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of (essentially) the same size.

Abstract Based on the canonical parameterization used in

the Hammersley-Clifford Theorem for Markov net-

We study computational and sample complexity of pa- works (Hammersley & Clifford, 1971; Besag, 1974), we
rameter and structure learning in graphical models. provide a parameterization of factor graph distributions

Our main result shows that the class of factor graphs  that is a product only of probabilities over local subsets of
with bounded factor size and bounded connectivity can  variables. By contrast, the original Hammersley-Clifford

be learned in polynomial time and polynomial number canonical parameterization is a product of probabilities
of samples, assuming that the data is generated by a  over joint instantations of all the variables. The new pa-
network in this class. This result covers both parame- rameterization naturally leads to an algorithm that solves
ter estimation for a known network structure and struc- the parameter estimation problem in closed-form. For fac-
ture learning. Itimplies as a corollary that we can learn tor graphs of bounded factor size and bounded connectivity,
factor graphs for both Bayesian networks and Markov if the generating distribution falls into the target clas®,
networks of bounded degree, in polynomial time and show that our estimation procedure returns an accurate so-
sample complexity. Unlike maximum likelihood esti- lution — one of low KL-divergence to the true distribution
mation, our method does not require inference in the — given apolynomial number of samples

underlying network, and so applies to networks where
inference is intractable. We also show that the error of
our learned model degrades gracefully when the gen-
erating distribution is not a member of the target class
of networks.

Building on this result, we provide an algorithm for
learning both the structure and parameters of such factor
graphs. The algorithm uses empirical entropy estimates to
select an approximate Markov blanket for each variable,
and then uses the parameter estimation algorithm to esti-
mate parameters and identify which factors are likely to be
irrelevant. Under the same assumptions as above, we prove
that this algorithm also has polynomial-time computatlona

Graphical models are widely used to compactly represen?orm:)lexIty and_ polynomlgl samplv_e complexlrty: .
structured probability distributions over (large) setsan- These algorithms provide the first polynomial-time and
dom variables. The task of learning a graphical model repPClynomial sample-complexity learning algorithm for fac-
resentation for a distributio®® from samples taken from tOr graphs, and thereby for Markov networks. Note that our
P is an important one for many applications. There are?!90rithms apply to any factor graph of bounded factor size
many variants of this learning problem, which vary on sev-2"d bounded connectivity, including those (such as grids)
eral axes, including whether the data is fully or partially vyhere inference is mtracta_ble. We also show that our algo-
observed, and on whether the structure of the network i§thms degrade gracefully, in that they return reasonamle a
given or needs to be learned from data. swers even when the underlying distribution does not come
In this paper, we focus on the problem of learning bothexactly from the target class of networks. We note that the

network structure and parameters from fully observable’ roposed algorithms are unlikely to be useful in practice

- . : - in their current form, as they do an exhaustive enumera-
data, restricting attention to discrete probability ditr tion on the possible Markov blankets of factors in the factor

tions over finite sets. We focus on the problem of learning ranh. a process which is aenerally infeasible even in small
a factor graph representation of the distribution (Kschis-g ph.ap 9 y

chang et al., 2001). Factor grap_hs subsume both E’ayeSian 'Due to space constraints, most the proofs are omitted from
networks and Markov networks, in that every Bayesian netthis paper or given only as sketches. The complete proofs are
work or Markov network can be written as a factor graphgiven in the full paper (Abbeel et al., 2005).

1 Introduction



networks; they also do not make good use of all the availin which a variable can participate, and a bound on how
able data. Nevertheless, the techniques used in our amalysikewed each factor is (in terms of the ratio of its lowest
opens new avenues towards efficient parameter and struend highest entries), we are guaranteed a bound it

ture learning in undirected, intractable models. is independent of the numberof variables in the network.
By contrasty = miny, P(X = x) generally has an expo-
2 Preliminaries nential dependence an For example, if we have 11D
Bernoulli(%) random variables, thefn = % (independent
2.1 Factor Graph Distributions of n) buty = 5.

