
NVIDIA Driver Installation Guide
Release r575

NVIDIA Corporation

May 28, 2025





Contents

1 System Requirements 3

2 OS Support Policy 5

3 Administrative Privileges 7

4 Pre-installation Actions 9
4.1 Verify You Have a Supported Distribution of Linux . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Verify the System has the Correct Kernel Packages Installed . . . . . . . . . . . . . . . . . 9

5 Choose an Installation Method 11

6 Recent Updates 13
6.1 Compute-only HPC Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Driver Helper Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2.1 Auto Hardware Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Kernel Modules 17
7.1 Open GPU Kernel Modules Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Proprietary GPU Kernel Modules Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Red Hat Enterprise Linux 21
8.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 Local Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.3 Network Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.4 DNF module enablement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.5 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.6 Compute-only (Headless) and Desktop-only (no Compute) Installation . . . . . . . . . . . 24
8.6.1 Compute-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.6.2 Desktop-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8.7 Reboot the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 KylinOS 25
9.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.2 Local Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.3 Network Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.4 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.5 Compute-only (Headless) and Desktop-only (no Compute) Installation . . . . . . . . . . . 26
9.5.1 Compute-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.5.2 Desktop-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9.6 Reboot the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Fedora 29
10.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



10.2 Local Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.3 Network Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.4 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.5 Compute-only (Headless) and Desktop-only (no Compute) Installation . . . . . . . . . . . 30
10.5.1 Compute-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10.5.2 Desktop-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10.6 Reboot the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11 SUSE 33
11.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11.2 Local Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11.3 Network Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11.4 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11.5 Compute-only (Headless) and Desktop-only (no Compute) Installation . . . . . . . . . . . 34
11.5.1 Compute-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.5.2 Desktop-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11.6 Reboot the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

12 Ubuntu 37
12.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.2 Local Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.3 Network Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.4 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.5 Compute-only (Headless) and Desktop-only (no Compute) Installation . . . . . . . . . . . 38
12.5.1 Compute-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.5.2 Desktop-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12.6 Reboot the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

13 Debian 41
13.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13.2 Local Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13.3 Network Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13.4 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13.5 Compute-only (Headless) and Desktop-only (no Compute) Installation . . . . . . . . . . . 42
13.5.1 Compute-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
13.5.2 Desktop-only System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

13.6 Reboot the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

14 Amazon Linux 45
14.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
14.2 Local Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
14.3 Network Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
14.4 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
14.5 Reboot the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

15 Azure Linux 47
15.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
15.2 Local Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
15.3 Network Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
15.4 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
15.5 Reboot the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

16 Compute-only and Desktop Installation 49

17 Wayland-only Desktop Installation 51

ii



18 GNOME Software Integration 53
18.1 Driver Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
18.2 Secure Boot Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
18.3 Machine Owner Key Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
18.4 Uninstallation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

19 Optimus Laptops and Multi GPU Desktop Systems 67
19.1 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
19.1.1 VGA Switcheroo (DRM Drivers Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

19.2 Selecting the GPU to Use when Running a Program from the Desktop . . . . . . . . . . . 69
19.3 Selecting the GPU to Use with switcherooctl . . . . . . . . . . . . . . . . . . . . . . . . . 71
19.4 Selecting the GPU to Use with Environment Variables . . . . . . . . . . . . . . . . . . . . . 72
19.4.1 OpenGL Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
19.4.2 VA-API (Video Acceleration API) Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
19.4.3 VDPAU Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
19.4.4 Vulkan or EGL Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
19.4.5 Forcing the Usage of X on a Specific GPU in a Wayland Context . . . . . . . . . . . . . 74

20 Advanced Options 75
20.1 Switching between Driver Module Flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
20.2 Meta Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
20.3 Package Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
20.3.1 Red Hat Enterprise Linux 8/9, Rocky Linux 8/9, Oracle Linux 8/9, KylinOS 10, Amazon

Linux 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
20.3.2 Fedora 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
20.3.3 Azure Linux 2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
20.3.4 SUSE Enterprise Linux Server 15, OpenSUSE Leap 15 . . . . . . . . . . . . . . . . . . . 78
20.3.5 Debian 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
20.3.6 Ubuntu 20.04/22.04/24.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

20.4 Red Hat Enterprise Linux 8/9 Precompiled Streams . . . . . . . . . . . . . . . . . . . . . . . 79
20.4.1 Precompiled Streams Support Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

20.5 Modularity Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
20.6 Red Hat Enterprise Linux 8/9 Kickstart Installation . . . . . . . . . . . . . . . . . . . . . . . 82
20.7 Version locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
20.7.1 DNF 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
20.7.2 DNF 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
20.7.3 APT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

20.8 SUSE Vendor Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
20.9 Restrict APT to Look for Specific Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 88
20.10 APT Repository File not Found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
20.11 Verbose Versions when Using APT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

21 Optional Components 91
21.1 32 bit (i686) packages for Linux x86_64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
21.1.1 Debian 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
21.1.2 Ubuntu 20.04/22.04/24.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
21.1.3 Red Hat Enterprise Linux 8/9, Rocky Linux 8/9, Oracle Linux 8/9, Fedora 41 . . . . . . 91
21.1.4 SUSE Enterprise Linux Server 15, OpenSUSE Leap 15 . . . . . . . . . . . . . . . . . . . 92

21.2 GPUDirect Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
21.3 NVSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

22 Tarballs and Zip Archive Deliverables 95

23 Post-installation Actions 97
23.1 Persistence Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

iii



23.2 Verify the Driver Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
23.3 Local Repository Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

24 Removing the Driver 99

25 GPG Keys Used to Sign the Packages 101

26 Additional Considerations 103

27 Frequently Asked Questions 105
27.1 Why do I see multiple “404 Not Found” errors when updating my repository meta-data

on Ubuntu? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
27.2 How can I tell X to ignore a GPU for compute-only use? . . . . . . . . . . . . . . . . . . . . 105
27.3 What do I do if the display does not load, or CUDA does not work, after performing a

system update? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
27.4 How do I handle “Errors were encountered while processing: glx-diversions”? . . . . . . . 107
27.5 Unknown symbols in the kernel modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
27.6 Third-party packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

28 Notices 109
28.1 Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
28.2 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
28.3 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

iv



NVIDIA Driver Installation Guide, Release r575

Driver Installation Guide

The installation instructions for the NVIDIA Driver on Linux.

Contents 1



NVIDIA Driver Installation Guide, Release r575

2 Contents



Chapter 1. System Requirements

To use the NVIDIA Driver on your system, you will need the following installed:

▶ NVIDIA GPU

▶ A supported version of Linux with a gcc compiler and toolchain

The following table lists the supported Linux distributions. Please review the footnotes associated
with the table.

The columns with $distro, $arch, and $arch_ext can be used to replace the occurrences of the
same variables across this document.

Table 1: Supported Linux Distributions

Distribution $distro $arch $arch_ext

x86_64

Red Hat Enterprise Linux 9 rhel9 x86_64 x86_64

Red Hat Enterprise Linux 8 rhel8 x86_64 x86_64

OpenSUSE Leap 15 SP6 opensuse15 x86_64 x86_64

Rocky Linux 9 rhel9 x86_64 x86_64

Rocky Linux 8 rhel8 x86_64 x86_64

SUSE Linux Enterprise Server 15 SP6 sles15 x86_64 x86_64

Ubuntu 24.04 LTS ubuntu2404 x86_64 amd64

Ubuntu 22.04 LTS ubuntu2204 x86_64 amd64

Ubuntu 20.04 LTS ubuntu2004 x86_64 amd64

Debian 12 debian12 x86_64 amd64

Fedora 41 fedora41 x86_64 x86_64

KylinOS V10 SP3 2403 kylin10 x86_64 x86_64

Azure Linux 2.0 (CBL Mariner 2.0) cm2 x86_64 x86_64

Azure Linux 3.0 azl3 x86_64 x86_64

Amazon Linux 2023 amzn2023 x86_64 x86_64

Oracle Linux 9 rhel9 x86_64 x86_64

continues on next page

3



NVIDIA Driver Installation Guide, Release r575

Table 1 – continued from previous page

Distribution $distro $arch $arch_ext

Oracle Linux 8 rhel8 x86_64 x86_64

arm64-sbsa

Red Hat Enterprise Linux 9 rhel9 sbsa aarch64

Red Hat Enterprise Linux 8 rhel8 sbsa aarch64

SUSE Linux Enterprise Server 15 SP6 sles15 sbsa aarch64

Kylin V10 SP3 2403 kylin10 sbsa aarch64

Ubuntu 24.04 LTS ubuntu2404 sbsa arm64

Ubuntu 22.04 LTS ubuntu2204 sbsa arm64

Ubuntu 20.04 LTS ubuntu2004 sbsa arm64

Azure Linux 3.0 azl3 sbsa aarch64

Amazon Linux 2023 amzn2023 sbsa aarch64

For specific kernel versions supported on Red Hat Enterprise Linux (RHEL), visit https://access.redhat.
com/articles/3078.

A list of kernel versions including the release dates for SUSE Linux Enterprise Server (SLES) is available
at https://www.suse.com/support/kb/doc/?id=000019587.

4 Chapter 1. System Requirements

https://access.redhat.com/articles/3078
https://access.redhat.com/articles/3078
https://www.suse.com/support/kb/doc/?id=000019587


Chapter 2. OS Support Policy

Support for the different operating systems will be until the standard EOSS/EOL date as defined for
each operating system.

Please refer to the support lifecycle for these operating systems to know their support timelines and
plan to move to newer releases accordingly.

5



NVIDIA Driver Installation Guide, Release r575

6 Chapter 2. OS Support Policy



Chapter 3. Administrative Privileges

This document is intended for readers familiar with the Linux environment.

▶ Commands which can be executed as a normal user will be prefixed by a $ at the beginning of
the line

▶ Commands which require administrative privilege (root) will be prefixed by a # at the beginning
of the line

Many commands in this document might require superuser privileges. On most distributions of Linux,
this will require you to log in as root. For systems that have enabled the sudo package, use the sudo
prefix or a sudo shell (sudo -i) for all the necessary commands.

7



NVIDIA Driver Installation Guide, Release r575

8 Chapter 3. Administrative Privileges



Chapter 4. Pre-installation Actions

Some actions must be taken before the NVIDIA driver can be installed on Linux:

▶ Verify the system is running a supported version of Linux.

▶ Verify the system has the correct kernel headers and development packages installed.

▶ Handle conflicting installation methods.

4.1. Verify You Have a Supported Distribution of
Linux

The NVIDIA driver packages are supported on some specific distributions of Linux. These are listed in
the NIDIA Driver release notes.

To determinewhich distribution and release number you’re running, type the following at the command
line:

$ hostnamectl

4.2. Verify the System has the Correct Kernel
Packages Installed

The NVIDIA driver requires that the kernel headers and development packages for the running version
of the kernel be installed at the time of the driver installation, as well whenever the driver is rebuilt.
For example, if your system is running kernel version 3.17.4-301, the 3.17.4-301 kernel headers and
development packages must also be installed.

The rpm and deb installations of the driver will make an attempt to install the kernel header and de-
velopment packages if no version of these packages is currently installed. However, it will install the
latest version of these packages, which may or may not match the version of the kernel your system
is using.

Therefore, it is best to manually ensure the correct version of the kernel headers and development
packages are installed prior to installing theNVIDIA driver, as well as whenever you change the kernel
version.

The version of the kernel your system is running can be found by running the following command:

9



NVIDIA Driver Installation Guide, Release r575

$ uname -r

This is the version of the kernel headers and development packages that must be installed prior to
installing the NVIDIA drivers. This command will be used multiple times below to specify the version
of the packages to install. Note that below are the common-case scenarios for kernel usage. More
advanced cases, such as custom kernel branches, should ensure that their kernel headers and sources
match the kernel build they are running.

Note: If you perform a system update which changes the version of the Linux kernel being used,
the packages should automatically rebuild the kernel modules unless precompiled modules are being
used.

10 Chapter 4. Pre-installation Actions



Chapter 5. Choose an Installation
Method

The NVIDIA driver can be installed using distribution-specific packages (rpm and Debian packages).

The distribution-independent package has the advantage of working across a wider set of Linux dis-
tributions, but does not update with the distribution’s native package management system. The
distribution-specific packages interface with the distribution’s native package management system.
It is recommended to use the distribution-specific packages, where possible.

When using rpm or Debian local repo installers, the downloaded package contains a repository snap-
shot stored on the local filesystem in ∕var∕. Such a package only informs the packagemanager where
to find the actual installation packages, but will not install them.

If the online network repository is enabled, rpm or Debian packages will be automatically downloaded
at installation time using the package manager: apt, dnf, tdnf, yum, or zypper.

Distribution-specific instructions detail how to install NVIDIA driver:

▶ Red Hat Enterprise Linux

▶ KylinOS

▶ Fedora

▶ SUSE

▶ Ubuntu

▶ Debian

▶ Amazon Linux

▶ Azure Linux

Finally, some helpful package manager capabilities are detailed.

Note: Optional components such as nvidia-fs, libnvidia_nscq, and fabricmanager are not
installed by default and will have to be installed separately as needed.

11



NVIDIA Driver Installation Guide, Release r575

12 Chapter 5. Choose an Installation Method



Chapter 6. Recent Updates

6.1. Compute-only HPC Node

Starting in CUDA 12.8, the cudameta-package now installs the Compute only part driver. By default,
if nothing is specified on the command line, the installation will prefer the Open GPU kernel modules.

