
NVIDIA Magnum IO GPUDirect Storage
Overview Guide

Release r1.12

NVIDIA Corporation

Mar 11, 2025

Contents

1 NVIDIA Magnum IO GPUDirect Storage Overview Guide 1

2 Introduction 3
2.1 Related Documents . 3
2.2 Benefits for a Developer . 4
2.3 Intended Uses . 5

3 Functional Overview 7
3.1 Explicit and Direct . 7
3.2 Performance Optimizations . 9
3.2.1 Implementation Performance Enhancements . 9
3.2.2 Concurrency Across Threads . 13
3.2.3 Asynchrony . 13
3.2.4 Batching . 13
3.2.5 Use of CUDA Streams in cuFile . 13

3.3 Compatibility and Generality . 14
3.4 Monitoring . 15
3.5 Scope of the Solutions in GDS . 15
3.6 Dynamic Routing . 16
3.6.1 cuFile Configuration for Dynamic Routing . 17
3.6.2 cuFile Configuration for DFS Mount . 19
3.6.3 cuFile Configuration Validation for Dynamic Routing . 20

4 Software Architecture 23
4.1 Software Components . 23
4.2 Primary Components . 23
4.2.1 Workflows for GDS Functionality . 25
4.2.2 Workflow 1 . 25
4.2.3 Workflow 2 . 26

4.3 Aligning with Other Linux Initiatives . 26

5 Deployment 29
5.1 Software Components for Deployment . 29
5.2 Using GPUDirect Storage in Containers . 31

6 Notice 33

7 OpenCL 35

8 Trademarks 37

i

ii

Chapter 1. NVIDIA Magnum IO
GPUDirect Storage Overview
Guide

The NVIDIA® Magnum IO GPUDirect® Storage Overview Guide provides a high-level overview of GDS.

1

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

2 Chapter 1. NVIDIA Magnum IO GPUDirect Storage Overview Guide

Chapter 2. Introduction

GDS enables a direct data path for direct memory access (DMA) transfers between GPU memory and
storage, which avoids a bounce buffer through the CPU. Using this direct path can relieve system
bandwidth bottlenecks and decrease the latency and utilization load on the CPU.

This guide provides a high-level overview of GPUDirect Storage (GDS), guidance to help you enable
filesystems for GDS, and some insights about the features of a file system and how it relates to GDS.
The guide also outlines the functionalities, considerations, and software architecture about GDS. This
high-level introduction sets the stage for deeper technical information in the cuFile API Reference
Guide for GDS users who need to modify the kernel.

2.1. Related Documents

Refer to the following guides for more information about GDS:

▶ GPUDirect Storage Design Guide

▶ cuFile API Reference Guide

▶ GPUDirect Storage Release Notes

▶ GPUDirect Storage Benchmarking and Configuration Guide

▶ GPUDirect Storage Best Practices Guide

▶ GPUDirect Storage Installation and Troubleshooting Guide

▶ GPUDirect Storage O_DIRECT Requirements Guide

To learn more about GDS, refer to the following blogs:

▶ GPUDirect Storage: A Direct Path Between Storage and GPU Memory.

▶ The Magnum IO blog.

3

https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/design-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html
https://docs.nvidia.com/gpudirect-storage/configuration-guide/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://devblogs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/tag/magnum-io/

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

2.2. Benefits for a Developer

GDS provides the following benefits for application developers:

▶ Enables a direct path between GPU memory and storage.

▶ Can relieve bandwidth bottlenecks, reduce the latency, and reduce the load on CPUs for data
transferral.

▶ Reduces the performance impact and dependence on CPUs to process storage data transfer.

▶ Performance force multiplier on top of the compute advantage for computational pipelines that
are fully migrated to the GPU so that the GPU, rather than the CPU, has the first and last touch
of data that moves between storage and the GPU.

▶ Supports interoperability with other OS-based file access, which enables data to be transferred
to and from the device by using traditional file IO, which is then accessed by middleware or an
application program that uses the cuFile APIs.

The cuFile APIs and their implementations provide the following benefits:

▶ A family of APIs that provide CUDA® applications with the best-performing access to local or
distributed file and block storage.

▶ When transferring to and from the GPU, increased performance and lower CPU load relative to
existing standard Linux file IO.

▶ Greater ease of use by removing the need for the careful expert management of memory alloca-
tion and data movement.

▶ An API sequence that is simpler relative to existing implicit file-GPU data movement methods
which require a more complex management of memory and data movement on and between the
CPU and GPU.

▶ Generality across a variety of storage types that span various local and distributed file systems,
block interfaces, and namespace systems, including standard Linux and third-party solutions.

▶ Primary API to do file I/O independent of memory type for GPU applications.

▶ Ability to target memory that has been allocated with any of cudaMalloc or cuMemAlloc or
cuMemCreate/cuMemMap to the GPU, or cudaHostAlloc or cudaMallocHost to the CPU. GDS
peer-to-peer mode does not support migratable memory, allocated with cudaMallocManaged
or system-allocated memory (malloc, stack, etc.) on systems where UVM support is available
such as Grace-Hopper. GDS will support IO to these memory allocations using a compatible path
using internal GPU/CPU bounce buffers.

The Stream subset of the cuFile APIs provides the following benefits:

▶ Asynchronous offloaded operations are ordered with respect to a CUDA stream.

▶ IO after compute: The GPU kernel produces data before it is transferred to IO.

▶ Compute after IO: After the data transfer is complete, the GPU kernel can proceed.

▶ Available concurrency across streams.

▶ Using different CUDA streams allows the possibility of concurrent execution and the con-
current use of multiple DMA engines.

4 Chapter 2. Introduction

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

2.3. Intended Uses

cuFile features can be used in the following ways:

▶ cuFile implementations boost throughput when IO between storage and GPU memory is a per-
formance bottleneck.