Definition 1 (Gibbs distribution) A factor f with scopé

D is a function fromval(D) to R*. A Gibbsdistribution P 2.2 The Canonical Parameterization

over a set of random variable® = {X;,..., X,,} isasso- A Gibbs distribution is generally over-parameterized rel-
ciated with a set of factor§f; }/_, with scopeC;}/_,,  ative to the structure of the underlying factor graph, in
such that that a continuum of possible parameterizations over the

graph can all encode the same distribution. Theon-
P(Xy,...,X,) =+ szl fi(Cj[X1,...,X,]). (1) ical parameterization(Hammersley & Clifford, 1971; Be-
o ) N ) sag, 1974) provides one specific choice of parameterization
The normalizing constarf is thepartition function for a Gibbs distribution, with some nice properties (see be-

Thefactor graphassociated with a Gibbs distribution is low). The canonical parameterization forms the basis for

a bipartite graph whose nodes correspond to variables ari}® Hammersley-Clifford theorem, which asserts that any
factors, with an edge between a variableand a factory; distribution that satisfies the independence assumptions e
if the scope off; containsX. There is one-to-one corre- coded by a Markov network can be represented as a Gibbs

spondence between factor graphs and the sets of Scopgg§tribution over the cliques in that network. Standardly,
A Gibbs distribution also induces a Markov network — the canonical parameterization is defined for Gibbs distrib

an undirected graph whose nodes correspond to the rations over Markov networks at the clique level. We utilize
dom variablest and where there is an edge between two2 More refined parameterization, defined at the factor level;
variables if there is a factor in which they both participate "esults at the -cllque level are tr'Y'al (.:orollgnes. .

The set of scopes uniquely determines the structure of the The canonical parameterization is defined relative to an

Markov network, but several different sets of scopes car@rbitrary (but fixed) assignmesit= (71, ...,7,). Letany
result in the same Markov network. For example, a fullysubset of variableB = (X;,,..., X; ), and any assign-
connected Markov network can correspond both to a Gibb&entd = (z;,,...,z; ) be given. LetanyU C D be
distribution with a factor which is a joint distribution ave given. We definer.[-] such that for ali € {1,...,n}:

X, and to a distribution wit{’,) factors over pairs of vari- v X €U

ables. We will use the more precise factor graph represen- (ould]); = { =X ¢ U

tation in this paper. Our results are easily translated into ! ! '

results for Markov networks. In words, oy [d] keeps the assignments to the variables in

U as specified irl, and augments it to form a full assign-
ment using the default values # Note that the assign-
ments to variables outsidg are always ignored, and re-
placed with their default values. Thus, the scoperof:]

Definition 2 (Markov blanket) Let a set of scope§ =
{C; }3’:1 be given. Thélarkov blankef a set of random
variablesD C X is defined as

MB(D) = U{C; : C, € C, C;ND # ()} — D. is alwaysU.
Let P be a positive Gibbs distribution.Theanonical
For any Gibbs distribution, we have, for aly, that factorfor D C X’ is defined as follows:
D1 X-D-MB(D) | MB(D), @  fb(d)=exp (ZUQD(—l)‘D‘U‘ log P(oU[d])) SNE)
The sum is over all subsets BY, includingD itself and the

or in words: given its Markov blankeD) is independent of
all other variables.

A standard assumption for a Gibbs distribution, which _ . . )
is critical for identifying its structure (see Lauritzer§ 96, Clifford theorem (which applies to Markov networks) to
Ch. 3), is that the distribution ligositive— all of its entries  12Ct" graphs. S
be non-zero. Our results use a quantitative measure for hokheorem 1. Let P be a positive Gibbs distribution with
positive P is. Lety = miny; P(X; = z;|X_; = x_,;),  factor scopes{C;}/_,. Let{C;}/_, = U2 — 0
where the—i subscript denotes all entries but entriNote ~ (where2X is the power set oKX — the set of all of its
that, if we have a fixed bound on the number of factorssubsets). Then

empty set).
The following theorem extends the Hammersley-

2A function hasscopeX if its domain isval(X). P(x) = P(x) Hjlzl f(*jj (c5),



wherec; is the instantiation oC; consistent withx. Proposition 2 shows that we can compute the canoni-
cal parameterization factors using probabilities over fac

tor scopes and their Markov blankets only. From a sam-
) - ple complexity point of view, this is a significant improve-