This is achieved by having the final dependency of cuda-runtime-X-Y on nvidia-driver-cuda∕
nvidia-compute-G06∕libnvidia-compute, depending on the distribution.

6.2. Driver Helper Script

A new script is available to detect and install the best NVIDIA driver packages for the user’s system.
This piece of software is meant to help users decide on which NVIDIA graphics driver to install, based
on the detected system’s hardware.

To install the driver helper script, install the nvidia-driver-assistant package using apt∕dnf∕
tdnf∕zypper.

The following table explains the different flags for the driver helper script:

Table 2: Driver helper script flags

Flags Used Description

--install Install the recommended driver.

--branch [BRANCH] Specify an NVIDIA Driver branch.

--list-supported-distros Print out the list of the supported Linux distributions.

--supported-gpus [SUPPORTED_GPUS] Use a different supported-gpus.json file.

--sys-path [SYS_PATH] Use a different ∕sys path. Useful for testing.

--os-release-path [OS_RELEASE_PATH] Use a different path for the os-release file. Useful for testing.

--distro [DISTRO] Specify a Linux distro using the DISTRO:VERSION or DISTRO pattern. Useful for testing.

--module-flavor [MODULE_FLAVOR] Specify a kernel module flavor; open and closed are accepted values. Useful for testing.

--verbose [OPTIONAL] Verbose output.

13



NVIDIA Driver Installation Guide, Release r575

The following are example command outputs:

Table 3: Command outputs

Command Example Output

$ nvidia-driver-assistant
Detected GPUs:

NVIDIA GeForce RTX 3070 - (pci_id
0x2484)

Detected system:
Ubuntu 24.04

Please copy and paste the following
command to install the open kernel
module flavour:
sudo apt install -y nvidia-open

$ nvidia-driver-assistant --install
Detected GPUs:

NVIDIA GeForce RTX 3070 - (pci_id
0x2484)

Detected system:
Ubuntu 24.04

Using the NVIDIA driver implies
acceptance of the NVIDIA Software
License Agreement, contained in the
"LICENSE" file in the "∕usr∕share∕
nvidia-driver-assistant∕driver_eula"
directory
Installing the following package for

the open kernel module flavour:
sudo apt install -y nvidia-open

$ nvidia-driver-assistant --install
--module-flavor closed Detected GPUs:

NVIDIA GeForce RTX 3070 - (pci_id
0x2484)

Detected system:
Ubuntu 24.04

Using the NVIDIA driver implies
acceptance of the NVIDIA Software
License Agreement, contained in the
"LICENSE" file in the "∕usr∕share∕
nvidia-driver-assistant∕driver_eula"
directory
Installing the following package for
the legacy kernel module flavour:

sudo apt install -y
cuda-drivers

14 Chapter 6. Recent Updates



NVIDIA Driver Installation Guide, Release r575

6.2.1. Auto Hardware Selection

Starting in 560, the standalone NVIDIA driver runfile will use hardware detection to auto-select be-
tween installation of Open GPU or proprietary kernel modules based on the detected SKUs.

The CUDA runfile bundles an intact NVIDIA driver runfile and passes the --silent flag if the driver is
selected (default) via ncurses or the CLI.

Therefore, by default the user will install the auto-detected flavor of the kernel modules us-
ing the CUDA runfile. Additionally, we expose overrides to select the open GPU or proprietary
kernel modules in the ncurses UI advanced options, or via --kernel-module-type=open and
--kernel-module-type=proprietary flags.

6.2. Driver Helper Script 15



NVIDIA Driver Installation Guide, Release r575

16 Chapter 6. Recent Updates



Chapter 7. Kernel Modules

The NVIDIA Linux GPU Driver contains several kernel modules:

▶ nvidia.ko

▶ nvidia-modeset.ko

▶ nvidia-uvm.ko

▶ nvidia-drm.ko

▶ nvidia-peermem.ko

Starting in the 515 driver release series, two “flavors” of these kernel modules are provided:

▶ Proprietary - This is the flavor that NVIDIA has historically shipped. For older GPUs from the
Maxwell, Pascal, or Volta architectures. The open-source GPU kernel modules are not compatible
with your platform, so the proprietary modules is what you are required to use.

▶ Open-source - Published kernel modules that are dual licensed MIT/GPLv2. With every driver
release, the source code to the open kernel modules will be published at https://github.com/
NVIDIA/open-gpu-kernel-modules and a tarball will be provided at https://download.nvidia.com/
XFree86/NVIDIA-kernel-module-source/. These are only for Turing and newer architectures, and
this is what you should use if you have one of those architectures.

Starting in the 560 driver release series, the open kernel module flavor is the default installation.

Open GPU kernel modules are supported only on Turing and newer generations. To verify that your
NVIDIA GPU is at least Turing or newer:

$ lspci | grep VGA

7.1. Open GPU Kernel Modules Installation

For simplification, we’ve condensed the package manager recommendations in table format. All re-
leases beyond driver version 570 will use these packaging conventions.

The following commands will install a full driver, which will include all desktop components as well as
CUDA libraries and tools for computational workloads.

17

https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://download.nvidia.com/XFree86/NVIDIA-kernel-module-source/
https://download.nvidia.com/XFree86/NVIDIA-kernel-module-source/


NVIDIA Driver Installation Guide, Release r575

Table 4: Package manager installation recommendations

Distribution Install the Latest Install a Specific Release

Red Hat Enterprise Linux 8/9,
Rocky Linux 8/9
Oracle Linux 8/9, KylinOS 10,
Amazon Linux 2023

# dnf module enable
nvidia-driver:open-dkms
# dnf install
nvidia-open

# dnf module enable
nvidia-driver:575-open
# dnf install
nvidia-open-575

Fedora 41 # dnf install
nvidia-open

# dnf install
nvidia-open-575

Azure Linux 2 / Azure Linux 3 # tdnf install
nvidia-open

# tdnf install
nvidia-open-575

openSUSE Leap 15 # zypper install
nvidia-open

# zypper install
nvidia-open-575

SUSE Linux Enterprise Server 15
(x86_64)

# zypper install
nvidia-open

# zypper install
nvidia-open-575

SUSE Linux Enterprise Server 15
(aarch64)

# zypper install
nvidia-open

# zypper install
nvidia-open-575

Debian 12 # apt install
nvidia-open

# apt install
nvidia-open-575

Ubuntu 20.04/22.04/24.04 # apt install
nvidia-open

# apt install
nvidia-open-575

7.2. Proprietary GPU Kernel Modules Installation

For simplification, we’ve condensed the package manager recommendations in table format. All re-
leases beyond driver version 570 will use these packaging conventions.

The following commands will install a full driver, which will include all desktop components as well as
CUDA libraries and tools for computational workloads.

18 Chapter 7. Kernel Modules



NVIDIA Driver Installation Guide, Release r575

Table 5: Proprietary GPU Kernel Module Installation

Distribution Install the Latest Install a Specific Release

Red Hat Enterprise
Linux 8/9, Rocky
Linux 8/9
Oracle Linux 8/9,
KylinOS 10, Amazon
Linux 2023

# dnf module enable
nvidia-driver:latest-dkms
# dnf install cuda-drivers

# dnf module enable
nvidia-driver:575-dkms
# dnf install
cuda-drivers-575

Fedora 41 # dnf install cuda-drivers # dnf install
cuda-drivers-575

Azure Linux 2 / Azure
Linux 3

Only the open kernel modules are
supported.

Only the open kernel modules are
supported.

openSUSE Leap 15 # zypper install cuda-drivers # zypper install
cuda-drivers-575

SUSE Linux Enter-
prise Server 15

# zypper install cuda-drivers # zypper install
cuda-drivers-575

Debian 12 # apt install cuda-drivers # apt install
cuda-drivers-575

Ubuntu
20.04/22.04/24.04

# apt install cuda-drivers # apt install
cuda-drivers-575

7.2. Proprietary GPU Kernel Modules Installation 19



NVIDIA Driver Installation Guide, Release r575

20 Chapter 7. Kernel Modules



Chapter 8. Red Hat Enterprise Linux

This section covers:

▶ Red Hat Enterprise Linux 8

▶ Red Hat Enterprise Linux 9

▶ Rocky Linux 8

▶ Rocky Linux 9

▶ Rocky Linux 10

▶ Oracle Linux 8

▶ Oracle Linux 9

▶ Oracle Linux 10

8.1. Preparation

1. Perform the Pre-installation Actions.

2. Precompiled streams do not require kernel headers or DKMS. If precompiled kernel modules are
not required, the kernel headers and development packages for the currently running kernel can
be installed with:

▶ Red Hat Enterprise Linux 9, Rocky Linux 9, Oracle Linux 9:

# dnf install kernel-devel-matched kernel-headers

▶ Red Hat Enterprise Linux 8, Rocky Linux 8, Oracle Linux 8:

# dnf install kernel-devel-$(uname -r) kernel-headers

Note: At the moment of writing, the Oracle UEK kernel is not supported on Oracle Linux. The
package containing the required kernel headers (should be calledkernel-uek-headers) ismiss-
ing, so the NVIDIA modules can not be built for the Oracle UEK kernel variant.

3. Satisfy third-party package dependencies:

The NVIDIA driver rpm packages depend on other external packages. Those packages are only
available on third-party repositories, such as EPEL. Any such third-party repositories must be

21

http://fedoraproject.org/wiki/EPEL


NVIDIA Driver Installation Guide, Release r575

added to the packagemanager repository database before installing the NVIDIA driver rpm pack-
ages, or missing dependencies will prevent the installation from proceeding.

▶ Red Hat Enterprise Linux 9:

# subscription-manager repos --enable=rhel-9-for-$arch-appstream-rpms
# subscription-manager repos --enable=rhel-9-for-$arch-baseos-rpms
# subscription-manager repos --enable=codeready-builder-for-rhel-9-$arch-rpms
# dnf install https:∕∕dl.fedoraproject.org∕pub∕epel∕epel-release-latest-9.
↪→noarch.rpm

▶ Red Hat Enterprise Linux 8:

# subscription-manager repos --enable=rhel-8-for-$arch-appstream-rpms
# subscription-manager repos --enable=rhel-8-for-$arch-baseos-rpms
# subscription-manager repos --enable=codeready-builder-for-rhel-8-$arch-rpms
# dnf install https:∕∕dl.fedoraproject.org∕pub∕epel∕epel-release-latest-8.
↪→noarch.rpm

▶ Rocky Linux 9:

# dnf config-manager --set-enabled crb
# dnf install epel-release

▶ Rocky Linux 8:

# dnf config-manager --set-enabled powertools
# dnf install epel-release

▶ Oracle Linux 9:

# dnf config-manager --set-enabled ol9_codeready_builder
# dnf install oracle-epel-release-el9

▶ Oracle Linux 8:

# dnf config-manager --set-enabled ol8_codeready_builder
# dnf install oracle-epel-release-el8

4. Choose an installation method: Local Repository Installation or Network Repository Installation.

8.2. Local Repository Installation

1. Download the NVIDIA driver:

$ wget https:∕∕developer.download.nvidia.com∕compute∕nvidia-driver∕$version∕local_
↪→installers∕nvidia-driver-local-repo-$distro.$version.$arch_ext.rpm

where $version is the NVIDIA driver version

2. Install local repository on file system:

# rpm --install nvidia-driver-local-repo-$distro.$version*.$arch_ext.rpm

22 Chapter 8. Red Hat Enterprise Linux



NVIDIA Driver Installation Guide, Release r575

8.3. Network Repository Installation

1. Enable the network repository:

# dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕$distro∕$arch∕cuda-$distro.repo

2. Clean DNF repository cache:

# dnf clean expire-cache

8.4. DNF module enablement

This is required for distributionswhere content is not distributed as a flat repository but as a repository
containing DNF module streams.

These instructions apply to both local and network installations and only for the following distribu-
tions:q

▶ Red Hat Enterprise Linux 8

▶ Red Hat Enterprise Linux 9

▶ Rocky Linux 8

▶ Rocky Linux 9

▶ Oracle Linux 8

▶ Oracle Linux 9

Open Kernel Modules

# dnf module enable nvidia-driver:open-dkms

▶ Example DKMS streams: 575-open or open-dkms

Proprietary Kernel Modules

# dnf module enable nvidia-driver:latest-dkms

▶ Example DKMS streams: 575-dkms or latest-dkms

▶ Example precompiled streams: 575 or latest

8.5. Driver Installation

These instructions apply to both local and network installations.

Open Kernel Modules

# dnf install nvidia-open

Proprietary Kernel Modules

8.3. Network Repository Installation 23



NVIDIA Driver Installation Guide, Release r575

# dnf install cuda-drivers

8.6. Compute-only (Headless) and Desktop-only
(no Compute) Installation

It’s possible to install the driver without all the desktop components (GL, EGL, Vulkan, X drivers, and so
on) to limit the footprint and dependencies on the system. With the same logic it’s possible to install
a desktop system without any compute component.

Note: The components excluded at installation time can always be added at a later stage. This will
pull in all the additional dependencies required.

8.6.1. Compute-only System

Open Kernel Modules

# dnf install nvidia-driver-cuda kmod-nvidia-open-dkms

Proprietary Kernel Modules

# dnf install nvidia-driver-cuda kmod-nvidia-latest-dkms

8.6.2. Desktop-only System

Open Kernel Modules

# dnf install nvidia-driver kmod-nvidia-open-dkms

Proprietary Kernel Modules

# dnf install nvidia-driver kmod-nvidia-latest-dkms

8.7. Reboot the System

# reboot

Perform the Post-installation Actions.