This condition arises in cases where the compute pipeline has been migrated to the GPU from
the CPU, so that the first and last agents to touch data, before or after transfers with storage,
execute on the GPU.

▶ cuFile APIs are currently explicit, and reading or writing between storage and buffers that com-
pletely fit into the available GPU physical memory.

▶ Rather than fine-grained random access, the cuFile APIs are a suitable match for coarse-grained
streaming transfers.

▶ For fine-grained accesses, the underlying software overheads for making a kernel transition and
going through the operating system can be amortized.

2.3. Intended Uses 5

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

6 Chapter 2. Introduction

Chapter 3. Functional Overview

This section provides a functional overview of GDS. It covers basic usage, generality, performance
considerations, and a scope of the solution. This documentation applies to the cuFile APIs, which are
issued from the CPU.

3.1. Explicit and Direct

GDS is a performance-centric solution, so the performance of an end-to-end transfer is a function of
latency overheads and the maximal achievable bandwidth.

The following are some terms used in GDS:

Explicit programmatic request
An explicit programmatic request that immediately invokes the transfer between the storage
and the GPU memory is proactive.

Implicit request
An implicit request to storage, which is induced by a memory reference that causes a page miss
from the GPU back to the CPU, and potentially the CPU to storage, is reactive.

Note

Reactive activity tends to induce more overhead. As a result of being explicit and proactive, GDS
maximizes performance with its explicit cuFile APIs.

Latency is lower when extra copies are avoided, and the highest bandwidth paths are taken. Without
GDS, an extra copy through a bounce buffer in the CPU is necessary, which introduces latency and
lowers effective bandwidth.

Note

The latency improvements from GDS are most apparent with small transfers.

With GDS, although there are exceptions, a zero-copy approach is possible. Additionally, when a copy
through the CPU is no longer necessary, the data path does not include the CPU memory even if it
must pass through CPU root ports because of the PCIe topology. On some systems, a direct path
between local or remote storage that goes through a PCIe switch or a NIC acting as a PCIe switch
offers at least twice the peak bandwidth as compared to taking a data path through the CPU. Using

7

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

cuFile APIs to access GDS technology enables explicit and direct transfers, which offers lower latency
and higher bandwidth.

For direct data transfers between GPU memory and storage, the file must be opened in O_DIRECT
mode. If the file is not opened in this mode, contents might be buffered in the CPU system memory,
which is incompatible with direct transfers. Refer to the GPUDirect Storage O_DIRECT Requirements
Guide for more details.

Note

Starting from CUDA Toolkit 12.2 (GDS version 1.7.x) even for files opened in non-O_DIRECT mode,
the cuFile library takes the GDS driven O_DIRECT path for transfers between GPU memory and
storage for page aligned buffers with aligned sizes and offsets.

Explicit Copy versus Using mmap

The following code samples compare the code sequences of an explicit copy versus using mmap and
incurring an implicit page fault where necessary.

This code sample uses explicit copy:

int fd = open(file_name,...)
void *sysmem_buf, *gpumem_buf;
sysmem_buf = malloc(buf_size);
cudaMalloc(gpumem_buf, buf_size);
pread(fd, sysmem_buf, buf_size);
cudaMemcpy(sysmem_buf,

gpumem_buf, buf_size, H2D);
doit<<<gpumem_buf, ...>>>
∕∕ no faults;

This code sample uses mmap:

int fd = open(file_name, O_DIRECT,...)
void *mgd_mem_buf;
cudaMallocManaged(mgd_mem_buf, buf_size);
mmap(mgd_mem_buf, buf_size, ..., fd, ...)
doit<<<mgd_mem_buf, ...>>>
∕∕ fault on references to mgdmem_buf

In the first sample, pread is used to move data from storage into a CPU bounce buffer, sysmem_buf,
and cudaMemcpy is used to move that data to the GPU. In the second sample, mmap makes the man-
aged memory backed by the file. The references to managed memory from the GPU that are not
present in GPU memory will induce a fault back to the CPU and then to storage, which causes an
implicit transfer.

GDS enables DMA between agents (NICs or NVMe drives) near storage and GPU memory. Traditional
POSIX read and write APIs only work with addresses of buffers that reside in CPU system memory.
cuFile APIs, in contrast, operate on addresses of buffers that reside in GPU memory. So they look very
similar, but have a few differences, as shown in Figure 2.

Comparing the POSIX APIs and the cuFile APIs

The following code samples compare the POSIX APIs and cuFile APIs. POSIX pread and pwrite require
buffers in CPU system memory and an extra copy, but cuFile read and write only requires file handle
registration.

This code sample uses the POSIX APIs:

8 Chapter 3. Functional Overview

https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

int fd = open(...)
void *sysmem_buf, *gpumem_buf;
sysmem_buf = malloc(buf_size);
cudaMalloc(gpumem_buf, buf_size);
pread(fd, sysmem_buf, buf_size);
cudaMemcpy(sysmem_buf,

gpumem_buf, buf_size, H2D);
cuStreamSynchronize(0);
doit<<<gpumem_buf, ...>>>

This code sample uses the cuFile APIs:

int fd = open(file_name, O_DIRECT,...)
CUFileHandle_t *fh;
CUFileDescr_t desc;
desc.type=CU_FILE_HANDLE_TYPE_OPAQUE_FD;
desc.handle.fd = fd;
cuFileHandleRegister(&fh, &desc);
void *gpumem_buf;
cudaMalloc(gpumem_buf, buf_size);
cuFileRead(&fh, gpumem_buf, buf_size, ...);
doit<<<gpumem_buf, ...>>>

The essential cuFile functionalities are:

▶ Explicit data transfers between storage and GPUmemory, which closely mimic POSIX pread and
pwrite.

