Parallel Execution in Data Warehouses 6-3

In-Memory Parallel Execution

and the appropriate levels of parallel processes. Each consumer group also has its own
queue to queue parallel statements based on the system load.

See Also:

» Oracle Database VLDB and Partitioning Guide for more information
about using automatic DOP with parallel execution

s Oracle Database Administrator's Guide for more information about
using the Database Resource Manager

In-Memory Parallel Execution

Traditionally, parallel processing by-passed the database buffer cache for most
operations, reading data directly from disk (through direct path I/O) into the parallel
execution server’s private working space. Only objects smaller than about 2% of DB_
CACHE_SIZE would be cached in the database buffer cache of an instance, and most
objects accessed in parallel are larger than this limit. This behavior meant that parallel
processing rarely took advantage of the available memory other than for its private
processing. However, over the last decade, hardware systems have evolved quite
dramatically; the memory capacity on a typical database server is now in the double or
triple digit gigabyte range. This, together with Oracle’s compression technologies and
the capability of Oracle Database 11g Release 2 to exploit the aggregated database
buffer cache of an Oracle Real Application Clusters environment now enables caching
of objects in the terabyte range.

In-Memory parallel execution takes advantage of this large aggregated database buffer
cache. By having parallel execution servers access objects using the database buffer
cache, they can scan data at least ten times faster than they can on disk.

With In-Memory parallel execution, when a SQL statement is issued in parallel, a
check is conducted to determine if the objects accessed by the statement should be
cached in the aggregated buffer cache of the system. In this context, an object can
either be a table, index, or, in the case of partitioned objects, one or multiple partitions.

See Also:

» Oracle Database VLDB and Partitioning Guide for more information
about using In-Memory parallel execution

6-4 Oracle Database Data Warehousing Guide

7

Indexes

This chapter contains the following topics:

= Using Bitmap Indexes in Data Warehouses
= Using B-Tree Indexes in Data Warehouses
= Using Index Compression

s Choosing Between Local Indexes and Global Indexes

See Also: Oracle Database Concepts for general information
regarding indexing

Using Bitmap Indexes in Data Warehouses

Bitmap indexes are widely used in data warehousing environments. The
environments typically have large amounts of data and ad hoc queries, but a low level
of concurrent DML transactions. For such applications, bitmap indexing provides:

= Reduced response time for large classes of ad hoc queries.
= Reduced storage requirements compared to other indexing techniques.

= Dramatic performance gains even on hardware with a relatively small number of
CPUs or a small amount of memory.

= Efficient maintenance during parallel DML and loads.

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of disk space because the indexes can be several times larger than
the data in the table. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of rowids for each key corresponding to the rows with that
key value. In a bitmap index, a bitmap for each key value replaces a list of rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so that the bitmap index provides
the same functionality as a regular index. Bitmap indexes store the bitmaps in a
compressed way. If the number of distinct key values is small, bitmap indexes
compress better and the space saving benefit compared to a B-tree index becomes even
better.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically. If you are

Indexes 7-1

Using Bitmap Indexes in Data Warehouses

unsure of which indexes to create, the SQL Access Advisor can generate
recommendations on what to create. As the bitmaps from bitmap indexes can be
combined quickly, it is usually best to use single-column bitmap indexes.

When creating bitmap indexes, you should use NOLOGGING and COMPUTE
STATISTICS. In addition, you should keep in mind that bitmap indexes are usually
easier to destroy and re-create than to maintain.

Benefits for Data Warehousing Applications

Cardinality

Bitmap indexes are primarily intended for data warehousing applications where users
query the data rather than update it. They are not suitable for OLTP applications with
large numbers of concurrent transactions modifying the data.

Parallel query and parallel DML work with bitmap indexes. Bitmap indexing also
supports parallel create indexes and concatenated indexes.

See Also: Chapter 20, "Schema Modeling Techniques" for further
information about using bitmap indexes in data warehousing
environments

The advantages of using bitmap indexes are greatest for columns in which the ratio of
the number of distinct values to the number of rows in the table is small. We refer to
this ratio as the degree of cardinality. A gender column, which has only two distinct
values (male and female), is optimal for a bitmap index. However, data warehouse
administrators also build bitmap indexes on columns with higher cardinalities.

For example, on a table with one million rows, a column with 10,000 distinct values is
a candidate for a bitmap index. A bitmap index on this column can outperform a
B-tree index, particularly when this column is often queried in conjunction with other
indexed columns. In fact, in a typical data warehouse environments, a bitmap index
can be considered for any non-unique column.

B-tree indexes are most effective for high-cardinality data: that is, for data with many
possible values, such as customer_name or phone_number. In a data warehouse,
B-tree indexes should be used only for unique columns or other columns with very
high cardinalities (that is, columns that are almost unique). The majority of indexes in
a data warehouse should be bitmap indexes.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
query performance. AND and OR conditions in the WHERE clause of a query can be
resolved quickly by performing the corresponding Boolean operations directly on the
bitmaps before converting the resulting bitmap to rowids. If the resulting number of
rows is small, the query can be answered quickly without resorting to a full table scan.

Example 7-1 Bitmap Index

The following shows a portion of a company's customers table.

SELECT cust_id, cust_gender, cust_marital_status, cust_income_level
FROM customers;

CUST_ID C CUST_MARITAL_STATUS CUST_INCOME_LEVEL

70 F D: 70,000 - 89,999
80 F married H: 150,000 - 169,999
90 M single H: 150,000 - 169,999

7-2 Oracle Database Data Warehousing Guide

Using Bitmap Indexes in Data Warehouses

100 F

110 F married
120 M single
130 M

140 M married

170,000 - 189,999
50,000 - 69,999

110,000 - 129,999
190,000 - 249,999
130,000 - 149,999

@Q 49 =m0 H

Because cust_gender, cust_marital_status,and cust_income_level are all
low-cardinality columns (there are only three possible values for marital status, two
possible values for gender, and 12 for income level), bitmap indexes are ideal for these
columns. Do not create a bitmap index on cust_1id because this is a unique colum