24 Chapter 8. Red Hat Enterprise Linux



Chapter 9. KylinOS

This section covers:

▶ KylinOS 10

9.1. Preparation

1. Perform the Pre-installation Actions.

2. The kernel headers and development packages for the currently running kernel can be installed
with:

# dnf install kernel-devel-$(uname -r) kernel-headers

3. Choose an installation method: Local Repository Installation or Network Repository Installation.

9.2. Local Repository Installation

1. Download the NVIDIA driver:

$ wget https:∕∕developer.download.nvidia.com∕compute∕nvidia-driver∕$version∕local_
↪→installers∕nvidia-driver-local-repo-$distro.$version.$arch_ext.rpm

where $version is the NVIDIA driver version

2. Install local repository on file system:

# rpm --install nvidia-driver-local-repo-$distro.$version*.$arch_ext.rpm

25



NVIDIA Driver Installation Guide, Release r575

9.3. Network Repository Installation

1. Enable the network repository:

# dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕$distro∕$arch∕cuda-$distro.repo

2. Clean DNF repository cache:

# dnf clean expire-cache

9.4. Driver Installation

These instructions apply to both local and network installations.

Module Streams

# dnf module install nvidia-driver:<stream>∕<profile>

Open Kernel Modules

# dnf module enable nvidia-driver:open-dkms
# dnf install nvidia-open

▶ Example DKMS streams: 575-open or open-dkms

Proprietary Kernel Modules

# dnf module enable nvidia-driver:latest-dkms
# dnf install cuda-drivers

where profile by default is default and does not need to be specified.

▶ Example DKMS streams: 575-dkms or latest-dkms

9.5. Compute-only (Headless) and Desktop-only
(no Compute) Installation

It’s possible to install the driver without all the desktop components (GL, EGL, Vulkan, X drivers, and so
on) to limit the footprint and dependencies on the system. With the same logic it’s possible to install
a desktop system without any compute component.

Note: The components excluded at installation time can always be added at a later stage. This will
pull in all the additional dependencies required.

26 Chapter 9. KylinOS



NVIDIA Driver Installation Guide, Release r575

9.5.1. Compute-only System

Open Kernel Modules

# dnf install nvidia-driver-cuda kmod-nvidia-open-dkms

Proprietary Kernel Modules

# dnf install nvidia-driver-cuda kmod-nvidia-latest-dkms

9.5.2. Desktop-only System

Open Kernel Modules

# dnf install nvidia-driver kmod-nvidia-open-dkms

Proprietary Kernel Modules

# dnf install nvidia-driver kmod-nvidia-latest-dkms

9.6. Reboot the System

# reboot

Perform the Post-installation Actions.

9.6. Reboot the System 27



NVIDIA Driver Installation Guide, Release r575

28 Chapter 9. KylinOS



Chapter 10. Fedora

This section covers:

▶ Fedora 41

10.1. Preparation

1. Perform the Pre-installation Actions.

2. The kernel headers and development packages for the currently running kernel can be installed
with:

# dnf install kernel-devel-matched kernel-headers

3. Choose an installation method: Local Repository Installation or Network Repository Installation.

10.2. Local Repository Installation

1. Download the NVIDIA driver:

$ wget https:∕∕developer.download.nvidia.com∕compute∕nvidia-driver∕$version∕local_
↪→installers∕nvidia-driver-local-repo-$distro.$version.$arch_ext.rpm

where $version is the NVIDIA driver version

2. Install local repository on file system:

# rpm --install nvidia-driver-local-repo-$distro.$version*.$arch_ext.rpm

29



NVIDIA Driver Installation Guide, Release r575

10.3. Network Repository Installation

1. Enable the network repository:

# dnf config-manager addrepo --from-repofile=https:∕∕developer.download.nvidia.
↪→com∕compute∕cuda∕repos∕$distro∕$arch∕cuda-$distro.repo

2. Clean DNF repository cache:

# dnf clean expire-cache

10.4. Driver Installation

These instructions apply to both local and network installations.

Branch stickiness

Please refer to the DNF 5 paragraph of the Version locking section.

Open Kernel Modules

# dnf install nvidia-open

Proprietary Kernel Modules

# dnf install cuda-drivers

10.5. Compute-only (Headless) and
Desktop-only (no Compute) Installation

It’s possible to install the driver without all the desktop components (GL, EGL, Vulkan, X drivers, and so
on) to limit the footprint and dependencies on the system. With the same logic it’s possible to install
a desktop system without any compute component.

Note: The components excluded at installation time can always be added at a later stage. This will
pull in all the additional dependencies required.

30 Chapter 10. Fedora



NVIDIA Driver Installation Guide, Release r575

10.5.1. Compute-only System

Open Kernel Modules

# dnf install nvidia-driver-cuda kmod-nvidia-open-dkms

Proprietary Kernel Modules

# dnf install nvidia-driver-cuda kmod-nvidia-latest-dkms

10.5.2. Desktop-only System

Open Kernel Modules

# dnf install nvidia-driver kmod-nvidia-open-dkms

Proprietary Kernel Modules

# dnf install nvidia-driver kmod-nvidia-latest-dkms

10.6. Reboot the System

# reboot

Perform the Post-installation Actions.

10.6. Reboot the System 31



NVIDIA Driver Installation Guide, Release r575

32 Chapter 10. Fedora



Chapter 11. SUSE

This section covers:

▶ SUSE Linux Enterprise 15

▶ OpenSUSE Leap 15

11.1. Preparation

1. Perform the Pre-installation Actions.

2. The kernel development packages for the currently running kernel can be installed with:

# zypper install -y kernel-<variant>-devel=<version>

Note: <variant>may be: default, 64k for aarch64 or default, azure for x86_64.

To run the above command, you will need the variant and version of the currently running kernel.
Use the output of the uname command to determine the currently running kernel’s variant and
version:

$ uname -r
3.16.6-2-default

In the above example, the variant is default and version is 3.16.6-2.

The kernel development packages for the default kernel variant can be installed with:

# zypper install -y kernel-default-devel=$(uname -r | sed 's∕\-default∕∕')

3. The kernel headers and development packages for the currently running kernel can be installed
with:

# zypper install -y kernel-<variant>-devel=$(uname -r | sed 's∕\-default∕∕')

4. Choose an installation method: Local Repository Installation or Network Repository Installation.

33



NVIDIA Driver Installation Guide, Release r575

11.2. Local Repository Installation

1. Download the NVIDIA driver:

$ wget https:∕∕developer.download.nvidia.com∕compute∕nvidia-driver∕$version∕local_
↪→installers∕nvidia-driver-local-repo-$distro.$version.$arch_ext.rpm

where $version is the NVIDIA driver version

2. Install local repository on file system:

# rpm --install nvidia-driver-local-repo-$distro.$version*.$arch_ext.rpm

11.3. Network Repository Installation

1. Enable the network repository:

# zypper addrepo https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕$distro∕
↪→$arch∕cuda-$distro.repo

2. Refresh Zypper repository cache:

# SUSEConnect --product PackageHub∕15∕<architecture>
# zypper refresh

11.4. Driver Installation

These instructions apply to both local and network installations.

Open Kernel Modules

# zypper -v install nvidia-open

Proprietary Kernel Modules

# zypper -v install cuda-drivers

11.5. Compute-only (Headless) and
Desktop-only (no Compute) Installation

It’s possible to install the driver without all the desktop components (GL, EGL, Vulkan, X drivers, and so
on) to limit the footprint and dependencies on the system. With the same logic it’s possible to install
a desktop system without any compute component.

34 Chapter 11. SUSE



NVIDIA Driver Installation Guide, Release r575

Note: The components excluded at installation time can always be added at a later stage. This will
pull in all the additional dependencies required.

11.5.1. Compute-only System

Open Kernel Modules

# zypper -v install nvidia-compute-G06 nvidia-open-driver-G06

Proprietary Kernel Modules

# zypper -v install nvidia-compute-G06 nvidia-driver-G06

11.5.2. Desktop-only System

Open Kernel Modules

# zypper -v install nvidia-video-G06 nvidia-open-driver-G06

Proprietary Kernel Modules

# zypper -v install nvidia-video-G06 nvidia-driver-G06

11.6. Reboot the System

# reboot

Perform the Post-installation Actions.

11.6. Reboot the System 35



NVIDIA Driver Installation Guide, Release r575

36 Chapter 11. SUSE



Chapter 12. Ubuntu

This section covers:

▶ Ubuntu 20.04

▶ Ubuntu 22.04

▶ Ubuntu 24.04

12.1. Preparation

1. Perform the Pre-installation Actions.

2. The kernel headers and development packages for the currently running kernel can be installed
with:

# apt install linux-headers-$(uname -r)

3. Choose an installation method: Local Repository Installation or Network Repository Installation.

12.2. Local Repository Installation

1. Download the NVIDIA driver:

$ wget https:∕∕developer.download.nvidia.com∕compute∕nvidia-driver∕$version∕local_
↪→installers∕nvidia-driver-local-repo-$distro-$version_$arch_ext.deb

where $version is the NVIDIA driver version

2. Install local repository on file system:

# dpkg -i nvidia-driver-local-repo-$distro-$version_$arch_ext.deb
# apt update

3. Enroll ephemeral public GPG key:

# cp ∕var∕nvidia-driver-local-repo-$distro-$version∕nvidia-driver-*-keyring.gpg ∕
↪→usr∕share∕keyrings∕

37



NVIDIA Driver Installation Guide, Release r575

12.3. Network Repository Installation

Install the new cuda-keyring package:

$ wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕$distro∕$arch∕cuda-
↪→keyring_1.1-1_all.deb
# dpkg -i cuda-keyring_1.1-1_all.deb
# apt update

If you are unable to install the cuda-keyring package you can follow these instructions:

1. Enroll the new signing key:

$ wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕$distro∕$arch∕
↪→cuda-archive-keyring.gpg
# mv cuda-archive-keyring.gpg ∕usr∕share∕keyrings∕cuda-archive-keyring.gpg

2. Enable the network repository:

# echo "deb [signed-by=∕usr∕share∕keyrings∕cuda-archive-keyring.gpg] https:∕∕
↪→developer.download.nvidia.com∕compute∕cuda∕repos∕$distro∕$arch∕ ∕" \

| tee ∕etc∕apt∕sources.list.d∕cuda-$distro-$arch.list

12.4. Driver Installation

These instructions apply to both local and network installations.

Open Kernel Modules

# apt install nvidia-open

Proprietary Kernel Modules

# apt install cuda-drivers

12.5. Compute-only (Headless) and
Desktop-only (no Compute) Installation

It’s possible to install the driver without all the desktop components (GL, EGL, Vulkan, X drivers, and so
on) to limit the footprint and dependencies on the system. With the same logic it’s possible to install
a desktop system without any compute component.

Note: The components excluded at installation time can always be added at a later stage. This will
pull in all the additional dependencies required.

38 Chapter 12. Ubuntu



NVIDIA Driver Installation Guide, Release r575

12.5.1. Compute-only System

Open Kernel Modules

# apt -V install libnvidia-compute-575 nvidia-dkms-575-open

Proprietary Kernel Modules

# apt -V install libnvidia-compute-575 nvidia-dkms-575

12.5.2. Desktop-only System

Open Kernel Modules

# apt -V install libnvidia-gl-575 nvidia-dkms-575-open

Proprietary Kernel Modules

# apt -V install libnvidia-gl-575 nvidia-dkms-575

12.6. Reboot the System

# reboot

Perform the Post-installation Actions.

12.6. Reboot the System 39



NVIDIA Driver Installation Guide, Release r575

40 Chapter 12. Ubuntu



Chapter 13. Debian

This section covers:

▶ Debian 12

13.1. Preparation

1. Perform the Pre-installation Actions.

2. The kernel headers and development packages for the currently running kernel can be installed
with:

# apt install linux-headers-$(uname -r)

3. Enable the contrib repository:

# add-apt-repository contrib

4. Choose an installation method: Local Repository Installation or Network Repository Installation.

13.2. Local Repository Installation

1. Download the NVIDIA driver:

$ wget https:∕∕developer.download.nvidia.com∕compute∕nvidia-driver∕$version∕local_
↪→installers∕nvidia-driver-local-repo-$distro-$version_$arch_ext.deb

where $version is the NVIDIA driver version

2. Install local repository on file system:

# dpkg -i nvidia-driver-local-repo-$distro-$version*_$arch_ext.deb
# apt update

3. Enroll ephemeral public GPG key:

# cp ∕var∕nvidia-driver-local-repo-$distro-$version∕nvidia-driver-*-keyring.gpg ∕
↪→usr∕share∕keyrings∕

41



NVIDIA Driver Installation Guide, Release r575

13.3. Network Repository Installation

1. Install the new cuda-keyring package:

$ wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕$distro∕$arch∕
↪→cuda-keyring_1.1-1_all.deb
# dpkg -i cuda-keyring_1.1-1_all.deb
# apt update

If you are unable to install the cuda-keyring package you can follow these instructions:

1. Enroll the new signing key:

$ wget https:∕∕developer.download.nvidia.com∕compute∕cuda∕repos∕$distro∕$arch∕
↪→cuda-archive-keyring.gpg
# mv cuda-archive-keyring.gpg ∕usr∕share∕keyrings∕cuda-archive-keyring.gpg

2. Enable the network repository:

# echo "deb [signed-by=∕usr∕share∕keyrings∕cuda-archive-keyring.gpg] https:∕∕
↪→developer.download.nvidia.com∕compute∕cuda∕repos∕$distro∕$arch∕ ∕" \

| tee ∕etc∕apt∕sources.list.d∕cuda-$distro-$arch.list

13.4. Driver Installation

These instructions apply to both local and network installations.