Although typically J* > J, the additional factors are all ent over the standard definition which uses joint instanti-
_subfactors of the o_ngmal factors. Note that first transfor 4515 over all variables. By expanding the Markov blanket
ing a factor graph into a Markov network and then apply-canonical factors in Proposition 2 using Eqn. (4) we see

ing the Hammersley-Clifford theorem to the Markov net- a1 any factor graph distribution can be parameterized as a
work generally results in a significantly less sparse €anoNyaquct of local probabilities.

ical parameterization than the canonical parameterizatio
from Theorem 1.

The parameterization aP using the canonical factors
{f&- 3];1 is called thecanonical parameterizatioof P.
J

Table 1: Notational conventions.

X.,Y,... | random variables
3 Parameter Estimation T,Y, .- instantiations of the random variables
X,Y,... | setsof random variables
3.1 Markov Blanket Canonical Factors X,y,... | instantiations of sets of random variables
Considering the definition of the canonical parameters, we Y1(X) set of values the variabl& can take
D[x] instantiation ofD consistent withx (abbre-

note that all of the terms in Eqgn. (3) can be estimated fron

empirical data using simple counts, without requiring infe

ence over the network. Thus, it appears that we can use tf
canonical parameterization as the basis for our paramet

estimation algorithm. However, as written, this estimatio
process is statistically infeasible, as the terms in Eqp. (3
are probabilities over full instantiations of all variable

which can never be estimated from a reasonable numbé

of samples.

Our first observation is that we can obtain exactly
the same answer by considering probabilities over muc
smaller instantiations — those corresponding to a facto
and its Markov blanket. LeD = (X;,,..., X; ) be any
subset of variables, and = (z;,,..., ;) be any as-
signment toD. For anyU C D, we definesy.p|[d] to
be the restriction of the full instantiatiory[d] of all vari-

ables inX to the corresponding instantiation of the subset

D. In other wordsgy.p[d] keeps the assignments to the
variables inU as specified ird, and changes the assign-
ment to the variables iD — U to the default values iR.
LetD C X andY C X — D. Then the facton‘l’g‘Y over

the variables irD is defined as follows:

Fore(d) = exp (Cyep(—1)P ™V og Ploun Y =) |
4)
where the sum is over all subsetsIdf includingD itself
and the empty sdlt
The following proposition shows an equivalence be-
tween the factors computed using Eqn. (3) and Egn. (4).

Proposition 2. Let P be a positive Gibbs distribution with
factor scopegC;}/_,, and{C;}/_, as above. Then for
anyD C X, we have:

o= f]*D|X7D = f]*D|MB(D)’ ()

and (as a direct consequence)
Px) = P S (c) (6
= P(x) H}; f&smmien (€5), ()

Wherec; is the instantiation OC; consistent withk.

viated asd when no ambiguity is possible
factor

positive Gibbs distribution over a set of ra
dom variablest = (X1,...,X,,)

factors of P

scopes of factors aP

empirical (sample) distribution

e
o
{fi}=

{ACj }j']: 1
or

P distribution returned by learning algorithm
fr canonical factor as defined in Eqgn. (3)
WA canonical factor as defined in Eqn. (4)
[ fT canonical factor as defined in Eqn. (4), but
using the empirical distributio#
MB(D) | Markov blanket ofD
k max; |C;|
Y minx,i P(X,L = JZ”X_Y‘, = X—i)
v max;|val(X;)|
b max; [MB(C;)]

3.2 Parameter Estimation Algorithm

Based on the parameterization above, we propose the fol-
lowing Factor-Graph-Parameter-Learn algorithm. The
algorithm takes as inputs: the scopes of the factors
{C;}/_,, samples{x(V},, a baseline instantatiof.
Then for {C} }}];1 as aboveFactor-Graph-Parameter-
Learn does the following:

e Compute the estimates of the canonical factors
{/&- mp(c) /=1 @s in Eqn. (4), but using the em-

pirical estimates based on the data samples.
e Return the probability distribution P(x)

A *
[T, fc;\MB(c;)(cj)'

X

Theorem 3 (Parameter learning: computational complex-
ity). The running time of th&actor-Graph-Parameter-
Learn algorithm is inO(m2* J (k + b) + 22F Ju*).3

3The upper bound is based on a very naive implementation’s
running time. It assumes operations (such as reading, writing,
adding, etc.) numbers take constant time.