▶ Performing IO in a CUDA stream, so that it is both async and ordered relative to the other com-
mands in that same stream.

The direct data path that GDS provides relies on the availability of file system drivers that are enabled
with GDS. These drivers run on the CPU and implement the control path that sets up the direct data
path.

3.2. Performance Optimizations

After there is a viable path to explicitly and directly move data between storage and GPU memory,
there are additional opportunities to improve performance.

3.2.1. Implementation Performance Enhancements

GDS provides a user interface that abstracts the implementation details. With the performance opti-
mizations in that implementation, there are trade offs that are enhanced over time and are tuned to
each platform and topology.

The following graphic shows you a list of some of these performance optimizations:

Figure 1: Performance Optimizations

▶ Path selec-
tion

3.2. Performance Optimizations 9

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

There
might
be
mul-
ti-
ple
paths
avail-
able
be-
tween
end-
points.
In
an
NVIDIA
DGX-
2
sys-

tem, for example, GPU A and GPU B that are connected to CPU sockets CPU A and
CPU B respectively may be connected via two paths.

▶ GPU A –> CPU A PCIe root port –> CPU A to CPU B via the CPU interconnect –>
CPU B along another PCIe path to GPU B.

▶ GPU A –> GPU B using NVLink.

Sim-
i-
larly,
a
NIC
that
is
at-
tached
to
CPU
A
and
to
GPU
A
via
PCIe
by
us-
ing
an
in-
ter-
ven-
ing
switch

10 Chapter 3. Functional Overview

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

has
a
choice
of
data
paths
to
GPU
B:

▶ The NIC –> CPU A PCIe root port, CPU A –> CPU B via CPU interconnect, and CPU
B along another PCIe path –> GPU B.

▶ The NIC –> a staging buffer in GPU A and NVLink –> GPU B.

▶ Staging
in inter-
mediate
buffers

Bulk data
transfers
are per-
formed
with DMA
copy en-
gines. Not
all paths
through
a system
are pos-
sible with
a single-
stage trans-
fer, and
sometimes
a transfer is
broken into
multiple
stages with
a staging
buffer along
the way.

In the NIC-
GPU A-GPU
B exam-
ple in the
graphic,
a staging
buffer in
GPU A is
required,
and the
DMA en-
gine in GPU

3.2. Performance Optimizations 11

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

A or GPU
B is used
to transfer
data be-
tween GPU
A’s memory
and GPU B’s
memory.

Data might
be trans-
ferred
through the
CPUs along
PCIe only
or directly
between
GPUs over
NVLink. Al-
though
DMA
engines
can reach
across PCIe
endpoints,
paths that
involve the
NVLink
may involve
staging
through a
buffer (GPU
A).

▶ Dynamic
routing

Paths and
staging.
The two
paths in the
previous
graphic are
available
between
endpoints
on the left
half and
the right
half, the red
PCIe path
or the green
NVLink
path.

12 Chapter 3. Functional Overview

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

3.2.2. Concurrency Across Threads

Note

All APIs are thread safe.

Using GDS is a performance optimization. After the applications are functionally enabled to move
data directly between storage and a GPU buffer by passing a pointer to the GPU buffer down through
application layers, performance is the next concern. IO performance at the system level comes from
concurrent transfers on multiple links and across multiple devices. Concurrent transfers for each 4 x
4 NVMe PCIe device is necessary to get full bandwidth from one x16 PCIe link. Since there are PCIe
links to each GPU and to each NIC, many concurrent transfers are necessary to saturate the system.
GDS does not boost concurrency, so this level of performance tuning is managed by the application.

3.2.3. Asynchrony

Another form of concurrency, between the CPU and one or more GPUs, can be achieved in an applica-
tion thread through asynchrony.

In this process, work is submitted for deferred execution by the CPU, and the CPU can continue to
submit more work to a GPU or complete the work on the CPU. This process adds support in CUDA
for async IO, which can enable a graph of interdependent work that includes IO to be submitted for
deferred execution.

3.2.4. Batching

There is a fixed overhead involved with each submission from an application into the cuFile implemen-
tation. For usagemodels wheremany IO transactions get submitted simultaneously, batching reduces
the overhead by amortizing that fixed overhead across the transactions in the batch, which improves
performance.

Batch APIs are asynchronous in nature. Refer to the cuFile API Reference Guide for more information.

3.2.5. Use of CUDA Streams in cuFile

Provides a mechanism to perform asynchronous submission and asynchronous execution of I/Os fol-
lowing CUDA stream semantics.

The data size, offsets in buffer and file may dynamically change within the valid range based on the
execution of the previous CUDA kernel or function.

3.2. Performance Optimizations 13

https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

3.3. Compatibility and Generality

Although the purpose of GDS is to avoid using a bounce buffer in CPU system memory, the ability to
fall back to this approach allows the cuFile APIs to be used ubiquitously even under suboptimal circum-
stances. A compatibility mode is available for unsupported configurations that maps IO operations to
a fallback path.

This path stages through CPU system memory for systems where one or more of the following con-
ditions is true:

▶ Explicit configuration control by using the user version of the cufile.json file.

Refer to the cuFile API Reference Guide for more information.

▶ The lack of availability of the nvidia-fs.ko kernel driver, for example, because it was not in-
stalled on the host machine, where a container with an application that uses cuFile, is running.
The nvidia-fs.ko kernel driver is not necessary for the case of mounts of NVMe (local or with
NVIDIA DOCA SNAP) for cuFile in CUDA version 12.8 and higher.

▶ The lack of availability of relevant GDS-enabled filesystems on the selected file mounts, for ex-
ample, because one of several used system mounts does not support GDS.

▶ File-system-specific conditions, such as when O_DIRECT cannot be applied.