Open Kernel Modules

# apt -V install nvidia-open

Proprietary Kernel Modules

# apt -V install cuda-drivers

13.5. Compute-only (Headless) and
Desktop-only (no Compute) Installation

It’s possible to install the driver without all the desktop components (GL, EGL, Vulkan, X drivers, and so
on) to limit the footprint and dependencies on the system. With the same logic it’s possible to install
a desktop system without any compute component.

Note: The components excluded at installation time can always be added at a later stage. This will
pull in all the additional dependencies required.

42 Chapter 13. Debian



NVIDIA Driver Installation Guide, Release r575

13.5.1. Compute-only System

Open Kernel Modules

# apt -V install nvidia-driver-cuda nvidia-kernel-open-dkms

Proprietary Kernel Modules

# apt -V install nvidia-driver-cuda nvidia-kernel-dkms

13.5.2. Desktop-only System

Open Kernel Modules

# apt -V install nvidia-driver nvidia-kernel-open-dkms

Proprietary Kernel Modules

# apt -V install nvidia-driver nvidia-kernel-dkms

13.6. Reboot the System

# reboot

Perform the Post-installation Actions.

13.6. Reboot the System 43



NVIDIA Driver Installation Guide, Release r575

44 Chapter 13. Debian



Chapter 14. Amazon Linux

This section covers:

▶ Amazon Linux 2023

14.1. Preparation

1. Perform the Pre-installation Actions.

2. The kernel headers and development packages for the currently running kernel can be installed
with:

# dnf install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

3. Choose an installation method: Local Repository Installation or Network Repository Installation.

14.2. Local Repository Installation

1. Download the NVIDIA driver:

$ wget https:∕∕developer.download.nvidia.com∕compute∕nvidia-driver∕$version∕local_
↪→installers∕nvidia-driver-local-repo-$distro.$version.$arch_ext.rpm

where $version is the NVIDIA driver version

2. Install local repository on file system:

# rpm --install nvidia-driver-local-repo-$distro.$version*.$arch_ext.rpm

45



NVIDIA Driver Installation Guide, Release r575

14.3. Network Repository Installation

1. Enable the network repository:

# dnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕$distro∕$arch∕cuda-$distro.repo

2. Clean DNF repository cache:

# dnf clean expire-cache

14.4. Driver Installation

These instructions apply to both local and network installations.

Module Streams

# dnf module install nvidia-driver:<stream>∕<profile>

Open Kernel Modules

# dnf module enable nvidia-driver:open-dkms
# dnf install nvidia-open

where profile by default is default and does not need to be specified.

▶ Example dkms streams: 575-open or open-dkms

Proprietary Kernel Modules

# dnf module enable nvidia-driver:latest-dkms
# dnf install cuda-drivers

where profile by default is default and does not need to be specified.

▶ Example dkms streams: 575-dkms or latest-dkms

14.5. Reboot the System

# reboot

Perform the Post-installation Actions.

46 Chapter 14. Amazon Linux



Chapter 15. Azure Linux

This section covers:

▶ Azure Linux 2 (CBL Mariner 2.0)

▶ Azure Linux 3

15.1. Preparation

1. Perform the Pre-installation Actions.

2. The kernel headers and development packages for the currently running kernel can be installed
with:

# tdnf install kernel-devel-$(uname -r) kernel-headers-$(uname -r) kernel-modules-
↪→extra-$(uname -r)

3. Enable the extended repository:

Azure Linux 2:

# tdnf install mariner-repos-extended

Azure Linux 3:

# tdnf install azurelinux-repos-extended

4. Choose an installation method: Local Repository Installation or Network Repository Installation.

15.2. Local Repository Installation

1. Download the NVIDIA driver:

$ wget https:∕∕developer.download.nvidia.com∕compute∕nvidia-driver∕$version∕
↪→local_installers∕nvidia-driver-local-repo-$distro.$version.$arch_ext.rpm

where $version is the NVIDIA driver version

1. Install local repository on file system:

47



NVIDIA Driver Installation Guide, Release r575

# rpm --install nvidia-driver-local-repo-$distro.$version*.$arch_ext.rpm

15.3. Network Repository Installation

1. Enable the network repository:

# tdnf config-manager --add-repo https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕$distro∕$arch∕cuda-$distro.repo

2. Clean DNF repository cache:

# tdnf clean expire-cache

15.4. Driver Installation

These instructions apply to both local and network installations.

# tdnf install nvidia-open

15.5. Reboot the System

# reboot

Perform the Post-installation Actions.

48 Chapter 15. Azure Linux



Chapter 16. Compute-only and Desktop
Installation

Starting in 560, the driver allows a new custom installation method which includes only part of the
driver for different use cases. This allows for a more granular installation with fewer dependencies,
especially for compute only systemswhere the desktop componentswould pull in a lot of extra libraries
that then would go unused.

Depending on the operating system, it is now possible to install the driver in the following configura-
tion:

▶ Desktop: Contains all the X/Wayland drivers and libraries to allow running a GPU with power
management enabled on a desktop system (laptop, workstation, and so on) but does not include
any CUDA component.

▶ Compute-only, or “headless”: Contains everything required to run CUDA applications on a GPU
system where the GPU is not used to drive a display: a computational cluster, a workstation with
a dedicated NVIDIA GPU, and so on.

▶ Desktop and Compute: The canonical way of installing the driver, with every possible library and
display component. This might be required in cross functional combinations, for CUDA acceler-
ated video encoding/decoding.

49



NVIDIA Driver Installation Guide, Release r575

This option is now supported for the following operating systems, with more to follow in future re-
leases:

▶ Red Hat Enterprise Linux 8 / Rocky Linux 8 / Oracle Linux 8

▶ Red Hat Enterprise Linux 9 / Rocky Linux 9 / Oracle Linux 9

▶ Kylin 10

▶ Fedora 41

▶ OpenSUSE Leap 15

▶ SUSE Linux Enterprise Server 15

▶ Debian 12

▶ Ubuntu 20.04

▶ Ubuntu 22.04

▶ Ubuntu 24.04

The installation of the driver for the following operating systems is provided exclusively in compute
only/headless mode:

▶ Azure Linux 2 (CBL Mariner 2.0)

▶ Azure Linux 3

▶ Amazon Linux 2023

▶ Upgrading the driver on Amazon Linux 2023 to version 560 or newer will remove all the un-
used desktop components as part of the upgrade.

More information is available in the respective sections.

50 Chapter 16. Compute-only and Desktop Installation



Chapter 17. Wayland-only Desktop
Installation

This option is now supported for the following operating systems, with more to follow in future re-
leases:

▶ Red Hat Enterprise Linux 8 / Rocky Linux 8 / Oracle Linux 8

▶ Red Hat Enterprise Linux 9 / Rocky Linux 9 / Oracle Linux 9

▶ Fedora 41

To drop support for X.org server, its desktop sessions and all relevant user space X driver packages,
just remove the X.org server package. There is a reverse dependency on the X.org package for having X
components installed with the driver, so by removing it, you’re removing everything that is not required
to run an X.org session.

# dnf remove xorg-x11-server-Xorg

51



NVIDIA Driver Installation Guide, Release r575

52 Chapter 17. Wayland-only Desktop Installation



Chapter 18. GNOME Software
Integration

The Gnome Software installation is geared towards non technical users and installs only the desktop
part of the driver, leaving the compute components out. The process guides the user on installing the
driver and also enrolling the Secure Boot keys.

At the moment this process is enabled for the following distributions:

▶ Fedora 41

This requires to have theNVIDIA repository already configured/added to have the information appear
in GNOME Software as part of the PackageKit downloads.

18.1. Driver Installation

1. After adding the NVIDIA repository, search for “nvidia driver”:

▶ If nothing is found, then run the following command to force a PackageKit metadata refresh
out of its normal regular schedule:

53



NVIDIA Driver Installation Guide, Release r575

# pkcon refresh force

2. Click on the NVIDIA Graphics Driver item.

3. Click on the Install button and insert the Administrator password (root).

Note: Multiple repositories can provide the samemetadata for the same package set. The driver
is also shipped by RPMFusion and other repositories; so you must select the CUDA repository
from the top right drop down menu under the Install button.

4. The installation will now begin. You can check the progress below the greyed out button.

54 Chapter 18. GNOME Software Integration



NVIDIA Driver Installation Guide, Release r575

18.2. Secure Boot Preparation

1. Once the driver is installed, the button will switch to Enable…. Click on the button.

18.2. Secure Boot Preparation 55



NVIDIA Driver Installation Guide, Release r575

2. The next screen you will be presented with the MOK enrollment prompt.

▶ Note down the number. This will be the MOK password used later.

▶ Check the I have made a note of the MOK password box.

▶ Click Next.

56 Chapter 18. GNOME Software Integration



NVIDIA Driver Installation Guide, Release r575

3. Click the Restart & Enroll MOK button.

▶ You will be asked again for the Administrator password (root) and the system will restart.

18.2. Secure Boot Preparation 57



NVIDIA Driver Installation Guide, Release r575

Then, you can proceed to enroll the locally generatedMOK. Refer to theMachine Owner Key Enrollment
section to proceed.

18.3. Machine Owner Key Enrollment

Note: This section is a copy of what is published on Fedora’s Machine Owner Key enrollment docu-
mentation page.

In order to successfully reboot after the NVIDIA driver installation, you have to enroll the Machine
Owner Key you created during installation in GNOME Software. During rebooting you’ll be presented
with the mokutil tool:

1. Press any key to begin.

58 Chapter 18. GNOME Software Integration

https://docs.fedoraproject.org/en-US/quick-docs/mok-enrollment/
https://docs.fedoraproject.org/en-US/quick-docs/mok-enrollment/


NVIDIA Driver Installation Guide, Release r575

2. Select Enroll MOK:

18.3. Machine Owner Key Enrollment 59



NVIDIA Driver Installation Guide, Release r575

3. Select Continue to proceed:

60 Chapter 18. GNOME Software Integration



NVIDIA Driver Installation Guide, Release r575

4. Select Yes to enroll the key.

18.3. Machine Owner Key Enrollment 61



NVIDIA Driver Installation Guide, Release r575

5. Type the MOK password you created for the key during installation.

Note: Please note that there will be no feedback on the screen as you type the characters.

62 Chapter 18. GNOME Software Integration



NVIDIA Driver Installation Guide, Release r575

6. Select Reboot to reboot into the operating system with the NVIDIA drivers and Secure Boot en-
abled.

18.3. Machine Owner Key Enrollment 63



NVIDIA Driver Installation Guide, Release r575

18.4. Uninstallation

1. Remove the driver by clicking Uninstall in the GNOME Software window:

64 Chapter 18. GNOME Software Integration



NVIDIA Driver Installation Guide, Release r575

2. In the uninstall prompt, click again on the Uninstall button,

▶ Enter the Administrator password (root) and GNOME Software will proceed to uninstall the
driver:

18.4. Uninstallation 65



NVIDIA Driver Installation Guide, Release r575

3. Optionally, you can remove the enrolled MOK by typing the following command in a terminal:

# mokutil --delete ∕var∕lib∕dkms∕mok.pub

66 Chapter 18. GNOME Software Integration



Chapter 19. Optimus Laptops and Multi
GPU Desktop Systems

This section is specifically for desktop systems with multiple GPUs and is applicable to the following
type of systems:

▶ Optimus laptops (for example integrated Intel GPU + discrete NVIDIA GPU).

▶ Desktop workstation with GPUs from different vendors (for example integrated AMD GPU + dis-
crete NVIDIA GPU).

▶ Desktop workstation with multiple NVIDIA GPUs.

There is not much to configure and since a few years, for most common cases, everything just works
out of the box, even when the NVIDIA driver is not in use.

Warning: On Optimus laptops, the usage of any external software that is written with the idea of
forcing the NVIDIA GPU to be always on is strongly discouraged. This includes bbswitch, Bumble-
bee, SUSEPrime, envycontrol and nvidia-prime. Most of these projects are actually abandoned and
usually create more issues than benefits.

The exception to this is switcheroo-control, which is well integrated with the system. Most of the
time it carries a package name of switcherooctl and is usually preinstalled by default with the
desktop on most distributions.

Let’s take into consideration a very common case, a laptop with Intel + NVIDIA GPU (Dell Precision
5680, NVIDIA Optimus). The GPUs appear as follows:

$ lspci | grep -i vga
00:02.0 VGA compatible controller: Intel Corporation Raptor Lake-P [Iris Xe Graphics]�
↪→(rev 04)
01:00.0 VGA compatible controller: NVIDIA Corporation AD104GLM [RTX 3500 Ada�
↪→Generation Laptop GPU] (rev a1)

We’ll be using the output of the lspci command to get the <bus#>:<device#>.<function#> of
each GPU. This will be used throughout this section to differentiate between the Intel GPU (00:02.0)
and the NVIDIA GPU (01:00.0).