Note the representation of the factor graph distribution isKL-divergence. The sample complexity scales exponen-
Q(Jv*), thus exponential dependence ois unavoidable tially in the maximum number of variables per factor

for any algorithm. There is no dependence on the runningnd polynomially in%, %
time of evaluating the partition function. Onthe otherhand  The error in the KL-divergence grows linearly with
evaluating the likelihood requires evaluating the pamiti This is a consequence of the fact that the number of terms
function (which is different for different parameter vatle  in the distributions isJ, and each can accrue an error.
We expect that ML-based learning algorithms would takewe can obtain a more refined analysis if we eliminate this
at least as long as evaluating the partition function. dependence by considering the normalized KL-divergence

L D(P||P). We return to this issue in Section 3.4.

Theorem 4 considers the case wheractually factors
We now analyze the sample complexity of tRactor-  according to the given structure. The following theorem
Graph-Parameter-Learn algorithm, showing that it re- shows that our error degrades gracefully even if the sam-
turns a distribution that is a good approximation of the trueples are generated by a distributi@nthat does not factor
distribution when given only a “small” number of samples. according to the given structure.

3.3 Sample Complexity

Theorem 4 (Parameter learning: sample complexityet  Theorem 5 (Parameter learning: graceful degradation)
any e, 0 > 0 be given. Let{x(V}™ be IID samples Let anye,§ > 0 be given. Let{x(¥}™, be IID sam-
from P. Let P be the probability distribution returned by ples from a distributionQ. Let MB and MB be the
Factor-Graph-Parameter-Learn. Then, we have that, for Markov blankets according to the distributi@p and the

. . given structure respectively. Léf. .}, be the
D(P|P)+ D(P|P) < Je . R
Markov blanket canonical factors @). Let{C;};_, be

to hold with probability at least — §, it suffices that the scopes of the ca.n'onic.al f_actgrs for the given structure
Let P be the probability distribution returned biyactor-
m > (14 spirs)? 2r? Jog 2200 8) Graph-Parameter-Learn. Then we have that for
—_— 22 ¢ ,y e € 5 .
Proof sketch.Using the Hoeffding inequality and the fact D(Q||P) + D(P||Q) < Je + 2 Z maxgq: | log fp- (d5)|
that the probabilities are bounded away from 0, we first DI E{CL I,
rove that forany € {1,...,J*}, for ok *
P A J Ty imoe ()
% « ~ x " , +2 Z InaXd;ﬁ log *—(1*) (12)
| log P(C}|MB(C})) — log P(C;|MB(C}))| < ¢ (9) e Dﬂ@(D;)( j

to hold with high probability, a “small” number of sam- {5 hold with probability at leastl — 4, it suffices that

ples is sufficient. Now u;ing the fact that the logs of the,,, satisfies Eqn. (8) of Theorem 4. Here the elements of
(Markov blanket) canonical factors are sums of at mosty _ {j : D, e{C; g;l,MB(Dj) # MB(D?)} index

2/Cil < 2F of theselog probabilities, we get that the re-
sulting estimates of the (Markov blanket) canonical faxtor
are accurate:

over the canonical factors for which the Markov blanket is
incorrect in the given structure.

R This result is important, as it shows that each canoni-
| log f& mB (o) (€5) =108 f&mp(c (€5)] < 2ke’. cal factor that is incorrectly captured by our target suuet
’ ’ ’ ’ (10)  adds at most a constant to our bound on the KL-divergence.
From Proposition 2 we have that the true distribution can beA canonical factor could be incorrectly captured when the

written as a product of its (Markov blanket) canonical fac-corresponding factor scope is not included in the given
tors. l.e., we have® H}]:1 féﬂMB(Cf)- So Egn. (10) structure. Canomcal factors are designed so that a factor
shows we have an accurate estimate of all the factors of tha <" & set of variables captures only the residual interac-

T i .. tions between the variables in its scope, once all interac-
distribution. We use a technical lemma to show that this im-. : .