Vendors, middleware developers, and users who are doing a low-level analysis of file systems
should review the GPUDirect Storage O_DIRECT Requirements Guide for more information.

Refer to cuFileHandleRegister in the cuFile API Reference Guide for more information. Perfor-
mance on GPU-based applications that transfer between the storage and GPUmemory in compatibil-
ity mode is generally at least the same or better than current CPU-based APIs when GDS is not used.
Testing for the CPU path is limited to POSIX-based APIs and qualified platforms and filesystems that
do not include GDS.

Even when transfers are possible with GDS, a direct transfer is not always possible. Here is a sampling
of cases that are handled seamlessly by the cuFile APIs:

▶ The buffer is not aligned, such as the following:

▶ The offsets of the file are not cufile block size aligned.

▶ The GPU memory buffer address is not cufile block size aligned.

▶ The IO request size is not a multiple of cufile block size.

▶ The requested IO size is too small, and the filesystem cannot support RDMA.

▶ The size of the transfer exceeds the size of the GPU BAR1 aperture.

▶ The optimal transfer path between the GPUmemory buffer and storage involves an intermediate
staging buffer, for example, to use NVLink.

The compatibility mode and the seamless handling of cases that require extra steps broaden the gen-
erality of GDS and makes it easier to use.

14 Chapter 3. Functional Overview

https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

3.4. Monitoring

This section provides information about the monitoring facilities that are available to track functional
and performance issues in GDS.

GDS supports the following monitoring facilities for tracking functional and performance issues:

▶ Ftrace

Exported symbols for GDS functions can be traced using Ftrace. You can also use static trace-
points in the libcufile.so library, but the tracepoints are not yet supported for nvidia-fs.
ko. Refer to the GPUDirect Storage Troubleshooting Guide for more information.

▶ Logging

Error conditions and debugging outputs can be generated in a log file. This information is useful
for conditions that affect many of the APIs but need only be reported once or affect APIs with
no return value to report errors. The cufile.json file is used to select at least reporting level,
such as ERROR, WARN, INFO, DEBUG, and TRACE.

▶ Profiling

GDS can be configured to collect a variety of statistics.

These facilities, and the limitations of third-party tools support, are described in greater detail in the
GPUDirect Storage Troubleshooting Guide.

3.5. Scope of the Solutions in GDS

GDS has added new APIs with functionality that is not supported by today’s operating systems, in-
cluding direct transfers to GPU buffers, asynchrony, and batching. These APIs offer a performance
boost, with a platform-tuned and topology-tuned selection of paths and staging, which add enduring
value.

The implementations under cuFile APIs overcome limitations in current operating systems. Some of
those limitations are transient and may be removed in future versions of operating systems. Although
these solutions are not currently available and may require time for adoption, other GDS-enabled so-
lutions are needed today. Here are the solutions currently available in GDS:

▶ Third-party vendor solutions for distributed file systems.

▶ Long-term support through open source, upstreamed Linux that future GDS implementations
will seamlessly use.

▶ Local filesystem support by using modified storage drivers.

▶ The overall cuFile architecture involves a combination of components, some from NVIDIA and
some from third parties.

▶ Here is a list of the NVIDIA-originated content:

▶ User-level cuFile library, libcufile.so, which implements the following in the closed
source code:

▶ cuFile Driver APIs:

▶ cuFileDriver{Open, Close}

▶ cuFileDriver{GetProperties, Set*}

3.4. Monitoring 15

https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

▶ cuFile synchronous IO APIs:

▶ cuFileHandle{Register, Deregister}

▶ cuFileBuf(Register, Deregister}

▶ cuFile{Read, Write}

▶ Stream subset of the cuFile APIs:

▶ cuFile{Read, Write}Async, cuFileStreamRegister, cuFileStreamDeregis-
ter

▶ cuFileBatch APIs:

▶ cuFileBatchIO{SetUp, Submit, GetStatus, Cancel, Destroy}

▶ Calls to VFS components in standard Linux whether the filesystem is standard Linux for
all kernel-based file systems and raw device files.

▶ nvidia-fs.ko, the kernel-level driver:

▶ Implements callbacks from modified Linux kernel modules or from proprietary filesys-
tems that enable direct DMA to GPU memory.

▶ Licensed under GPLv2.

Likewise, any kernel third-party kernel components that call the nvidia-fs APIs should
expect to be subject to GPLv2.

▶ Not needed for NVMe (local drives or DOCA SNAP) as of CUDA 12.8

▶ Third-party content

▶ Proprietary code stacks that replace portions of the Linux filesystem and block system, and
so on.

3.6. Dynamic Routing

GDS Dynamic Routing is a feature for choosing the optimal path for cuFileReads and cuFileWrites to
and from files on network-based file systems such as DDN-EXAScaler, VAST-NFS, and WekaFS. For
hardware platforms, where GPUs do not share the same Root Port with the Storage NICs, peer-to-
peer transactions (p2p) may have higher latency and are inefficient compared to p2p traffic under
PCIe switches.

With this feature, based on platform configuration, the cuFile library tries to efficiently route the I/O
to and from GPU without paying the penalty of cross-root port p2p traffic. For example, if the storage
NIC shares a common PCIe root port with another allowed GPU (say GPU1) and the target GPU (say
GPU0) is across the CPU root complex, cuFile library can use a bounce buffer on GPU1 to perform the
p2p transaction to GPU1 and copy the data to target GPU0. The presence of NVLINKs across GPUs can
further accelerate the subsequent device to device (GPU1->GPU0) I/O transfers using NVLINK instead
of PCIe.