67

https://github.com/Bumblebee-Project/bbswitch
https://github.com/Bumblebee-Project/Bumblebee
https://github.com/Bumblebee-Project/Bumblebee
https://github.com/openSUSE/SUSEPrime
https://github.com/bayasdev/envycontrol
https://github.com/canonical/nvidia-prime
https://gitlab.freedesktop.org/hadess/switcheroo-control


NVIDIA Driver Installation Guide, Release r575

19.1. Power Management

The system boots with the graphical output driven by the integrated Intel GPU and the NVIDIA GPU is
off:

$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
suspended

A simple command that touches the PCI card like lspci or nvidia-settings is enough to wake up
the NVIDIA GPU for probing:

$ lspci > ∕dev∕null
$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
active

A few seconds after, the GPU is again in suspended:

$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
suspended

The transition is always fast if no program is using the GPU; it usually takes just 4 or 5 seconds for the
GPU to turn off. For example, after exiting a game, you can immediately hear the fan shutting down
when the GPU goes off.

This is the simplest way to check the power state of the GPU when using the open source DRM drivers
or the NVIDIA driver.

19.1.1. VGA Switcheroo (DRM Drivers Only)

If you are using an open source driver, the VGA Switcheroo files appear as soon as two GPU drivers
and one handler have registered with vga_switcheroo. Since multiple GPUs are using a common
framework, vga_switcheroo is enabled and we we can manipulate the state of the devices. The
default GPU is marked with a * symbol:

$ sudo cat ∕sys∕kernel∕debug∕vgaswitcheroo∕switch
0:IGD:+:Pwr:0000:00:02.0
1:DIS-Audio: :DynOff:0000:01:00.1
2:DIS: :DynOff:0000:01:00.0

After firing up the GPU for a workload, we can see the state reflected into the virtual file:

$ sudo cat ∕sys∕kernel∕debug∕vgaswitcheroo∕switch
0:IGD:+:Pwr:0000:00:02.0
1:DIS-Audio: :DynOff:0000:01:00.1
2:DIS: :DynPwr:0000:01:00.0

The DIS-Audio device (Discrete Audio) is the actual HDA sound card on the GPU that is used to send
audio to an external output (for example, to a TV connected to an HDMI port). That is also controlled
by the dynamic control of the devices via VGA Switcheroo.

The configuration is flexible, so for example you could have two or more discrete GPUs and one extra
audio controller for an eventual HDMI port.

68 Chapter 19. Optimus Laptops and Multi GPU Desktop Systems



NVIDIA Driver Installation Guide, Release r575

You can also do some really low-level stuff. This is an example command to switch the display output
to the discrete GPU, if you have an old system with disconnected GPUs that uses a MUX to switch the
display output:

$ sudo echo MDIS > ∕sys∕kernel∕debug∕vgaswitcheroo∕switch

19.2. Selecting the GPU to Use when Running a
Program from the Desktop

If running on Gnome or KDE, any application can be selected to run on the discrete GPU directly from
the desktop by right clicking on the application icon:

This is supported both in the case of multiple DRI/DRM devices and or a combination with NVIDIA
proprietary drivers. There is no visible difference between the two.

Both Gnome and KDE feature an extra setting that can be added to desktop menus to prefer the
integrated GPU. For example Steam provides this by default:

$ cat ∕usr∕share∕applications∕steam.desktop | grep -i GPU
PrefersNonDefaultGPU=true
X-KDE-RunOnDiscreteGpu=true

Applications bearing those entries receive the opposite treatment, they run on the discete GPU by
default. You can right click on the Steam application icon and select the internal GPU:

19.2. Selecting the GPU to Use when Running a Program from the Desktop 69



NVIDIA Driver Installation Guide, Release r575

70 Chapter 19. Optimus Laptops and Multi GPU Desktop Systems



NVIDIA Driver Installation Guide, Release r575

19.3. Selecting the GPU to Use with
switcherooctl

The system comes with a userspace utility to manipulate the GPUs and that also prints the variables
you can use to address a specific GPU. This is the Prime / VGA Swicheroo case:

$ switcherooctl list
Device: 0

Name: Intel Corporation Raptor Lake-P [Iris Xe Graphics]
Default: yes
Environment: DRI_PRIME=pci-0000_00_02_0

Device: 1
Name: NVIDIA Corporation AD104GLM [RTX 3500 Ada Generation Laptop GPU]
Default: no
Environment: DRI_PRIME=pci-0000_01_00_0

Note: The DRI_PRIME variable is never set by default and it’s assumed to be at 0 (so main integrated
GPU in most cases) if nothing else sets it.

In the case of NVIDIA drivers, the tool is smart enough to set the appropriate NVIDIA variables to
achieve the same result:

$ switcherooctl list
Device: 0

Name: Intel Corporation Raptor Lake-P [Iris Xe Graphics]
Default: yes
Environment: DRI_PRIME=pci-0000_00_02_0

Device: 1
Name: NVIDIA Corporation AD104GLM [RTX 3500 Ada Generation Laptop GPU]
Default: no
Environment: __GLX_VENDOR_LIBRARY_NAME=nvidia __NV_PRIME_RENDER_OFFLOAD=1 __VK_

↪→LAYER_NV_optimus=NVIDIA_only

Think of switcherooctl as a replacement for setting up variables. For example, if your system has 4
GPUs (0-3) and you want to target the 4th GPU, these commands are equivalent:

$ switcherooctl launch -g 3 <command>
$ DRI_PRIME=3 <command>
$ DRI_PRIME=pci-0000_03_00_0 <command>

19.3. Selecting the GPU to Use with switcherooctl 71



NVIDIA Driver Installation Guide, Release r575

19.4. Selecting the GPU to Use with
Environment Variables

19.4.1. OpenGL Context

OpenGL came in before this multiple GPU / multiple GPU vendor topic existed. By default, with GLVND
that offersmultiple GPU support for OpenGL, the first GPU is the one used to run OpenGL applications
in the main display and the second GPU is left powered off:

$ glxinfo -B | grep string
OpenGL vendor string: Intel
OpenGL renderer string: Mesa Intel(R) Graphics (RPL-P)
OpenGL core profile version string: 4.6 (Core Profile) Mesa 24.0.8
OpenGL core profile shading language version string: 4.60
OpenGL version string: 4.6 (Compatibility Profile) Mesa 24.0.8
OpenGL shading language version string: 4.60
OpenGL ES profile version string: OpenGL ES 3.2 Mesa 24.0.8
OpenGL ES profile shading language version string: OpenGL ES GLSL ES 3.20
$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
suspended

In the case of the Intel + NVIDIA drivers, we can use the NVIDIA variables consumed by the driver to
select the GPU and let the system power on the extra GPU:

$ __NV_PRIME_RENDER_OFFLOAD=1 __GLX_VENDOR_LIBRARY_NAME=nvidia glxinfo -B | grep�
↪→string
OpenGL vendor string: NVIDIA Corporation
OpenGL renderer string: NVIDIA RTX 3500 Ada Generation Laptop GPU∕PCIe∕SSE2
OpenGL core profile version string: 4.6.0 NVIDIA 555.42.02
OpenGL core profile shading language version string: 4.60 NVIDIA
OpenGL version string: 4.6.0 NVIDIA 555.42.02
OpenGL shading language version string: 4.60 NVIDIA
OpenGL ES profile version string: OpenGL ES 3.2 NVIDIA 555.42.02
OpenGL ES profile shading language version string: OpenGL ES GLSL ES 3.20
$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
active

If we are using open source drivers for both GPUs, we can use the Mesa DRI variables to select the
GPU:

$ DRI_PRIME=1 glxinfo -B | grep string
OpenGL vendor string: Mesa
OpenGL renderer string: NV194
OpenGL core profile version string: 4.3 (Core Profile) Mesa 24.0.8
OpenGL core profile shading language version string: 4.30
OpenGL version string: 4.3 (Compatibility Profile) Mesa 24.0.8
OpenGL shading language version string: 4.30
OpenGL ES profile version string: OpenGL ES 3.2 Mesa 24.0.8
OpenGL ES profile shading language version string: OpenGL ES GLSL ES 3.20

We can either use the PCI or VGA Switcheroo devices to check the power state of the GPUs:

72 Chapter 19. Optimus Laptops and Multi GPU Desktop Systems



NVIDIA Driver Installation Guide, Release r575

$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
active
$ sudo cat ∕sys∕kernel∕debug∕vgaswitcheroo∕switch
0:IGD:+:Pwr:0000:00:02.0
1:DIS-Audio: :DynOff:0000:01:00.1
2:DIS: :DynPwr:0000:01:00.0

19.4.2. VA-API (Video Acceleration API) Context

TheVideoAccelerationAPI can also be used to displayGPU information by using the vainfo command:

$ vainfo | grep version
libva info: VA-API version 1.21.0
libva info: Trying to open ∕usr∕lib64∕dri∕iHD_drv_video.so
libva info: Found init function __vaDriverInit_1_21
libva info: va_openDriver() returns 0
vainfo: VA-API version: 1.21 (libva 2.21.0)
vainfo: Driver version: Intel iHD driver for Intel(R) Gen Graphics - 24.2.3 (Full�
↪→Feature Build)
$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
suspended

VA-API has its own set of variables for selectingwhich driver to use in the case of Intel + NVIDIA drivers:

$ LIBVA_DRIVER_NAME=nvidia vainfo | grep version
libva info: VA-API version 1.21.0
libva info: User environment variable requested driver 'nvidia'
libva info: Trying to open ∕usr∕lib64∕dri∕nvidia_drv_video.so
libva info: Found init function __vaDriverInit_1_0
libva info: va_openDriver() returns 0
vainfo: VA-API version: 1.21 (libva 2.21.0)
vainfo: Driver version: VA-API NVDEC driver [direct backend]
$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
active

Again, with the open source stack, also setting the DRI variable or switcherooctl are required to run
the command on the correct GPU:

$ DRI_PRIME=1 LIBVA_DRIVER_NAME=nouveau vainfo | grep version
libva info: VA-API version 1.21.0
libva info: User environment variable requested driver 'nouveau'
libva info: Trying to open ∕usr∕lib64∕dri∕nouveau_drv_video.so
libva info: Found init function __vaDriverInit_1_21
libva info: va_openDriver() returns 0
vainfo: VA-API version: 1.21 (libva 2.21.0)
vainfo: Driver version: Mesa Gallium driver 24.0.8 for NV194
$ cat ∕sys∕bus∕pci∕devices∕0000:{00:02.0,01:00.0}∕power∕runtime_status
active
active

19.4. Selecting the GPU to Use with Environment Variables 73



NVIDIA Driver Installation Guide, Release r575

19.4.3. VDPAU Context

There is no support for Optimus/Prime laptops in VDPAU and no support for Wayland.

19.4.4. Vulkan or EGL Context

Vulkan and EGL were thought with this use case in mind and the selection of the GPU to use ties into
the extensions, so usually the correct one is already considered by the program using the appropriate
API. The program can query a particular extension to get an ordered list of GPUs or with some other
mechanism. This is usually performed by the program itself, so there is not really a way to “force” one
specific GPU.

For example, vkcube allows us to select the GPU:

$ vkcube --gpu_number 0 --c 20
Selected GPU 0: Intel(R) Graphics (RPL-P), type: IntegratedGpu
$ vkcube --gpu_number 1 --c 20
Selected GPU 1: NVIDIA RTX 3500 Ada Generation Laptop GPU, type: DiscreteGpu

Contrary to the OpenGL context, you can use with the following commands to display a list of GPUs
to use, not just for a single GPU:

$ eglinfo -B
$ __NV_PRIME_RENDER_OFFLOAD=1 eglinfo -B
$ vulkaninfo --summary

There are some variables or programs that can be used to influence the extensions used for query-
ing the GPUs, but it’s not really a supported path. The application decides based on the information
provided by the drivers and some predefined criteria.

19.4.5. Forcing the Usage of X on a Specific GPU in a
Wayland Context

Everything described so far is applied as well toWayland. On top of that, Xwayland is started whenever
an application that does not support Wayland yet is started in a Wayland desktop.

If you want to force the use of Xwayland for a program that supports both Wayland and X, then you
just need to set an additional variable. For example, depending on the context (DRI, NVIDIA, etc), these
are all equivalent:

$ XDG_SESSION_TYPE=X11 __NV_PRIME_RENDER_OFFLOAD=1 __GLX_VENDOR_LIBRARY_NAME=nvidia�
↪→glxgears
$ XDG_SESSION_TYPE=X11 DRI_PRIME=1 glxgears
$ XDG_SESSION_TYPE=X11 switcherooctl launch -g 1 glxgears

74 Chapter 19. Optimus Laptops and Multi GPU Desktop Systems



Chapter 20. Advanced Options

This section contains information on some advanced setup scenarios which are not covered in the
basic instructions above.

20.1. Switching between Driver Module Flavors

Use the following steps to switch between the NVIDIA driver proprietary and open module flavors on
your system.

Note: Replace XXX with the NVIDIA driver branch number such as 575.

Amazon Linux 2023, KylinOS 10, Red Hat Enterprise Linux 8/9, Rocky Linux 8/9, Oracle Linux 8/9

To switch between proprietary and open kernel modules:

# dnf -y module switch-to nvidia-driver:<stream> --allowerasing

Fedora 41

To switch from proprietary to open:

# dnf install --allowerasing nvidia-open

To switch from open to proprietary:

# dnf install --allowerasing cuda-drivers

If you have done a desktop or compute-only installation, you can just switch the kernel module pack-
age. For example to go from proprietary to open:

# dnf install --allowerasing kmod-nvidia-open-dkms

Azure Linux 2/3

Only the open kernel modules are supported, no switching is possible.