; S . ' tions between its subsets have been accounted for in other
plies that the two distributions are close in KL-divergence .

factors. Thus, canonical factors over large scopes ara ofte

D(P||P) + D(P||P) < 20728 = J*2"+1¢/.  (11) close to the trivial all-ones factor in practice. Therefore

if our structure approximation is such that it only ignores
Now using.J* < .J2*, appropriately choosing and care- ~SOme of the larger-scope factors, the error in the approxi-

ful bookkeeping on the number of samples required and th8'ation may be quite limited. A canonical factor could also
high-probability statements gives the theorem. g  be incorrectly captured when the given structure does not
have the correct Markov blanket for that factor. The re-

The theorem shows that—assuming the true distributiorsulting error depends on how good an approximation of the
P factors according to the given structuré&aetor-Graph- Markov blanket we do have. See Section 4 for more details

Parameter-Learn returns a distribution that ige-close in ~ on this topic.



3.4 Reducing the Dependence on Network Size Theorem 7. Let anye > 0 and¢d > 0 be given. Let any

. . . Bayesian network (BN) structure overvariables with at
Our previous analysis showed a linear dependence on

the number of factors/ in the network. In a sense, mostk parents per variable be given. L&tbe a probabil-

this dependence is inevitable. To understand why, con'—ty distribution that factors over the BN. Lét denote the

. L : . probability distribution obtained by fitting the conditiah
Sslgfr:oill(ij 'f;rrl]ztétrlr?n\gr?aegllgg? by a ;et SZCIPT %Si?ﬁ r;)i?gt probability tables (CPT) entries via maximum likelihood
1y+-vyAn, -

meter 0.5. Assume thatQ is an approximation taP, and then clipping each CPT entry to the interya/ 1 — 3].

where theX; are still independent, but have parameterThen we have that for
0.4999. Intuitively, a Bernoulli(0.4999) distribution is a D (P||]5) <e (13)
very good estimate of a Bernoulli(0.5); thus, for most ap- " -

pications,@ can safely be considered to be a very goodig nold with probability at least — ¢, it suffices that we

estimate of P. However, thne KL-divergence between phaye a number of samples that does not depend on the num-
D(P(X1:n)[Q(X1:m)) = 22, D(P(Xi)IQ(Xs)) = per of variables in the network.
Q(n). Thus, ifn is large, the KL divergence betweéhand

@ would be large, even thougdh is a good estimate faP. .
To remove such unintuitive scaling effects when studying® ~ Structure Learning
the dependence on the number of variables, we can co

sider instead the normalized KL divergence criterion: nl'he algorithm described in the previous section uses the

known network to establish a Markov blanket for each fac-
tor. This Markov blanket is then used to effectively esti-
D, (P(X1. X1..)) = LD(P(X1.n X1.0)). . = .
(P(Xn) [Q(X1n)) = 5 DP(Xpn)1Q(X i) mate the canonical parameters from empirical data. In this
. , e section, we show how we can build on this algorithm to per-
As we now show, with a slight modification to the algo form structure learning, by first identifying (from the data

rithm, we can achieve a bound ofor our normalized KL- an approximate Markov blanket for each candidate factor
divergence while eliminating the logarithmic dependence PP '

on.J in our sample complexity bound. Specifically, we can and then using this approximate Markov tilankef to com-
. ) L Iy . pute the parameters of that factor from a “small” number

modify our algorithm so that it clips probability estimates of samoles

€ [0,74%*?) to 4***. Note that this change can only im- pies.

prove the estimates, as the true probabilities which we arg 4

trying to estimate are never in the intery@lv*+%).4 '

