
NVIDIA GPUDirect Storage O_DIRECT
Requirements Guide

Release r1.12

NVIDIA Corporation

Mar 11, 2025

Contents

1 NVIDIA GPUDirect Storage O_DIRECT Requirements Guide 1

2 Introduction 3
2.1 Related Documents . 4

3 GPUDirect Storage Requirements 5
3.1 Summary of Basic Requirements . 5
3.2 Client and Server . 6
3.3 Cases Where O_DIRECT is Not a Fit . 7
3.3.1 Buffered IO . 8
3.3.2 Inline Files . 8
3.3.3 Block Allocation For Writes . 8
3.3.4 Examining or Transforming User Data . 9
3.3.5 Summary . 10

4 Notice 11

5 OpenCL 13

6 Trademarks 15

i

ii

Chapter 1. NVIDIA GPUDirect Storage
O_DIRECT Requirements
Guide

The NVIDIA® GPUDirect Storage® O_DIRECT Requirements Guide helps you understand how GDS can
provide significant benefits when it can leverage the O_DIRECT fcntl.h file mode for a direct data
path between GPU memory and storage.

1

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

2 Chapter 1. NVIDIA GPUDirect Storage O_DIRECT Requirements Guide

Chapter 2. Introduction

This section provides an introduction to the O_DIRECT requirements for the cuFile portion of GDS.

Note

O_DIRECT is the only supportedmode before CUDA toolkit 12.2 (GDS version 1.7). CUDA 12.2 (GDS
version 1.7) introduces support for non O_DIRECT file descriptors as well. The rest of this guide is
still relevant for applications depending upon GDS benefits by expressing intent to use O_DIRECT
file mode.

NVIDIA® GPUDirect® Storage (GDS) is the newest addition to the GPUDirect family. GDS enables a
direct data path for direct memory access (DMA) transfers between GPU memory and storage, which
avoids a bounce buffer through the CPU. Using this direct path can relieve effective system bandwidth
bottlenecks and decrease the latency and utilization load on the CPU.

GDS can provide significant benefit when it can leverage the O_DIRECT (fcntl.h) file mode for a direct
data path between GPUmemory and storage. There are many conditions that must be met to achieve
the performance benefits of the O_DIRECT mode, and these conditions are not always met by all file
systems. The conditions might depend on the transfer size, whether it’s a read or write, whether the
write is to new data (past the end of the file or to a hole in the file), and based onmany other conditions
such as whether checksums are required. This document describes the conditions where O_DIRECT,
on which GDS relies, can be used.

The target audience for this guide includes:

▶ End users and administrators who:

▶ Understand file systems, so they can carefully consider the implications of features they
enable.

▶ Compare support from different file systems to determine the appropriate models and how
to use them.

▶ Evaluate the weighted fraction of cases that do or don’t use O_DIRECT effectively.

▶ Middleware developers who:

▶ Consider the design trade-offs that increase the likelihood that the vendor layer can effec-
tively use O_DIRECT.

▶ Filesystems vendors and implementers who:

▶ Accelerate their assessment of the various cases to be handled with O_DIRECT as they en-
able GDS in new or customized file systems.

3

https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/fcntl.h

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

2.1. Related Documents

Since the original creation of this guide, additional GDS documents and online resources have been
created which support and provide additional context for the optimal use of and understanding of this
specification.

Refer to the following guides for more information about GDS:

▶ GPUDirect Storage Design Guide

▶ GPUDirect Storage Overview Guide

▶ cuFile API Reference Guide

▶ GPUDirect Storage Release Notes

▶ GPUDirect Storage Best Practices Guide

▶ GPUDirect Storage Troubleshooting Guide

To learn more about GDS, refer to the following blogs:

▶ GPUDirect Storage: A Direct Path Between Storage and GPU Memory.

▶ The Magnum IO series.

4 Chapter 2. Introduction

https://docs.nvidia.com/gpudirect-storage/design-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://devblogs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/tag/magnum-io/

Chapter 3. GPUDirect Storage
Requirements

This section provides some basic background on where GDS can be most effectively used.