Debian 12

To switch from proprietary to open:

# apt install --autoremove --purge nvidia-open

To switch from open to proprietary:

75



NVIDIA Driver Installation Guide, Release r575

# apt install --autoremove --purge cuda-drivers

Ubuntu 20.04/22.04/24.04

To switch from proprietary to open:

# apt install --autoremove --purge nvidia-open-575 nvidia-driver-575-open

To switch from open to proprietary:

# apt install --autoremove --purge cuda-drivers-575 nvidia-driver-575

OpenSUSE Leap 15, SUSE Linux Enterprise Server 15

To switch from proprietary to open:

# zypper install --details --force-resolution nvidia-open

To switch from open to proprietary:

# zypper install --details --force-resolution cuda-drivers

20.2. Meta Packages

Meta packages are rpm/deb packages which contain no (or few) files but have multiple dependencies.
They are used to install many CUDA packages when you may not know the details of the packages you
want. The following table lists the meta packages. Not all of the packages listed below are available
on every distribution. Sometime they are provided by other packages, sometimes they are not needed
as there are other mechanisms offered by the distribution to provide branch segregation (ex. DNF
modules).

Table 6: Kernel Modules Meta Packages

Meta Package Purpose

nvidia-open Installs all NVIDIAOpenGPU kernelmodules Driver packages. Handles upgrading
to the next version of the driver packages when they are released.

nvidia-open-575Installs all NVIDIA Open GPU kernel modules Driver packages. Will not upgrade
beyond the 575.xxx branch drivers.

cuda-drivers Installs all NVIDIA proprietary kernel modules Driver packages. Handles upgrad-
ing to the next version of the Driver packages when they are released.

cuda-drivers-575Installs all NVIDIA proprietary kernel modules Driver packages. Will not upgrade
beyond the 575.xx branch drivers.

76 Chapter 20. Advanced Options



NVIDIA Driver Installation Guide, Release r575

20.3. Package Upgrades

When a new version is available, a normal package update command specific for the distribution should
suffice in upgrading the driver. The various differences in distributions would take care of obsolency
and package switching when performing upgrades to a different branch.

The following section shows some examples of the commands that can be performed.

20.3.1. Red Hat Enterprise Linux 8/9, Rocky Linux 8/9,
Oracle Linux 8/9, KylinOS 10, Amazon Linux 2023

When upgrading the driver to the same stream:

# dnf update

When upgrading the driver to a different stream:

# dnf module reset nvidia-driver
# dnf module enable nvidia-driver:<stream>
# dnf update --allowerasing

Or when switching from proprietary modules to open modules:

# dnf module reset nvidia-driver
# dnf module enable nvidia-driver:<stream>
# dnf install nvidia-open --allowerasing

20.3.2. Fedora 41

If DNF locking is configured on the sytem, please adjust the configuration or remove the lock entirely.
Please refer to the DNF 4/5 paragraph of the Version locking section for more information.

When upgrading the driver, whether configured to a version locked branch or the latest available, the
command to execute is always the same; what matters is the DNF version lock configuration:

# dnf update

When switching from proprietary modules to open modules:

# dnf install nvidia-open --allowerasing

This will remove any package which would have dependencies removed.

20.3. Package Upgrades 77



NVIDIA Driver Installation Guide, Release r575

20.3.3. Azure Linux 2/3

When upgrading the driver to the same stream:

# tdnf update

When upgrading the driver to a different stream:

# tdnf install --allowerasing nvidia-open-575

This will remove any package which would have dependencies removed.

20.3.4. SUSE Enterprise Linux Server 15, OpenSUSE Leap
15

When upgrading the driver to the same stream:

# zypper update --details

When upgrading the driver to a different stream:

# zypper install --details --force-resolution nvidia-open-575

This will remove any package which would prevent you from reaching the target.

20.3.5. Debian 12

If APT pinning is configured on the sytem, please adjust the configuration or remove the pinning en-
tirely. Please refer to the APT paragraph of the Version locking section for more information.

When upgrading the driver, whether configured to a pinned branch or the latest available, the com-
mand to execute is always the same; what matters is the APT pinning configuration:

# dnf update

Or a bit more aggressive, to take into consideration held back packages that might have changed
betweend driver releases, for example to upgrade from nvidia-open-565 to nvidia-open-575:

# apt dist-upgrade --autoremove --purge

This will remove any package which would have dependencies removed.

78 Chapter 20. Advanced Options



NVIDIA Driver Installation Guide, Release r575

20.3.6. Ubuntu 20.04/22.04/24.04

When updating packages of the same driver branch or without a specific tracking branch:

# apt update

Or a bit more aggressive, to take into consideration held back packages that might have changed
betweend driver releases, for example to upgrade from nvidia-open-565 to nvidia-open-575:

# apt dist-upgrade --autoremove --purge

This will remove any package which would have dependencies removed.

20.4. Red Hat Enterprise Linux 8/9 Precompiled
Streams

Precompiled streams offer an optional method of streamlining the installation process. The advan-
tages of precompiled streams:

▶ Signed by Red Hat: allows Secure Boot and kernel signature validation to be completely enabled

▶ Precompiled: faster boot up after driver and/or kernel updates

▶ Pre-tested: kernel and driver combination has been validated

▶ Removes compiler and associated dependencies: no compiler installation required

▶ Removes DKMS dependency: enabling EPEL repository not required

▶ Removes kernel-devel and kernel-headers dependencies: no black screen if matching packages
are missing

When using precompiled drivers, a plugin for the DNF package manager is enabled that prevents sys-
tem breakages by preventing upgrades to a kernel for which no precompiled driver yet exists. This
can delay the application of kernel updates, but ensures that a tested kernel and driver combination
is always used. A warning is displayed by dnf during that upgrade situation:

NVIDIA driver: some kernel packages have been filtered due to missing precompiled�
↪→modules.
Please run "dnf nvidia-plugin" as a command to see a report on the filter being�
↪→applied.

Additional information is shown for all kernels and precompiled modules that are available for the
system by running the plugin as a standlone command. For example:

# dnf nvidia-plugin
Last metadata expiration check: 0:27:16 ago on Wed 20 Nov 2024 08:09:53 PM CET.

Installed kernel(s):
kernel-core-5.14.0-503.14.1.el9_5.x86_64
kernel-core-5.14.0-427.42.1.el9_4.x86_64

Available kernel(s):
kernel-core-5.14.0-503.11.1.el9_5.x86_64

(continues on next page)

20.4. Red Hat Enterprise Linux 8/9 Precompiled Streams 79



NVIDIA Driver Installation Guide, Release r575

(continued from previous page)

kernel-core-5.14.0-503.14.1.el9_5.x86_64

Available driver(s):
nvidia-driver-3:565.57.01-1.el9.x86_64
nvidia-driver-cuda-3:565.57.01-1.el9.x86_64

Available kmod(s):
kmod-nvidia-3:565.57.01-2.el9.x86_64

Packaging templates and instructions are provided on GitHub to allow you to maintain your own
precompiled kernel module packages for custom kernels and derivative Linux distros: NVIDIA/yum-
packaging-precompiled-kmod

To use the new driver packages on RHEL 8 or RHEL 9:

1. First, ensure that the necessary Red Hat repositories are enabled.

Compared to the normal DKMS installation, this requires less repositories to be enabled on the
system.

Red Hat Enterprise Linux 8:

# subscription-manager repos --enable=rhel-8-for-x86_64-appstream-rpms
# subscription-manager repos --enable=rhel-8-for-x86_64-baseos-rpms

Red Hat Enterprise Linux 9:

# subscription-manager repos --enable=rhel-9-for-x86_64-appstream-rpms
# subscription-manager repos --enable=rhel-9-for-x86_64-baseos-rpms

2. Choose one of the options below depending on the desired driver:

▶ latest always updates to the highest versioned driver (precompiled):

# dnf module enable nvidia-driver:latest

▶ Locks the driver updates to the specified driver branch (precompiled). Replace <id> with
the appropriate driver branch streams, for example 570, 560, 550, etc.:

# dnf module enable nvidia-driver:<id>

3. Install the preferred driver combination:

For example:

# dnf install nvidia-open
# dnf install nvidia-driver-cuda
# dnf install nvidia-driver nvidia-settings
# dnf install nvidia-driver nvidia-driver-cuda

Please refer to the precompiled folder in the driver repositories for more information.

80 Chapter 20. Advanced Options

https://github.com/NVIDIA/yum-packaging-precompiled-kmod
https://github.com/NVIDIA/yum-packaging-precompiled-kmod
https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/precompiled/


NVIDIA Driver Installation Guide, Release r575

20.4.1. Precompiled Streams Support Matrix

This table shows an example of the supported precompiled, legacy, and open DKMS streams for each
driver.

Table 7: Streams Support Matrix

NVIDIA Driver Precompiled Stream Legacy DKMS Stream Open DKMS Stream

Highest version latest latest-dkms open-dkms

Locked at 575.x 575 575-dkms 575-open

Locked at 570.x 570 570-dkms 570-open

Locked at 565.x 565 565-dkms 565-open

Locked at 560.x 560 560-dkms 560-open

Locked at 550.x 550 550-dkms 550-open

Prior to switching between module streams, first reset the DNF module:

# dnf module reset nvidia-driver

Or as an alternative:

# dnf module switch-to nvidia-driver:<stream>

20.5. Modularity Profiles

Modularity profiles work with any supported modularity stream and allow for additional use cases.
These modularity profiles are available on Amazon Linux 2023, KylinOS 10, and Red Hat Enterprise
Linux 8/9.

Table 8: Modularity Profiles

Stream Profile Use Case

Default ∕
default

Installs all the driver packages in a stream.

Kickstart ∕ks Performs unattended Linux OS installation using a config file.

NVSwitch Fabric ∕fm Installs all the driver packages plus components required for boot-
strapping an NVSwitch system (including the Fabric Manager and
NSCQ telemetry).

For example:

# dnf module install nvidia-driver:<stream>∕default
# dnf module install nvidia-driver:<stream>∕ks
# dnf module install nvidia-driver:<stream>∕fm

You can install multiple modularity profiles using BASH curly brace expansion, for example:

20.5. Modularity Profiles 81



NVIDIA Driver Installation Guide, Release r575

# dnf module install nvidia-driver:latest∕{default,fm}

Please refer to the Developer Blog for more information.

20.6. Red Hat Enterprise Linux 8/9 Kickstart
Installation

Edit the Kickstart configuration file as follows.

Red Hat Enterprise Linux 8, Rocky Linux 8, Oracle Linux 8

1. Enable the EPEL repository:

repo --name=epel --baseurl=http:∕∕download.fedoraproject.org∕pub∕epel∕8∕
↪→Everything∕x86_64∕

2. Enable the CUDA repository:

repo --name=cuda-rhel8 --baseurl=https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕rhel8∕x86_64∕

3. If you are not using driver 570 or later, in the packages section of the Kickstart file, make sure
you are using the /ks profile:

@nvidia-driver:open-dkms∕ks

This is not needed from 570 and above, you can skip the /ks profile.

1. Perform the Post-installation Actions.

Red Hat Enterprise Linux 9, Rocky Linux 9, Oracle Linux 9

1. Enable the EPEL repository:

repo --name=epel --baseurl=http:∕∕download.fedoraproject.org∕pub∕epel∕9∕
↪→Everything∕x86_64∕

2. Enable the CUDA repository:

repo --name=cuda-rhel9 --baseurl=https:∕∕developer.download.nvidia.com∕compute∕
↪→cuda∕repos∕rhel9∕x86_64∕

3. If you are not using driver 570 or later, in the packages section of the Kickstart file, make sure
you are using the /ks profile:

@nvidia-driver:open-dkms∕ks

4. Perform the Post-installation Actions.

82 Chapter 20. Advanced Options

https://developer.nvidia.com/blog/streamlining-nvidia-driver-deployment-on-rhel-8-with-modularity-streams


NVIDIA Driver Installation Guide, Release r575

20.7. Version locking

For distributions without mechanisms to clearly segregate branches inside the same repository, the
normal distribution version locking mechanisms can be used. Here are some examples on how to
achieve locking onto a specific driver branch.

The examples below all refer to configuring version lock for branch 575. Make sure every package that
you want to lock onto a specific branch has the appropriate line / code block in the configuration files.