For this slightly modified version of the algorithm, the In the parameter learning results, the Markov blan-
following theorem shows the dependence on the size of thket MB(C7) is used to efficiently estimate the condi-

network isO(1), which is tighter than the logarithmic de- tional probability P(Cj|X — Cj), which is equal to
pendence shown in Theorem 4. P(C3IMB(Cj)). This suggests to measure the quality of

a candidate Markov blank&f by how well P(C7|Y) ap-

X (@) proximatesP(C7|X — C7). In this section we show how
anye, o > 0 be given. Lefx"/}, b_e D sam_ples from conditional entropy can be used to find a candidate Markov
P. Let the domain size of each variable be fixed. Let thg, 5t that gives a good approximation for this conditiona
number of factors a variable can participate in be fixed. 5. hapijity. One intuition why conditional entropy has the
Let P> be the probability distribution returned biyactor-  yeqjred property, is that it corresponds to the log-loss of

Graph-Parameter-Learn. Then we have that, for predictingC?* given the candidate Markov blanket.

Identifying Markov Blankets

Theorem 6 (Parameter learning: size of the networkket

D, (P||P) + D,(P||P) < ¢ Definition 3 (Conditional Entropy.) Let P be a probability
distribution over oveiX, Y. Then the conditional entropy
to hold with probability at least — 4, it suffices that we H(X|Y) of X givenY is defined as
have a certain number of samples that does not depend on
the number of variables in the network. —ZP(X =x,Y =y)logP(X =x|Y =y).

The following theorem shows a similar result for *<"*)¥eval(¥)

Bayesian networks, namely that for a fixed bound on theprgposition 8 (Cover & Thomas, 1991)Let P be a
number of parents per node, the sample complexity deperbrobability distribution overX,Y,Z. Then we have
dence on the size of the network@x1).> H(X|Y,Z) < HX|Y).

“This solution assumes thatis known. If not, we can use a Proposition 8 shows that conditional entropy can be
clipping threshold as a function of the number of samples seenysed to find the Markov blanket for a given set of variables.
This technique is used by Dasgupta (1997) to derive sample com-
plexity bounds for learning fixed structure Bayesian networks. the full paper we actually give a much stronger version of The-

SComplete proofs for Theorems 6 and 7 (and all other resultorem 7, including dependencies of on ¢, 8, k and a graceful
in this paper) are given in the full paper Abbeel et al. (2005). Indegradation result.



LetD,Y C X, DNY = (), then we have 4.2 Structure Learning Algorithm

H(D|MB(D)) = H(D|X — D) < H(D|Y), (14) We propose the followipg FactorTGraph-.Structure-
Learn algorithm. The algorithm receives as input: samples
where the equality follows from the Markov blanket prop- {x”'}72,, the maximum number of variables per factor
erty stated in Eqn. (2) and the inequality follows from the maximum number of variables per Markov blanket for

Prop. 8. Thus, we can select as our candidate Markov blar@ factord, a base instantiatior. LetC be the set of can-
ket for D the sefY which minimizesH (D[Y). didate factor scopes, 18t be the set of candidate Markov

Ouir first difficulty is that, when learning from data, we blankets. I.e., we have

do not have the true distribution, and hence the exact condi- C = {Cr:C*C X, C#0,|CH <k}, (18)
tional entropies are unknown. The following lemma shows y = {YJ- v JC X, [Y] J< b} ! (19)
that the conditional entropy can be efficiently estimated =T =
from samples. The algorithm does the following:

Lemma 9. Let P be a probability distribution oveX,Y
such that for all instantiationsx,y we have P(X =
x,Y = y) > \. LetH be the conditional entropy com-

e VC; € C, compute the best candidate Markov blan-
ket: MB(C;) = arg minYe%YmC;:@ [‘I(C;< ‘Y)

uted based upom IID samples fromP. Then for * i Fx ,
p p p e VC; € C, compute the estlmate{gfc;‘@(c;)}z of
|H(X|Y) _ }AI(X\Y)| <e the canonical factors as defined in Eqn. (4) using the
N empirical distribution.
to hold with probabilityl — 4, it suffices that e Threshold to one the factor entrigg% _ (c¥)
JIMB(Cy) I
m > 8|va1(xz\\;\;a1(Y)|2 log 4|Va1(X)6HVal(Y)|‘ satisfying| log féﬂ@(c;)(cjﬂ < 552, and discard