This information enables readers with varying degrees of technical accuity to get a general sense of
whether, and to what degree, GDS can benefit file systems that make different design choices.

3.1. Summary of Basic Requirements

The GDS architecture has the following key requirements:

▶ The kernel storage driver can perform a DMA of user data to or from GPU memory by using
addresses that were obtained from callbacks to the GDS kernel module, nvidia-fs.ko.

▶ The device near the storage has a DMA engine that can reach the GPU memory buffer via PCIe.

▶ For local storage, an NVMe device performs DMA.

▶ For remote storage, a NIC device performs RDMA.

▶ The file system stack that operates at the user-level, or the kernel-level, or both, and never needs
to access the data in CPU system memory.

Instead, data is transferred directly between storage and GPU memory, which is achieved
by file systems that exclusively use the O_DIRECT mode for a given file.

Figure 1 illustrates a way to visualize conditions for O_DIRECT. It covers cases where there is, or is not,
an operator () in the data path to storage, and whether that operator is in the CPU or GPU. If the
operator is in the CPU, you cannot use O_DIRECT.

Figure 1: Summary of Basic Requirements

The data coming from (or going to) storage cannot
use O_DIRECT if it must be processed in the CPU, as
symbolized by cross operator. It can use O_DIRECT
if it only goes through the GPU whether there’s a
transformational operator there as symbolized by a
cross operator like checksum on the GPU or there’s
no operation at all, as symbolized by a clean arrow.

Lack of support for RDMA in network file systems,
or network block devices, implies the need to copy
data to socket buffers in systemmemory. This need
is incompatible with the basic requirements listed

above.

5

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

If the conditions for using GDS do not hold, for example, because the mount for the file is not GDS
enabled, or the nvidia-fs.ko driver is not available, compatibility mode, a cuFile feature that falls back to
copying through a CPU bounce buffer, can be used. You can enable compatibility mode in the cufile.
json file. Users can override the system’s version of the cufile.json file by creating their own copy and
pointing the appropriate environment variable to that user’s copy. Outside of compatibility mode, the
APIs will fail if O_DIRECT is not possible.

Note

As of CUDA toolkit 12.2 (GDS version 1.7), the APIs would work in compatibility mode, even if the fil
descriptor that is used with the cuFile APIs is opened in non O_DIRECT mode. Even in such a case,
the APIs would leverage the GDS path whenever a direct path between storage and gpu buffer
exits. For all other cases the APIs go via the page cache for fds opened in non O_DIRECT mode.
This can be viewed as the compatibility mode leveraging the page cache that can typically be used
for smaller file I/Os with a high degree of temporal locality, like the case of application headers or
metadata.

3.2. Client and Server

In a local file or block systems, a software stack performs all IO. In a distributed file or block system, at
least two agents are involved. the client makes a read or write request, and a server services it. There
are two types of file systems:

▶ Block-based

▶ Network-attached

A block-based system can be serviced locally or remotely, while network-attached file systems are
always remote.

Consider the following interaction between a client and server:

▶ The direct data path between the NIC and GPU memory happens on the client.

To enable this direct path, client-side drivers must first be enabled with GDS.

▶ RDMA is a protocol to access remote data over a network and uses the NIC to DMA directly into
client-side memory.

Without RDMA, there is no direct path, and GDS for distributed file and block systems relies on
GPUDirect RDMA for the direct path between the NIC and GPU memory.

▶ Using RDMA also relies on server-side support.

File system implementations that do not support RDMA on the server side will not support GDS. For
example, NFS only works with server-side NFS instead of RDMA support, but this has become available
from most NFS vendors since the inception of GDS.

6 Chapter 3. GPUDirect Storage Requirements

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

3.3. Cases Where O_DIRECT is Not a Fit

In POSIX, the mode in which files are opened is controlled by a set of flags. One of these flags,
O_DIRECT, indicates a user’s intent to not buffer transfers in CPU systemmemory but to rather make
transfers be more direct. O_DIRECT, for example, generally disables the use of a page cache. Although
this flag is an expression of user intention, the implementation can still make its own trade-offs.

