本文介绍如何利用智能体与Python代码批量处理Excel中的脏数据,解决人工录入导致的格式混乱、逻辑错误等问题。通过构建具备数据校验、异常标记及自动修正功能的系统,将数小时的人工核查任务缩短至分钟级,大幅提升数据一致性和办公效率。
本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
本文介绍了如何使用 FastMCP 框架快速构建 MCP 服务器,并将其部署至魔搭 MCP 广场。内容涵盖环境搭建、服务开发与调试、打包发布到 PyPI,以及在魔搭平台创建和托管 MCP 服务的完整流程。通过实际案例演示,帮助开发者轻松实现工具共享与云端部署,提升开发效率。
本文深入探讨了Agent智能体的概念、技术挑战及实际落地方法,涵盖了从狭义到广义的Agent定义、构建过程中的四大挑战(效果不稳定、规划权衡、领域知识集成、响应速度),并提出了相应的解决方案。文章结合阿里云服务领域的实践经验,总结了Agent构建与调优的完整路径,为推动Agent在To B领域的应用提供了有价值的参考。
通义灵码现已全面支持Qwen3,新增智能体模式,具备自主决策、环境感知、工具使用等能力,可端到端完成编码任务。支持问答、文件编辑、智能体多模式自由切换,结合MCP工具与记忆功能,提升开发效率。AI IDE重构编程流程,让开发更智能高效。
本文介绍了基于函数计算 FC 打造的全新 Function AI 工作流服务,该服务结合 AI 技术与流程自动化,实现从传统流程自动化到智能流程自动化的跨越。文章通过内容营销素材生成、内容安全审核和泛企业 VOC 挖掘三个具体场景,展示了 Function AI 工作流的设计、配置及调试过程,并对比了其与传统流程的优势。Function AI 工作流具备可视化、智能性和可扩展性,成为企业智能化转型的重要基础设施,助力企业提升效率、降低成本并增强敏捷响应能力。
本文介绍了如何通过魔搭社区(ModelScope)与阿里云边缘云ENS结合,快速部署大模型并验证其效果。魔搭社区作为中国最大的开源模型平台,提供从模型探索到部署的一站式服务,而阿里云边缘云ENS则以超过3200个全球节点支持低时延、本地化的部署方案。文章详细说明了新建部署入口、模型选择、服务配置及效果验证的全流程,并提供了代码示例展示终端问答Bot的实际运行效果。未来,“模型即服务”(MaaS)模式将持续为开发者和企业带来更多创新机会,助力技术落地与业务升级。