J

the resulting trivial factors that have all entries equal

However, as the empirical estimates of the conditional to one.
entropy are noisy, the true Markov blanketist guaran-
teed to achieve the minimum di(D | Y). In fact, in I F* (c*)
some probability distributions, many sets of variableda@ou ilcsMB(Cy) NI

it;]e;;brl]tracr!)s/é:éos:utro rreoaézhc;r;?ee\?vlijlfl:\tgtlrr]elig\?églti)é gztjusaThe thresholding step finds the factors that actually con-
y ' P 4ribute to the distribution. The specific threshold is chose

Markov blanket based on a finite number of samples. Fori0 suit the proof of Theorem 12. If no thresholding were

tunately, as we show in the next lemma, any set of variables lied. th . 20 Id . d of
Y that is close to achieving equality in Eqn. (14) gives 2PPlied, the errorin Eqn. (20) wou B instead of /e,

an accurate approximatioR(C,|Y) of the probabilities which is much larger in case the true distribution has a rel-
J -

P(C;|X — C;) used in the canonical parameterization. atively small number of factors.

Lemma 10. Let anye¢ > 0 be given. LetP be Theorem 11(Structure learning: computational complex-

a distribution over disjoint sets of random variables !ty). The ’“’1.”'”9 time oFactokr-Gbral?fb—StruclEuie—li_ e;';‘ m

VW, X, Y. LetA = minyeouv)mevatiw) P(v, w), is in O (mkn*on® (k + b) + kn*bnbvF Tt + kn*2kuk).

e Return the probability distribution P(x)

A2 = Milyeyal(X),veval(V),weval(w) P(X]|V, w). Assume The first two terms come from going through the data
the following holds and computing the empirical conditional entropies. Since
the algorithm considers all combinations of candidate fac-
XLY, W[V, (15)  tors and Markov blankets, we have an exponential depen-
H(X|W) < HX|V,W,Y) +e. (16) dence on the maximum scope sizeand the maximum
Markov blanket sizeh. The last term comes from com-
Then we have thatx,y, v, w puting the Markov blanket canonical factors. The impor-

tant fact about this result is that, unlike for (exact) ML ap-
| log P(x|v,w,y) — log P(x|w)| < Xﬁ%. (17)  proaches, the running time does not depend on the tractabil-
ity of inference in the underlying true distribution, noeth
In other words, if a set of variable8V looks like  recovered structure.

a Markov blanket forX, as evaluated by the condi- Theorem 12(Structure learning: sample complexitylet

tional entropy H(X|W), then the conditional distribu- anye, 5 > 0 be given. Let® be the distribution returned
tion P(X|W) must be close to the conditional distribution py Factor-Graph-Structure-Learn. Then for

P(X|Xx — X). Thus, it suffices to find such an approxi- . .

mate Markov blankeW as a substitute for knowing the D(P||P)+ D(P||P) < Je (20)
true Markov blanket. This makes conditional entropy suit-~ e1y,o upper bound is based on a very naive implementation
able for structure learning. running time.




to hold with probabilityl — 4, it suffices that to hold with probability at least — ¢, it suffices thatn
satisfies Eqn. (21) of Theorem 12.

kb o 2k+2bo8k+19
€y 2v 2
m > (14 22k~+3) ~BRF6hcd log

8kbnltlyk+? ) (21)
0 Theorem 13 shows that (just like in the parameter learn-
Proof (sketch).From Lemmas 9 and 10 we have that theing setting) each canonical factor that is not captured by
conditioning set we pick gives a good approximation to theour learned structure contributes at most a constant to our
true canonical factor assuming we used true probabilitiedound on the KL-divergence. The reason a canonical fac-
with that conditioning set. At this point the structure is tor is not captured could be two-fold. First, the scope of
fixed, and we can use the sample complexity theorem fothe factor could be too large. The paragraph after The-
parameter learning to finish the proof. O  orem 5 discusses when the resulting error is expected to
be small. Second, the Markov blanket of the factor could
Theorem 12 shows that the sample complexity dependge too large. As shown in Eqn. (22), a good approximate
exponentially on the maximum factor sizethe maximum  \arkov blanket is sufficient to get a good approximation.
Markov blanket sizé, polynomially onZ, £. Ifwe modify S0 we can expect these error contributions to be small if

the analysis to consider the normalized KL-divergence, aghe true distribution is mostly determined by interactions
in Section 3.4, we obtain a logarithmic dependence on thgetween small sets of variables.

number of variables in the network.