For example, the implementationmight decide to treat small transfers differently from larger transfers
that take a more direct path. In another example, a file system might offer an option for the user to
enable read ahead for the page cache. This option, however, might conflict with the request from the
user to use O_DIRECT for a file. In this case, how the implementation treats the competing requests
depends on the implementation policy. Therefore, O_DIRECT can be considered a hint.

Several cases are listed below where a user’s request to use O_DIRECT is not currently supported in
file systems, is not used in specific cases, or is fundamentally not feasible. The cases are delineated
according to the agent that makes choices or trade-offs which impact that option.

Here is some additional information:

▶ Possibly relevant for users

▶ User-buffered IO: Transfers might be buffered in the user space before being transferred to
the kernel.

This case might be used when many small transactions have good spatial and temporal lo-
cality.

▶ Possibly relevant for middleware

▶ Metadata management: There might be metadata with the data payload.

Metadata might take many forms, including checksums for the data payload, file sizes that
must be updated when lengthening files, and maps of file layout when filling holes.

▶ Hierarchical storage model: Some implementations used a tiered scheme where some data
resides in CPU system memory, and where shorter latency and high bandwidth is possible.

There are outer tiers of progressively slower, but higher-capacity storage. An example of
this tiered scheme is flash and then spinning disks.

▶ Read ahead: An optimization that is sometimes used, especially for buffered IO and many
small consecutive transfers, is to anticipate what will be used next and to buffer it in CPU
system memory.

▶ Examining or transforming data: When the CPU examines or transforms data before (or
after) IO transactions, this process interferes with direct transfers between the storage and
GPU memory.

▶ File system only

▶ Kernel-buffered IO: If there is good temporal and spatial locality, and the bandwidth and
latency to copy from kernel memory is significantly better than copying from storage, a
mechanism such as fscache might be used to maintain a copy in system memory.

▶ Inline data: Small files are stored and managed differently than larger files.

▶ Block allocation: Various policies are available to allocate space in files, and there might be
implications for client- and server-side activities.

There are cases where middleware performs some of the same functions as a file system. Middleware
might have more contextual information available to it than low-level calls to the file system, and it

3.3. Cases Where O_DIRECT is Not a Fit 7

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

might take steps to increase the likelihood that the file system can use O_DIRECT. Consider the case
of computing a checksum. A user might be able to control whether checksums are even used. If
checksums are enabled, middleware might intervene in the following ways:

▶ It could invoke a GPU kernel to compute the checksum and juxtapose the checksum data with
the payload so that one cuFileWrite can be used to write back the data to storage.

▶ It could again invoke a GPU kernel to compute the checksum to a different buffer and use two
cuFileWrites to write each of the checksum and payload.

In these cases, the requests to the file system can use O_DIRECT.

3.3.1. Buffered IO

The Linux virtual file system (VFS) uses a buffered IO when O_DIRECT is not specified, and there are
potentially multiple layers of caching. Examples of caching might include the following:

▶ Page caching, which is backed by fscache.

▶ File-system-specific page pools, such as ZFS adaptive replay cache (ARC) and Spectrum Storage
(GPFS) page pools.

3.3.2. Inline Files

Filesystems that are based on Linux are implemented by using the common VFS interface to open,
close, read, and write files. User data is organized in files, which are represented in the following ways:

▶ Inodes, whose primary purpose is to store metadata.

▶ Fixed blocks, which are generally referred to as pages that hold user content.

A typical block size is 4096 bytes.

Inline files have data that is smaller than a page size and small enough to fit in the inode. Generally,
file systems provide flags to detect whether the inode is inline. Inodes are normally read into system
memory, so inline user data is copied into system memory with the metadata.

In RDMA-based network-attached file systems, files that are smaller than the specified size threshold
are sent inline in the remote procedure calls (RPCs). This process involves buffering in systemmemory,
which requires an additional copy of user data rather than a direct data transfer. For some file systems,
such as ext4 and Lustre, the inline filesmodes can be disabled at the file system level or on a per-inode
basis.