For each mount/volume, cuFile library pre-computes the best GPUs having the smallest PCI-distance
with the available storage NICs for routing the I/O. During reads and writes cuFile checks if the target
GPU shares a commonPCIe switch and does not need traffic to cross the CPU root complex. If the path
is already optimal, then dynamic routing does not apply, otherwise cuFile library selects a candidate
GPU for intermediate bounce buffer and performs a device-to-device copy to the target GPU buffer.

16 Chapter 3. Functional Overview

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

Note

There is a possibility that there might be multiple candidate GPUs for the staging the intermediate
buffer and may not be equidistant from all the Storage NICs, in that cuFile relies on the underlying
file systemdriver to pick the best storageNIC for the candidateGPUbased on the nvidia-fs callback
interface to choose the best NIC based on the GPU buffer.

3.6.1. cuFile Configuration for Dynamic Routing

The "properties.rdma_dynamic_routing" enables/disables dynamic routing feature for dis-
tributed file systems (Lustre, WekaFS, NFS). By default, this feature is turned off.

In platformswhere I/O transfer to a GPUwill cause cross RootPort PCie transfers, enabling this feature
might help improve overall BW provided there exists a GPU(s) with Root Port common to that of the
storage NIC(s). If this feature is enabled, provide the IP addresses used by the mount either in file
system-specific section for mount_table or in the rdma_dev_addr_list property in the properties
section.

"rdma_dynamic_routing": false

The properties.rdma_dynamic_routing order expresses routing rules. The routing policy is se-
lected based on the order in which they are specified if they are applicable. By default the routing
order is as shown below. If the first policy is not applicable, fall back to the next, and so on.

▶ policy GPU_MEM_NVLINKS: use GPU memory with NVLink to transfer data between GPUs

▶ policy GPU_MEM: use GPU memory with PCIe to transfer data between GPUs

▶ policy SYS_MEM: use system memory with PCIe to transfer data to GPU

▶ policy P2P: use P2P PCIe to transfer across between NIC and GPU

▶ "rdma_dynamic_routing_order": ["GPU_MEM_NVLINKS", "GPU_MEM", "SYS_MEM",
"P2P"]

The table below summarizes the use cases where dynamic routing can apply and describes each rout-
ing policy.

3.6. Dynamic Routing 17

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

Table 1: Dynamic Routing Policies

Use Case GPU_MEM_NVLINKSGPU_MEM SYS_MEM P2P

NIC and GPU do
not share a com-
mon parent PCIe
switch
Dynamic Routing
will be used if en-
abled

GPUs in the sys-
tem have NVLinks
Use GPU memory
with NVLink to
transfer data
between GPUs.
This policy applies
only:
a) if there is

another
GPU which
is in the
same PCIe
tree as the
NIC

b) there exists
an NVLink
between the
pair of GPUs

GPUs in the sys-
tem do not have
NVLinks
Use GPU mem-
ory with PCIe
to transfer data
between GPUs.
This policy applies
only if there is a
GPU which is in
the same PCIe
tree as the NIC.

No GPUs share
a common Root-
Port with the
storage NIC(s)
Use pinned sys-
tem memory and
PCIe to transfer
data to GPU

This is default
mode without
dynamic routing.
Use P2P PCIe to
transfer between
NIC and GPU. The
PCIe traffic will be
across RootPorts.

NIC and GPU re-
side in the same
PCIe Tree
Dynamic Routing
will not be used
even if enabled

P2P/Compatible
Mode

P2P/Compatible
Mode

P2P/Compatible
Mode

P2P/Compatible
Mode

A sample routing order could be:

"rdma_dynamic_routing_order": ["GPU_MEM_NVLINKS", "SYS_MEM"]

A use case could be if there exists a pair of GPUs but without NVLinks, the routing policy shall fallback
to using system memory for I/O transfer.

Another sample routing order could be:

"rdma_dynamic_routing_order": ["SYS_MEM"]

If such an order is specified, then even if there exists a pair of GPUs with NVLinks, the routing policy
will use system memory for I/O transfer.

18 Chapter 3. Functional Overview

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

3.6.2. cuFile Configuration for DFS Mount

The user can specify to the library the list of Storage NICs used by the distributed filesystem mount
through the json property rdma_dev_addr_list. This information is used by the library to compute
the best GPUs which can be used for routing the IO. The device addresses list can be specified in a
hierarchical format.

Table 2: Dynamic Routing Policies

Property Name Description

property.rdma_dev_addr_list : {}
Applies to a Single File System, Single Mount.
This is the global config which is used only if the
per file system or the per-mount IP address list
is empty.

fs.lustre.rdma_dev_addr_list : {}
Applies to all Lustre file system mounts.
This is the per-file system IP address list. This
overrides the global IP address list for a file be-
longing to this file system. Please note that if
this key is set, the user should not configure the
per mount_table and it is treated as a config er-
ror.

fs.lustre.mount_table : {
∕mnt∕001 : { rdma_dev_addr_list : []

}

Applies to multiple Lustre mounts.

∕mnt∕002 : {
rdma_dev_addr_list : [] }

}

This is the per mount IP address list. This over-
rides the per-file system IP address list. This set-
ting has the highest priority in terms of the ad-
dress list configuration and overrides all above
settings for that mount.

fs.nfs.rdma_dev_addr_list : {}
Applies to all NFS mounts.

fs.nfs.mount_table : {
∕mnt∕003 : { rdma_dev_addr_list : [] }
∕mnt∕004 : { rdma_dev_addr_list : [] }

}

Applies to NFS shares.