20.7.1. DNF 4

DNF version 4 is the package manager of the following distributions:

▶ Red Hat Enterprise Linux 8 / Rocky Linux 8 / Oracle Linux 8

▶ Red Hat Enterprise Linux 9 / Rocky Linux 9 / Oracle Linux 9

▶ Kylin 10

▶ Amazon Linux 2023

Make sure the python3-dnf-plugin-versionlock package is installed to use it. Just run the dnf
versionlock command to automatically populate the file ∕etc∕dnf∕plugins∕versionlock.list
and lock a specific driver version in place:

# dnf4 versionlock \*nvidia\*575\*
Adding versionlock on: kmod-nvidia-open-dkms-3:575.51-1.fc41.*
Adding versionlock on: nvidia-kmod-common-3:575.51-1.fc41.*
Adding versionlock on: nvidia-driver-cuda-libs-3:575.51-1.fc41.*
Adding versionlock on: nvidia-open-3:575.51-1.fc41.*
Adding versionlock on: nvidia-xconfig-3:575.51-1.fc41.*
Adding versionlock on: xorg-x11-nvidia-3:575.51-1.fc41.*
Adding versionlock on: kmod-nvidia-latest-dkms-3:575.51-1.fc41.*
Adding versionlock on: libnvidia-cfg-3:575.51-1.fc41.*
Adding versionlock on: nvidia-driver-cuda-3:575.51-1.fc41.*
Adding versionlock on: nvidia-driver-3:575.51-1.fc41.*
Adding versionlock on: libnvidia-fbc-3:575.51-1.fc41.*
Adding versionlock on: nvidia-libXNVCtrl-devel-3:575.51-1.fc41.*
Adding versionlock on: nvidia-libXNVCtrl-3:575.51-1.fc41.*
Adding versionlock on: libnvidia-ml-3:575.51-1.fc41.*
Adding versionlock on: nvidia-modprobe-3:575.51-1.fc41.*
Adding versionlock on: nvidia-settings-3:575.51-1.fc41.*
Adding versionlock on: nvidia-driver-libs-3:575.51-1.fc41.*
Adding versionlock on: nvidia-persistenced-3:575.51-1.fc41.*

# cat ∕etc∕dnf∕plugins∕versionlock.list
kmod-nvidia-open-dkms-3:575.51-1.fc41.*
nvidia-kmod-common-3:575.51-1.fc41.*
nvidia-driver-cuda-libs-3:575.51-1.fc41.*
nvidia-open-3:575.51-1.fc41.*
nvidia-xconfig-3:575.51-1.fc41.*
xorg-x11-nvidia-3:575.51-1.fc41.*
kmod-nvidia-latest-dkms-3:575.51-1.fc41.*
libnvidia-cfg-3:575.51-1.fc41.*
nvidia-driver-cuda-3:575.51-1.fc41.*

(continues on next page)

20.7. Version locking 83



NVIDIA Driver Installation Guide, Release r575

(continued from previous page)

nvidia-driver-3:575.51-1.fc41.*
libnvidia-fbc-3:575.51-1.fc41.*
nvidia-libXNVCtrl-devel-3:575.51-1.fc41.*
nvidia-libXNVCtrl-3:575.51-1.fc41.*
libnvidia-ml-3:575.51-1.fc41.*
nvidia-modprobe-3:575.51-1.fc41.*
nvidia-settings-3:575.51-1.fc41.*
nvidia-driver-libs-3:575.51-1.fc41.*
nvidia-persistenced-3:575.51-1.fc41.*

An alternative is to manually edit the configuration file ∕etc∕dnf∕plugins∕versionlock.list and
populate it with the following content to stick the driver to a particular branch, and no longer to a
specific version:

kmod-nvidia*3:575*
libnvidia*3:575*
nvidia-driver*3:575*
nvidia-kmod-common-3:575*
nvidia-libXNVCtrl*3:575*
nvidia-modprobe-3:575*
nvidia-open-3:575*
nvidia-persistenced-3:575*
nvidia-settings-3:575*
nvidia-xconfig-3:575*
xorg-x11-nvidia-3:575*

Please refer to the dnf4-versionlock(8)manual page for more information and configuration op-
tions.

20.7.2. DNF 5

DNF version 5 is the package manager of the following distributions:

▶ Fedora 41

Just run the dnf versionlock add command to populate the file ∕etc∕dnf∕versionlock.toml
(which can then be edited or left as is) to lock a specific driver version:

# dnf versionlock add \*nvidia\*575\*
Updating and loading repositories:
Repositories loaded.
Adding versionlock on "dkms-nvidia = 3:575.51.03-1.fc41".
Adding versionlock on "libnvidia-cfg = 3:575.51.03-1.fc41".
Adding versionlock on "libnvidia-fbc = 3:575.51.03-1.fc41".
Adding versionlock on "libnvidia-gpucomp = 3:575.51.03-1.fc41".
Adding versionlock on "libnvidia-ml = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-driver = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-driver-cuda = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-driver-cuda-libs = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-driver-libs = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-kmod-common = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-libXNVCtrl = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-modprobe = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-persistenced = 3:575.51.03-1.fc41".
Adding versionlock on "nvidia-settings = 3:575.51.03-1.fc41".

84 Chapter 20. Advanced Options



NVIDIA Driver Installation Guide, Release r575

Alternatively, DNF 5 can be configured to specify a range in the configuration file, but this is very
verbose. Configure the file ∕etc∕dnf∕versionlock.toml with the following content:

version = "1.0"

[[packages]]
name = "kmod-nvidia*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

[[packages]]
name = "libnvidia*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

[[packages]]
name = "nvidia-driver*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

[[packages]]
name = "nvidia-kmod-common*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

[[packages]]
name = "nvidia-libXNVCtrl*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"

(continues on next page)

20.7. Version locking 85



NVIDIA Driver Installation Guide, Release r575

(continued from previous page)

value = "3:580"

[[packages]]
name = "nvidia-modprobe*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

[[packages]]
name = "nvidia-open*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

[[packages]]
name = "nvidia-persistenced*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

[[packages]]
name = "nvidia-settings*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

[[packages]]
name = "nvidia-xconfig*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

(continues on next page)

86 Chapter 20. Advanced Options



NVIDIA Driver Installation Guide, Release r575

(continued from previous page)

[[packages]]
name = "xorg-x11-nvidia*"
[[packages.conditions]]
key = "evr"
comparator = ">="
value = "3:575"
[[packages.conditions]]
key = "evr"
comparator = "<"
value = "3:580"

Please refer to the dnf5-versionlock(8)manual page for more information and configuration op-
tions.

20.7.3. APT

APT is the package manager of the following distributions:

▶ Debian 12

▶ Ubuntu 20.04

▶ Ubuntu 22.04

▶ Ubuntu 24.04

Create a configuration file like ∕etc∕apt∕preferences.d∕nvidia and populate it with the following
content to pin the driver to a particular branch and/or version:

Package: src:*nvidia*:any src:cuda-drivers:any src:cuda-compat:any
Pin: version 570.148.05-1
Pin-Priority: 1000

A priority of >= 1000 allows APT to also consider downgrades with a higher priority. Please refer to the
apt_preferences(5)manual page for more information and configuration options.

20.8. SUSE Vendor Change

Starting with driver version 575, all the driver packages for openSUSE Leap and SUSE Enterprise Linux
Server have a vendor of “NVIDIA”. The system will prevent the update of packages hosted in the other
repositories unless there is an override for the vendor.

More information on the topic is available in the Vendor Change page of openSUSE.

This can be triggered on the command line:

# zypper update --allow-vendor-change
Loading repository data...
Reading installed packages...

The following package is going to be upgraded:
dkms

(continues on next page)

20.8. SUSE Vendor Change 87

https://en.opensuse.org/SDB:Vendor_change_update


NVIDIA Driver Installation Guide, Release r575

(continued from previous page)

The following package is going to change vendor:
dkms openSUSE -> NVIDIA

1 package to upgrade, 1 to change vendor.

Package download size: 58.0 KiB

Package install size change:
| 148.7 KiB required by packages that will be installed

5.4 KiB | - 143.3 KiB released by packages that will be removed

Backend: classic_rpmtrans
Continue? [y∕n∕v∕...? shows all options] (y):

Or by adding the vendor equivalence to a Zypper configuration file. For example, in the case of open-
SUSE, just add “NVIDIA” at the end of this configuration file:

$ cat ∕etc∕zypp∕vendors.d∕00-openSUSE.conf
[main]
vendors=openSUSE,SUSE,SUSE LLC <https:∕∕www.suse.com∕>,NVIDIA

And then the upgrade can happen allowing the vendor change:

# zypper update --details
Loading repository data...
Reading installed packages...

The following package is going to be upgraded:
dkms 3.0.11-bp156.1.2 -> 3.1.5-1 noarch test NVIDIA

1 package to upgrade.

Package download size: 58.0 KiB

Package install size change:
| 148.7 KiB required by packages that will be installed

5.4 KiB | - 143.3 KiB released by packages that will be removed

Backend: classic_rpmtrans
Continue? [y∕n∕v∕...? shows all options] (y):

20.9. Restrict APT to Look for Specific
Architectures

Modify Ubuntu’s apt package manager to query specific architectures for specific repositories. This
is useful when a foreign architecture has been added, causing “404 Not Found” errors to appear when
the repository meta-data is updated.

Each repository you wish to restrict to specific architectures must have its sources.list entry mod-
ified. This is done by modifying the ∕etc∕apt∕sources.list file and any files containing reposito-
ries you wish to restrict under the ∕etc∕apt∕sources.list.d∕ directory. Normally, it is sufficient

88 Chapter 20. Advanced Options



NVIDIA Driver Installation Guide, Release r575

to modify only the entries in ∕etc∕apt∕sources.list.

An architecture-restricted repository entry looks like:

deb [arch=<arch1>,<arch2>] <url>

For example, if you wanted to restrict a repository to only the amd64 and i386 architectures, it would
look like:

deb [arch=amd64,i386] <url>

It is not necessary to restrict the deb-src repositories, as these repositories don’t provide
architecture-specific packages.

For more details, see the sources.listmanpage.

20.10. APT Repository File not Found

In case of the error: E: Failed to fetch file:∕var∕cuda-repo File not found on Debian
and Ubuntu systems.

This can occur when installing CUDA after uninstalling a different version. Use the following command
before installation:

# rm -v ∕var∕lib∕apt∕lists∕*cuda* ∕var∕lib∕apt∕lists∕*nvidia*

20.11. Verbose Versions when Using APT

Use the --verbose-versions flag, for example:

# apt install --verbose-versions nvidia-open

20.10. APT Repository File not Found 89



NVIDIA Driver Installation Guide, Release r575

90 Chapter 20. Advanced Options



Chapter 21. Optional Components

21.1. 32 bit (i686) packages for Linux x86_64

These packages provide 32-bit (i686) driver libraries needed for things such as Steam (popular game
app store/launcher), older video games, and some compute applications.

21.1.1. Debian 12

# dpkg --add-architecture i386
# apt update
# apt install nvidia-driver-libs:i386

21.1.2. Ubuntu 20.04/22.04/24.04

# dpkg --add-architecture i386
# apt update
# apt install \

libnvidia-compute-<branch>:i386 libnvidia-decode-<branch>:i386 \
libnvidia-encode-<branch>:i386 libnvidia-extra-<branch>:i386 \
libnvidia-fbc1-<branch>:i386 libnvidia-gl-<branch>:i386

Where <branch> is the driver version, for example 575.

21.1.3. Red Hat Enterprise Linux 8/9, Rocky Linux 8/9,
Oracle Linux 8/9, Fedora 41

# dnf install nvidia-driver-cuda-libs.i686 nvidia-driver-libs.i686 libnvidia-ml.i686�
↪→libnvidia-fbc.i686

91



NVIDIA Driver Installation Guide, Release r575

21.1.4. SUSE Enterprise Linux Server 15, OpenSUSE Leap
15

# zypper install nvidia-compute-G06-32bit nvidia-gl-G06-32bit nvidia-video-G06-32bit

21.2. GPUDirect Storage

Install NVIDIA Filesystem.

Red Hat Enterprise Linux 8/9

# dnf install nvidia-fs

Note: The GPUDirect storage module is shipped only in DKMS format; this means it requires the
module source to be available. Startingwith version 570 of the drivers, amix of Precompiled streams
and DKMS modules is no longer supported.

Having a mix of precompiled and DKMS modules makes every single benefit of the precompiled mod-
ules disappear completely:

▶ Development packages and headers required to compile modules are still required.

▶ Secure Boot can not be used without a custom MOK.

▶ nvidia-peermem can not be recompiled to levarage the OFED installations as it’s missing from
the precompiled packages.

▶ It requires two extra packages containing the source of the precompiled modules to be installed
along with the binary modules, making the installation more error-prone and complicated.

Until driver version 565, the source profile can be installed with this command to install the addditional
packages containing the source of the precompiled modules:

# dnf module install nvidia-driver:$stream∕src

Ubuntu 20.04/22.04/24.04

# apt install nvidia-fs

21.3. NVSwitch

To install Fabric Manager, NSCQ, NVSDM, IMEX:

Red Hat Enterprise Linux 8/9

# dnf module install nvidia-driver:$stream∕fm

Ubuntu 20.04/22.04/24.04

92 Chapter 21. Optional Components



NVIDIA Driver Installation Guide, Release r575

# apt install -V nvidia-fabric-manager-<branch> libnvidia-nscq-<branch> libnvsdm-
↪→<branch> nvidia-imex-<branch>

21.3. NVSwitch 93



NVIDIA Driver Installation Guide, Release r575

94 Chapter 21. Optional Components



Chapter 22. Tarballs and Zip Archive
Deliverables

In an effort to meet the needs of a growing customer base requiring alternative installer packaging
formats, as well as a means of input into community CI/CD systems, tarball and zip archives are avail-
able for each component.

These tarball and zip archives, known as binary archives, are provided at https://developer.download.
nvidia.com/compute/nvidia-driver/redist/.

These component .tar.xz and .zip binary archives do not replace existing packages such as .deb, .
rpm, .run, conda, etc. and are not meant for general consumption, as they are not installers. However
this standardized approach will replace existing .txz archives.

For each release, a JSON manifest is provided such as redistrib_<version>.json, which corre-
sponds to the Datacenter Driver release label which includes the release date, the name of each com-
ponent, license name, relative URL for each platform and checksums.

Package maintainers are advised to check the provided LICENSE for each component prior to redis-
tribution. Instructions for developers using CMake and Bazel build systems are provided in the next
sections.

95

https://developer.download.nvidia.com/compute/nvidia-driver/redist/
https://developer.download.nvidia.com/compute/nvidia-driver/redist/


NVIDIA Driver Installation Guide, Release r575

96 Chapter 22. Tarballs and Zip Archive Deliverables



Chapter 23. Post-installation Actions

The post-installation actions must be manually performed.