3.3.3. Block Allocation For Writes

Before data can be written to a file, a data block must be allocated. See Inline Files for more informa-
tion. For file systems to support the O_DIRECTmode for writing files, free data blocks in storagemust
be available and ready to be used by the file system. Otherwise, as in the following cases, user data
can be buffered into the system page cache, which makes direct data transfers impossible. Here is a
list of cases where some file systems need to fall back to buffered mode because of block allocations:

8 Chapter 3. GPUDirect Storage Requirements

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

Note

These limitations do not apply to distributed file systems if the features are implemented on the
storage server, and the client does not perform buffering.

▶ Extending writes: writes that are happening to increase the file size.

▶ Allocating writes: writes to a block that has not yet been allocated.

▶ Writes to preallocated blocks: the blockwas already allocated in storage, but themetadata needs
to be updated before the data is written.

▶ Hole filling: writes to a hole in the middle of the file, which was a sparse block.

▶ Copy on write (COW) file systems: copy operations that are triggered when a write to a data
buffer involves caching in the CPU system memory.

▶ Delayed allocation or allocate on flush: allocation is reactive (not proactive) to reduce disk frag-
mentation on slow random writes or to large sequential writes for spinning disks.

For network-attached storage or distributed file systems, the file system architecture determines
whether the allocation decision is made locally, on each client, or on the remote server. If the block al-
location handling is done on the server side, there is no CPU buffering impediment to direct transfers.
If block allocation was handled on the client side, there might be some impediments.

3.3.4. Examining or Transforming User Data

Here is a list of some cases where the user data needs to be copied into system memory, so that it
can be examined or transformed by the file systems as part of a read or write transfer:

▶ Data journaling is used to track changes that are not yet committed to persistent storage.

Data journaling typically disables O_DIRECT. In general, the journaling of data is not required with
the O_DIRECT use case, unless there is a high-speed journaling media. Metadata journaling does
not require access to user data.

▶ Checksums can be computed during writes and checked upon reads.

For network file systems with checksum support, the checksums are typically performed on the
client to detect network corruptions, in addition to checksum computation on the server.

▶ Client-side compression and deduplication can be provided on network clients to achieve band-
width improvements in addition to compression on the server side for data storage.

Inline deduplication requires looking at user content to determine the fingerprint by using MD5
or SHA1 algorithms. Similarly, client-side encryption can provide more secure communication
from the client to server.

▶ Erasure encoding can be performed by the file system or the block device.

In such cases, the data is copied to CPU systemmemory before performing the DMA to the disk
pool or network servers. For distributed block devices, the erasure coding decision is performed
on the client side.

Synchronous replication involves a data copy into system memory before the DMA operation to
a remote block device or server, depending on the recovery time objective.

3.3. Cases Where O_DIRECT is Not a Fit 9

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

3.3.5. Summary

There aremany cases in which the O_DIRECTmode, in which CPU systemmemory is entirely unused, is
not a fit. The relevance of these cases depends on the local or distributed file system implementation,
and in some cases, on the set of features that were selected by the user. Vendors can provide their
own assessments of the relevance of these issues.

10 Chapter 3. GPUDirect Storage Requirements

Chapter 4. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

11

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

12 Chapter 4. Notice

Chapter 5. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

13

NVIDIA GPUDirect Storage O_DIRECT Requirements Guide, Release r1.12

14 Chapter 5. OpenCL

Chapter 6. Trademarks

NVIDIA, the NVIDIA logo, CUDA, DGX, DGX-1, DGX-2, DGX-A100, Tesla, and Quadro are trademarks
and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

©2020-2025, NVIDIA Corporation & affiliates. All rights reserved

15

	NVIDIA GPUDirect Storage O_DIRECT Requirements Guide
	Introduction
	Related Documents

	GPUDirect Storage Requirements
	Summary of Basic Requirements
	Client and Server
	Cases Where O_DIRECT is Not a Fit
	Buffered IO
	Inline Files
	Block Allocation For Writes
	Examining or Transforming User Data
	Summary

	Notice
	OpenCL
	Trademarks