A Sample RDMA Configuration

{
"lustre": {

∕∕ IO threshold for read∕write (param should be 4K aligned)) equal to or below�
↪→which

∕∕ cuFile will use posix read∕write
"posix_gds_min_kb" : 0,
"rdma_dev_addr_list" : [],

(continues on next page)

3.6. Dynamic Routing 19

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

(continued from previous page)

"mount_table" : {
"∕lustre∕ai200∕client1" : {

"rdma_dev_addr_list" : ["172.172.1.40"]
},
"∕lustre∕ai200∕client2" : {

"rdma_dev_addr_list" : ["172.172.2.40"]
}

}
},
"nfs": {

"rdma_dev_addr_list" : [],
"mount_table" : {

"∕mnt∕nfs∕ib0∕data∕0" : {
"rdma_dev_addr_list" : ["192.168.0.12"]

},
"∕mnt∕nfs∕ib1∕data∕0" : {

"rdma_dev_addr_list" : ["192.168.1.12"]
},
"∕mnt∕nfs∕ib2∕data∕0" : {

"rdma_dev_addr_list" : ["192.168.2.12"]
},
"∕mnt∕nfs∕ib3∕data∕0" : {

"rdma_dev_addr_list" : ["192.168.3.12"]
}

},
"weka": {

∕∕ enable∕disable RDMA write
"rdma_write_support" : false

},
}

}

Limitation:

The library cannot distinguish multiple mount points which use the same network shared file system
share specified through the config; and considers all such IP addresses as a unique mount entry. So it
is advised to provide configuration only for unique shares in the configuration.

3.6.3. cuFile Configuration Validation for Dynamic Routing

Once the cuFile configuration is enabled for dynamic routing with the required IP address configura-
tion, users can use gdscheck to validate the same.

$.∕gdscheck -p
...
properties.rdma_dynamic_routing : 1
properties.rdma_dynamic_routing_order : GPU_MEM_NVLINKS GPU_MEM SYS_MEM P2P
fs.lustre.mount_table :
∕lustre∕ai200∕client1 dev_id 64768 : 172.172.1.40
∕lustre∕ai200∕client2 dev_id 64769 : 172.172.2.40
fs.weka.rdma_write_support: 0
fs.nfs.mount_table :
∕mnt∕nfs∕ib0∕data∕0 dev_id 58 : 192.168.0.12
∕mnt∕nfs∕ib1∕data∕0 dev_id 59 : 192.168.1.12

(continues on next page)

20 Chapter 3. Functional Overview

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

(continued from previous page)

∕mnt∕nfs∕ib2∕data∕0 dev_id 60 : 192.168.2.12
∕mnt∕nfs∕ib3∕data∕0 dev_id 61 : 192.168.3.12
...

3.6. Dynamic Routing 21

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

22 Chapter 3. Functional Overview

Chapter 4. Software Architecture

GDS enables a DMA engine near storage (NVMe or NIC) to push (or pull) data directly into (and out of)
GPU memory. cuFile APIs are passed parameters for one file, a file offset, a size to transfer, and a GPU
virtual address to which the parameters can read or write. Although the resulting aggregate transfer is
one contiguous virtual address range, several smaller transfers may occur in the implementation. The
filesystembreaks the contiguous virtual address range intowhatmight becomemultiple transfers that
may span multiple devices. An example is RAID-0 and potentially multiple pages with non-contiguous
physical address ranges. The resulting set of physical address ranges is called a scatter-gather list.

Existing operating systems attempting to program DMA engines cannot process GPU virtual ad-
dresses without help. The GDS-enabled kernel drivers use callbacks to the GDS kernel module,
nvidia-fs.ko, for all interfaces before CUDA 12.8 and for non-NVMe mounts for CUDA 12.8 and
beyond.. These callbacks provide the GPU virtual addresses needed in the final scatter-gather list
used to program the DMA engine.

4.1. Software Components

The following layers exist in the GDS software stack:

▶ The application, which includes cufile.h and which makes cuFile API calls from the CPU.

▶ The GDS user-level library, libcufile.so.

▶ The Linux virtual filesystem, VFS.

▶ Linux or vendor kernel storage drivers.

▶ The GDS kernel-level library, nvidia-fs.ko (see conditions below).

4.2. Primary Components

The primary components in the GDS software architecture are:

▶ (From NVIDIA) libcufile.so, which is the user-level cuFile library:

▶ Implements the cuFile API, which is the application-facing API for GDS.

cuFileRead is shown in the architecture overview graphic in Software Components for De-
ployment.

▶ There are two alternatives to implement the cuFile API:

23

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

▶ Use the nvidia-fs.ko kernel driver.

All filesystems that use VFS use this path except for the cases listed below under
nvidia-fs.ko.

▶ The cuFile user library implements an alternative implementation that does the following:

▶ Uses its non-page cache buffering in the CPU system memory.

▶ Uses the standard POSIX call implementations.

▶ Does not need to use the NVFS kernel driver.

This is a compatibility mode that does not enjoy the GDS benefits.

▶ (Not from NVIDIA) Non-block-based or distributed filesystems:

▶ These filesystems might be the standard Linux virtual filesystem (VFS), for example an NFS
driver or a third-party proprietary system.

The selection of control paths is based on how filesystems are mounted:

<file path> –> <mount point> –> <filesystem selection>

▶ In some cases, NVIDIA provides patches to these, or alternate, implementations, for exam-
ple, to kernel modules for NVMe and NVMe-oF.

▶ (From NVIDIA) Kernel-level nvidia-fs.ko driver:

▶ Handles IOCTLs from the cuFile user library.

▶ Implements DMA callbacks to check and translate GPU virtual addresses to physical ad-
dresses. These callbacks are called from storage drivers.

▶ Manages the mechanisms and buffering that enable DMA from the device.