23.1. Persistence Daemon

NVIDIA is providing a user-space daemon on Linux to support persistence of driver state across CUDA
job runs. The daemon approach provides a more elegant and robust solution to this problem than
persistence mode. For more details on the NVIDIA Persistence Daemon, see the documentation here.

All the distribution packages contain a systemd preset to enable it automatically if installed as a de-
pendency of other driver components. It can be restarted manually by running:

# systemctl restart persistenced

23.2. Verify the Driver Version

If you installed the driver, verify that the correct version of it is loaded. When the driver is loaded, the
driver version can be found by executing the following command:

$ cat ∕proc∕driver∕nvidia∕version

23.3. Local Repository Removal

Removal of the local repository installer is recommended after installation of the driver.

Amazon Linux 2023, Fedora 41, KylinOS 10, Red Hat Enterprise Linux 8/9, Rocky Linux 8/9, Oracle
Linux 8/9

# dnf remove nvidia-driver-local-repo-$distro*

Azure Linux 2/3

# tdnf remove nvidia-driver-local-repo-$distro*

Ubuntu 20.04/22.04/24.04, Debian 12

97

http://docs.nvidia.com/deploy/driver-persistence/index.html#persistence-daemon


NVIDIA Driver Installation Guide, Release r575

# apt remove --purge nvidia-driver-local-repo-$distro*

OpenSUSE Leap 15, SUSE Linux Enterprise Server 15

# zypper remove nvidia-driver-local-repo-$distro*

98 Chapter 23. Post-installation Actions



Chapter 24. Removing the Driver

Follow the below steps to properly uninstall the NVIDIA driver from your system. These steps will
ensure that the uninstallation will be clean.

Amazon Linux 2023, KylinOS 10, Red Hat Enterprise Linux 8/9, Rocky Linux 8/9, Oracle Linux 8/9

To remove NVIDIA driver:

# dnf module remove --all nvidia-driver
# dnf module reset nvidia-driver

Fedora 41

To remove NVIDIA driver:

# dnf remove nvidia-driver\*

Azure Linux 2/3

To remove NVIDIA driver:

# tdnf remove nvidia-driver-cuda
# tdnf autoremove

OpenSUSE and SLES

To remove NVIDIA driver:

# zypper remove \*nvidia\*

Ubuntu 20.04/22.04/24.04, Debian 12

To remove NVIDIA driver:

# apt remove --autoremove --purge -V nvidia-driver\* libxnvctrl\*

99



NVIDIA Driver Installation Guide, Release r575

100 Chapter 24. Removing the Driver



Chapter 25. GPG Keys Used to Sign the
Packages

The GPG public keys used for the CUDA repository packages are the following:

▶ rpm based distributions: d42d0685

▶ deb based distributions: 3bf863cc

101



NVIDIA Driver Installation Guide, Release r575

102 Chapter 25. GPG Keys Used to Sign the Packages



Chapter 26. Additional Considerations

Now that you have CUDA-capable hardware and the NVIDIA driver installed, you can install
the CUDA Toolkit. Consult the CUDA Installation Guide, located in https://docs.nvidia.com/cuda/
cuda-installation-guide-linux/.

For technical support on installation questions, consult and participate in the developer forums at
https://forums.developer.nvidia.com/c/gpu-graphics/linux/148.

103

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/
https://forums.developer.nvidia.com/c/gpu-graphics/linux/148


NVIDIA Driver Installation Guide, Release r575

104 Chapter 26. Additional Considerations



Chapter 27. Frequently Asked
Questions

27.1. Why do I see multiple “404 Not Found”
errors when updating my repository
meta-data on Ubuntu?

These errors occur after adding a foreign architecture because apt is attempting to query for each
architecture within each repository listed in the system’s sources.list file. Repositories that do not
host packages for the newly added architecture will present this error. While noisy, the error itself does
no harm. Please see the Compute-only and Desktop Installation section for details on how to modify
your sources.list file to prevent these errors.

27.2. How can I tell X to ignore a GPU for
compute-only use?

To make sure X doesn’t use a certain GPU for display, you need to specify which other GPU to use
for display. For more information, please refer to the “Use a specific GPU for rendering the display”
scenario in the Compute-only and Desktop Installation section.

If you only have a single NVIDIA GPU in the system that you want to use for compute only (such as in an
Optmus laptop), you can perform a compute-only installation, which skips the graphical components
of the driver.

105



NVIDIA Driver Installation Guide, Release r575

27.3. What do I do if the display does not load,
or CUDA does not work, after performing a
system update?

System updates may include an updated Linux kernel. In many cases, a new Linux kernel will be in-
stalled without properly updating the required Linux kernel headers and development packages. To
ensure the CUDA driver continues to work when performing a system update, rerun the commands in
the Verify the System has the Correct Kernel Packages Installed section.

Additionally, when updating kernel components without rebooting, the DKMS framework will some-
times fail to correctly rebuild the NVIDIA kernel module packages when a new Linux kernel is installed.
When this happens, it is usually sufficient to invoke DKMS manually by running the appropriate com-
mands in a virtual console, and then rebooting. For example:

# dkms status
nvidia∕565.57.01: added

# dkms -m nvidia∕565.57.01 -k 6.11.7-300.fc41.x86_64 build

Sign command: ∕lib∕modules∕6.11.7-300.fc41.x86_64∕build∕scripts∕sign-file
Signing key: ∕var∕lib∕dkms∕mok.key
Public certificate (MOK): ∕var∕lib∕dkms∕mok.pub

Cleaning build area... done.
Building module(s)....................... done.
Signing module ∕var∕lib∕dkms∕nvidia∕565.57.01∕build∕kernel-open∕nvidia.ko
Signing module ∕var∕lib∕dkms∕nvidia∕565.57.01∕build∕kernel-open∕nvidia-modeset.ko
Signing module ∕var∕lib∕dkms∕nvidia∕565.57.01∕build∕kernel-open∕nvidia-drm.ko
Signing module ∕var∕lib∕dkms∕nvidia∕565.57.01∕build∕kernel-open∕nvidia-uvm.ko
Signing module ∕var∕lib∕dkms∕nvidia∕565.57.01∕build∕kernel-open∕nvidia-peermem.ko
Cleaning build area... done.

# dkms -m nvidia∕565.57.01 -k 6.11.7-300.fc41.x86_64 install

Module nvidia-565.57.01 for kernel 6.11.7-300.fc41.x86_64 (x86_64):
Before uninstall, this module version was ACTIVE on this kernel.
Deleting ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia.ko.xz
Deleting ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia-modeset.ko.xz
Deleting ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia-drm.ko.xz
Deleting ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia-uvm.ko.xz
Deleting ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia-peermem.ko.xz
Running depmod.... done.

Installing ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia.ko.xz
Installing ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia-modeset.ko.xz
Installing ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia-drm.ko.xz
Installing ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia-uvm.ko.xz
Installing ∕lib∕modules∕6.11.7-300.fc41.x86_64∕extra∕nvidia-peermem.ko.xz
Running depmod... done.

You can reach a virtual console by hitting CTRL+ALT+F2 at the same time.

106 Chapter 27. Frequently Asked Questions



NVIDIA Driver Installation Guide, Release r575

27.4. How do I handle “Errors were encountered
while processing: glx-diversions”?

This sometimes occurs when trying to install and uninstall Debian packages before 565. Run the fol-
lowing commands:

# apt remove --purge glx-diversions nvidia-alternative

27.5. Unknown symbols in the kernel modules

The nvidia.ko kernel module fails to load, saying some symbols are unknown. For example:

nvidia: Unknown symbol drm_open (err 0)

Check to see if there are any optionally installable modules that might provide these symbols which
are not currently installed.

For the example of the drm_open symbol, check to see if there are any packages which provide
drm_open and are not already installed. For instance, on Ubuntu, the linux-image-extra package
provides the DRM kernel module (which provides drm_open). This package is optional even though
the kernel headers reflect the availability of DRM regardless of whether this package is installed or
not.

Then re-run the commands from Removing the Driver section.

27.6. Third-party packages

▶ Canonical provides signed -server packages that correspond with NVIDIA Datacenter Driver
releases.

▶ SUSE provides signed kmp packages.

27.4. How do I handle “Errors were encountered while processing: glx-diversions”? 107

https://documentation.ubuntu.com/server/how-to/graphics/install-nvidia-drivers/#nvidia-drivers-releases
https://sndirsch.github.io/nvidia/2022/06/07/nvidia-opengpu.html


NVIDIA Driver Installation Guide, Release r575

108 Chapter 27. Frequently Asked Questions



Chapter 28. Notices

28.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

109



NVIDIA Driver Installation Guide, Release r575

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

28.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

28.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2024-2025, NVIDIA Corporation & affiliates. All rights reserved

110 Chapter 28. Notices


	System Requirements
	OS Support Policy
	Administrative Privileges
	Pre-installation Actions
	Verify You Have a Supported Distribution of Linux
	Verify the System has the Correct Kernel Packages Installed

	Choose an Installation Method
	Recent Updates
	Compute-only HPC Node
	Driver Helper Script
	Auto Hardware Selection


	Kernel Modules
	Open GPU Kernel Modules Installation
	Proprietary GPU Kernel Modules Installation

	Red Hat Enterprise Linux
	Preparation
	Local Repository Installation
	Network Repository Installation
	DNF module enablement
	Driver Installation
	Compute-only (Headless) and Desktop-only (no Compute) Installation
	Compute-only System
	Desktop-only System

	Reboot the System

	KylinOS
	Preparation
	Local Repository Installation
	Network Repository Installation
	Driver Installation
	Compute-only (Headless) and Desktop-only (no Compute) Installation
	Compute-only System
	Desktop-only System

	Reboot the System

	Fedora
	Preparation
	Local Repository Installation
	Network Repository Installation
	Driver Installation
	Compute-only (Headless) and Desktop-only (no Compute) Installation
	Compute-only System
	Desktop-only System

	Reboot the System

	SUSE
	Preparation
	Local Repository Installation
	Network Repository Installation
	Driver Installation
	Compute-only (Headless) and Desktop-only (no Compute) Installation
	Compute-only System
	Desktop-only System

	Reboot the System

	Ubuntu
	Preparation
	Local Repository Installation
	Network Repository Installation
	Driver Installation
	Compute-only (Headless) and Desktop-only (no Compute) Installation
	Compute-only System
	Desktop-only System

	Reboot the System

	Debian
	Preparation
	Local Repository Installation
	Network Repository Installation
	Driver Installation
	Compute-only (Headless) and Desktop-only (no Compute) Installation
	Compute-only System
	Desktop-only System

	Reboot the System

	Amazon Linux
	Preparation
	Local Repository Installation
	Network Repository Installation
	Driver Installation
	Reboot the System

	Azure Linux
	Preparation
	Local Repository Installation
	Network Repository Installation
	Driver Installation
	Reboot the System

	Compute-only and Desktop Installation
	Wayland-only Desktop Installation
	GNOME Software Integration
	Driver Installation
	Secure Boot Preparation
	Machine Owner Key Enrollment
	Uninstallation

	Optimus Laptops and Multi GPU Desktop Systems
	Power Management
	VGA Switcheroo (DRM Drivers Only)

	Selecting the GPU to Use when Running a Program from the Desktop
	Selecting the GPU to Use with switcherooctl
	Selecting the GPU to Use with Environment Variables
	OpenGL Context
	VA-API (Video Acceleration API) Context
	VDPAU Context
	Vulkan or EGL Context
	Forcing the Usage of X on a Specific GPU in a Wayland Context


	Advanced Options
	Switching between Driver Module Flavors
	Meta Packages
	Package Upgrades
	Red Hat Enterprise Linux 8/9, Rocky Linux 8/9, Oracle Linux 8/9, KylinOS 10, Amazon Linux 2023
	Fedora 41
	Azure Linux 2/3
	SUSE Enterprise Linux Server 15, OpenSUSE Leap 15
	Debian 12
	Ubuntu 20.04/22.04/24.04

	Red Hat Enterprise Linux 8/9 Precompiled Streams
	Precompiled Streams Support Matrix

	Modularity Profiles
	Red Hat Enterprise Linux 8/9 Kickstart Installation
	Version locking
	DNF 4
	DNF 5
	APT

	SUSE Vendor Change
	Restrict APT to Look for Specific Architectures
	APT Repository File not Found
	Verbose Versions when Using APT

	Optional Components
	32 bit (i686) packages for Linux x86_64
	Debian 12
	Ubuntu 20.04/22.04/24.04
	Red Hat Enterprise Linux 8/9, Rocky Linux 8/9, Oracle Linux 8/9, Fedora 41
	SUSE Enterprise Linux Server 15, OpenSUSE Leap 15

	GPUDirect Storage
	NVSwitch

	Tarballs and Zip Archive Deliverables
	Post-installation Actions
	Persistence Daemon
	Verify the Driver Version
	Local Repository Removal

	Removing the Driver
	GPG Keys Used to Sign the Packages
	Additional Considerations
	Frequently Asked Questions
	Why do I see multiple “404 Not Found” errors when updating my repository meta-data on Ubuntu?
	How can I tell X to ignore a GPU for compute-only use?
	What do I do if the display does not load, or CUDA does not work, after performing a system update?
	How do I handle “Errors were encountered while processing: glx-diversions”?
	Unknown symbols in the kernel modules
	Third-party packages

	Notices
	Notice
	OpenCL
	Trademarks