▶ As of CUDA 12.8, GDS supports additional peer-to-peer DMA for NVMe devices using up-
stream kernel PCI P2PDMA infrastructure for x86_64 platforms (local or remote with SNAP).
This feature will no longer depend on nvidia-fs.ko or custom patches to nvme.ko. This
feature is dependent on OS distributions that support PCI P2PDMA, for example linux ker-
nel version 6.2 and above on Ubuntu distributions. In addition OpenRM driver version 570.x
or above must be installed with specific registration keys to allow OpenRM driver to enable
the PCI P2PDMA support. RAID0, NVMe Multipathing are currently not enabled with PCI
P2PDMA in the upstream kernel and will not work without a specialized patch. See <which
guide> for configuration details.

▶ OS support for the P2PDMA feature can be checked as follows:

$ cat ∕proc∕kallsyms | grep -i p2pdma_pgmap_ops
0000000000000000 d p2pdma_pgmap_ops

Note

The Linux kernel core is completely unmodified.

24 Chapter 4. Software Architecture

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

4.2.1. Workflows for GDS Functionality

The two workflows that are associated with GDS functionality are illustrated in the following graphic:

Figure 2: Workflows for
GDS Functionality

For more information about these workflows, seeWorkflow 1 andWorkflow
2.

4.2.2. Workflow 1

Use the following steps to complete Workflow 1.

The first workflow pertains to cuFileRead and cuFileWrite usage. The
GPU virtual addresses are represented by proxy CPU system memory ad-
dresses. The proxy CPU systemmemory addresses are passed through the
Linux IO stack and are converted to device-specific DMA bus addresses.

Note

None of the following steps are used on a standard pread or pwrite POSIX
call.

1. ``App`` to ``libcufile.so``.

a. GPU applications or GPU-enabled frameworks link to the cuFile
library

b. The applications or frameworks call the cuFile Driver and IO APIs,
such as cuFileRead and cuFileWrite.

The alignment is handled at this level, and there might be some per-
formance impact, so that buffers do not need to be aligned, such as
to 4KB pages or 512KB storage offsets and chunk sizes.

2. ``libcufile``.libcufile makes decisions about which mode to use
based on the filesystem, the configuration, and the hardware support
to select between compatibility mode and GDS, and whether to use
internal GPU buffers for efficiency.

3. ``libcufile.so`` to ``nvidia-fs.ko``.

a. The cuFile library, libcufile.so, services those calls and makes appropriate IOCTL calls to
the nvidia-fs.ko driver.

b. The library interacts with the CUDA user-mode driver library, libcuda.so, as necessary for
the stream subset of the cuFile APIs.

4. ``nvidia-fs.ko`` to ``VFS``.

a. The kernel driver iterates through the set of necessary IO operations and passes in the
IO completion callback, in kiocb->common.ki_complete with the callback function value
nvfs_io_complete that will be used in step 7. Those calls are to the VFS, which calls the
appropriate lower layers, such as the standard Linux block system (ext4/XFS and NVMe) or
another vendor-distributed filesystem such as EXAScaler.

5. Storage kernel drivers to ``nvidia-fs.ko``: Callback APIs are regis-
tered via thecuFileDriverOpen initialization, as described in Filesys-
tems Interoperability in the GDS External Architecture Spec.

4.2. Primary Components 25

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

With this design, drivers only need to handle GPU addresses through
the substeps below. GPU memory addresses are available in a sepa-
rate map, outside the Linux page map, so the nvidia-fs.ko APIs are
used to complete the following tasks:

▶ Check whether the DMA target address is on the GPU (nvfs_is_gpu_page) and needs to
be handled differently.

▶ Query the list of GPU DMA target addresses by using nvfs_dma_map_sg*, which are used
instead of the CPU system memory address that is passed through the VFS.

6. Storage kernel drivers to DMA/RDMA engines: After the appropriate
GPU memory addresses are obtained, the underlying DMA engines at
(for example, NVMe drivers) or near (for example, NIC) storage can
be programmed to move data directly between storage (for exam-
ple, NVMe or storage controller or NIC) and GPU memory. The special
proxy addresses in CPU systemmemory are not accessed by the DMA
engines.

7. DMA/RDMA engines to storage kernel driver: Completion of each
block transfer is signaled back to the storage driver layer.

The completion of each iteration is signaled back to the nvidia-fs.ko driver by using the callback
that was registered in step 4.

4.2.3. Workflow 2

This section provides information about the second workflow that relates to reads and writes with
user-space RDMA using ib_verbs.

1. App to ``libcufile.so``: GPU applications or GPU-enabled frameworks link to the cuFile library
and call the cuFile Driver and IO APIs. The alignment is handled at this level, though perhaps
with some performance impact, so that buffers do not need to be aligned, such as 4KB pages or
512KB storage offsets and chunk sizes.

2. ``libcufile_rdma.so``: obtain RDMA info (keys, GID, LID, and so on) to libcufile.

3. ``libcufile.so`` to vendor library: libcufile calls the appropriate vendor library callback
functions to communicate the Rkeys directly in userspace or through the nvidia-fs kernel
callbacks depending on the vendor driver implementation.

4.3. Aligning with Other Linux Initiatives

There have been efforts in the Linux community to add native support for DMA among peer devices,
which can include NICs and GPUs. As this support is upstreamed, it will take time for all users to adopt
the new Linux versions via distributions. In the meantime, NVIDIA has worked with a wide variety of
third-party vendors to enable GDS.

Specifically, Linux has added support for PCI P2PDMA in Linux kernel version 6.2 and above kernels, en-
abling ZONE_DEVICE address pointers to GPUmemory to be passed through the VFS without causing
a page fault, in the case of NVMe, nvidia-fs.ko

The cuFile APIs and their implementation is the mechanism by which CUDA adds support for file IO.
The cuFile APIs cover explicit transfers between CPU and GPU storage and memory. The APIs also

26 Chapter 4. Software Architecture

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

add support for asynchrony and batching, which are not available in POSIX IO. The cuFile APIs will
remain relevant after the functionalities mentioned earlier are added to Linux. Only the underlying
implementations will change, but not the existing cuFile APIs.

NVIDIA’s initial implementations for cuFile focus on distributed filesystems and systems where ap-
propriate drivers have been installed to enable a direct transfer between storage and GPU memory
without using a bounce buffer in the CPU. For compatibility and broader applicability, later implemen-
tations may support extensions for local storage and implicit transfers.

4.3. Aligning with Other Linux Initiatives 27

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

28 Chapter 4. Software Architecture

Chapter 5. Deployment

Effective use of GDS entails having a good understanding of how GDS is deployed, its dependencies,
and its limitations and constraints.

5.1. Software Components for Deployment

Here is some information about the software components that are required to deploy GDS.

cuFile APIs are a supplement to the CUDA driver and runtime APIs and are distributed and installed
with the CUDA toolkit.

Applications access cuFile functionality by including cuFile.h and linking against the libcufile.so
library. The stream subset of the cuFile APIs, a CUDA stream parameter is needed, which takes differ-
ent forms for runtime and driver APIs. The cudaFile and cuFile prefixes are used for those two cases,
respectively. The conversion from runtime to drive APIs can be done in header files.

Beyond libcufile.so, there are no linker dependencies that are required to use the cuFile API, but a
runtime dynamic dependency on libcuda.so exists. No link dependency on other CUDA Toolkit libraries,
CUDA Runtime libraries, or any other components of the display driver currently exist. However, an
eventual runtime dependency on the CUDA Runtime library should be anticipated for applications that
are using the cudaFile* APIs after they are added to CUDA Runtime. This is step is consistent with the
application using any other cuda* API and use of the CUDA Runtime in deployment is covered in the
CUDA deployment documentation at NVIDIA Developer Documentation.

In addition to libcuda.so, cuFile has dependencies on external third-party libraries.

The following table provides information about the third-party libraries and CUDA library levels:

29

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

Table 3: Third-Party Libraries and CUDA Library Levels

Level APIs, Types, and Enum
Style

Dependencies Packaged Together

cuFile user library Matches the following
CUDA driver conven-
tions:

▶ cuFile APIs
▶ cuFile_ enum

vals and defines
▶ CU_FILE_ errors

▶ Provides
libcufile.
so until perhaps
it gets merged
into libcuda.
so.

▶ Provides
cuFile.h un-
til perhaps it
gets merged into
cuda.h.

▶ External library
dependencies:
libmount-dev
libnuma-dev

Shipped separately
from libcufile.so.

CUDA runtime + toolkit Compatibility in
cufile.h for streams
APIs’ usage of
cudaStream_t.

None cufile.h remains dis-
tinct from cuda.h and
cuda_runtime.h.

nvidia-fs kernel
driver

nvfs_ prefix ▶ Provides
nvidia-fs.
ko GPLv2.

▶ cuFile uses kernel
facilities that are
in Linux kernel
version 4.15.0.x
and later.

▶ cuFile has a de-
pendency on
MLNX_OFED
versions (5.1 and
later) for support
for RDMA-based
filesystems.

▶ GPUDirect part-
ners may have
dependencies
on host-channel
adapters that are
Mellanox Con-
nect X-5 or later.

Separately shippable
with respect to the
NVIDIA driver (un-
til perhaps it gets
merged), but it might
become co-installed.

30 Chapter 5. Deployment

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

Note

GDS has no internal dependencies on other libraries:

▶ cuFile libraries and drivers do not modify CUDA.

▶ The streams subset of the cuFile APIs use the CUDA user driver (libcuda.so) and CUDA
runtime (libcudart.so).

The only APIs used by those drivers are public APIs.

5.2. Using GPUDirect Storage in Containers

GDS has user-level and kernel-level components. Containers include only user-level code and rely on
kernel-level components having been installed on the host machine. Applications can be developed
with GDS’s header files and user-level library and distributed in containers. When the appropriate
drivers and vendor-enable kernel software are not installed or properly configured, GDS’s compatibil-
ity mode enables the cuFile APIs to continue to maintain functional operation with minimized perfor-
mance impact.

See https://github.com/NVIDIA/MagnumIO/tree/main/gds/docker for an example of GDS used in a
container.

5.2. Using GPUDirect Storage in Containers 31

https://github.com/NVIDIA/MagnumIO/tree/main/gds/docker

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

32 Chapter 5. Deployment

Chapter 6. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

33

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

34 Chapter 6. Notice

Chapter 7. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

35

NVIDIA Magnum IO GPUDirect Storage Overview Guide, Release r1.12

36 Chapter 7. OpenCL

Chapter 8. Trademarks

NVIDIA, the NVIDIA logo, CUDA, DGX, DGX-1, DGX-2, DGX-A100, Tesla, and Quadro are trademarks
and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

©2020-2025, NVIDIA Corporation & affiliates. All rights reserved

37

	NVIDIA Magnum IO GPUDirect Storage Overview Guide
	Introduction
	Related Documents
	Benefits for a Developer
	Intended Uses

	Functional Overview
	Explicit and Direct
	Performance Optimizations
	Implementation Performance Enhancements
	Concurrency Across Threads
	Asynchrony
	Batching
	Use of CUDA Streams in cuFile

	Compatibility and Generality
	Monitoring
	Scope of the Solutions in GDS
	Dynamic Routing
	cuFile Configuration for Dynamic Routing
	cuFile Configuration for DFS Mount
	cuFile Configuration Validation for Dynamic Routing

	Software Architecture
	Software Components
	Primary Components
	Workflows for GDS Functionality
	Workflow 1
	Workflow 2

	Aligning with Other Linux Initiatives

	Deployment
	Software Components for Deployment
	Using GPUDirect Storage in Containers

	Notice
	OpenCL
	Trademarks