. To understand the implicgtiops of this theorem, con-5  Related Work
sider the class of Gibbs distributions where every variable
can participate in at most factors and every factor can 51 Markov Networks
have at mosk variables in its scope. Then we have that _ o
the Markov blanket sizé < dk2. Bayesian networks 'N€ most natural algorithm for parameter estimation in
are also factor graphs. If the number of parents per variundirected graphical models is maximum likelihood (ML)
ables is bounded byumP and the number of children is €Stimation (possibly with some regularization). Unfortu-
bounded bywumC, then we havé: < numP + 1, and that  Nately, evaluating the likelihood of such a model requires
b < (numC+1)(numP +1)2. Thus our factor graph struc- evaluating the partition function. As a consequence, all
ture learning algorithm allows us to efficiently learn distr known ML algorithms for undirected graphical models are
butions that can be represented by Bayesian networks witRomputationally tractable only for networks in which infer
bounded number of children and parents per variable. Not§NCe is computationally tractable. By contrast, our closed
that our algorithm recovers a distribution which is close toform solution can be efficiently computed from the data,
the true generating distribution, but the distributiongt r €ven for Markov networks where inference is mtracta_ble.
turns is encoded as a factor graph, which may not be repré\-‘(’te that our estimator does not .return the ML solution,
sentable as a compact Bayesian network. so that our result does not contradict the “hardness” of ML
g_stimation. However, it does provide a low KL-divergence
estimate of the probability distribution, with high proliab
ity, from a “small” number of samples, assuming the true

Markov blankets bounded by As we did in the case of distribution approximately factors according to the given

parameter estimation, we can show that we have graceﬂﬁtrucmre'

degradation of performance for distributions that do netsa  Criteria different from ML have also been proposed
isfy this assumption. for learning Markov networks. The most prominent is

pseudo-likelihoodBesag, 1974), and its extension, gen-
eralized pseudo-likelihood (Huang & Ogata, 2002). The

Theorem 12 considers the case where the generating di
tribution P actually factors according to a structure with
size of factor scopes bounded ldyand size of factor

Theorem 13 (Structure learning: graceful degradation)

Let anye,d > 0 lbe. g|v_en. Let{x("}}", be 1D pseudo-likelihood criterion gives rise to a tractable anv
samples from a distribution. Let MB and MB  gptimjzation problem. However, the theoretical analyses
be the Markov blankets according to the dlStl‘IbutIOhS(e_g_, Geman & Graffigne, 1986; Comets, 1992; Guyon
Q and found byFactor-Graph-Structure-Learn respec- g Knsch, 1992) only apply when the generating model
tively. Let{fp.\p(n:)}s be the Markov blanket canoni- s in the true target class. Moreover, they show only as-
cal factors of@. Let.J be the number of factors i@ with  ymptotic convergence rates, which are weaker than the fi-
scopesize smaller than Let P be the probability distrib-  nite sample size PAC-bounds we provide in our analysis.
ution returned byFactor-Graph-Parameter-Learn. Then  Pseudo-likelihood has been extended to obtain a consistent
we have that for model selection procedure for a small set of models: the

. . procedure is statistically consistent and an asymptotie co
D(Q|P)+ D(P|Q) < Je+2 ) maxq: |log fb:(dj)|  vergence rate is given (Ji & Seymour, 1996). However, no
3Dj >k algorithm is available to efficiently find the best pseudo-
likelihood model over the exponentially large set of candi-
+ 2 Z maxq- log — p (22)  date models from which we want to select in the structure
j+ D3 |<k,|MB(D?)[>b D;|1»’179(D;)( j) learning problem.

fD;|MB(D;)(dJ‘)




Structure learning for Markov networks is notoriously strengthen his result, showing an1) dependence of the
difficult, as it is generally based on using ML estimation number of samples on the number of variables in the net-
of the parameters (with smoothing), often combined with awork. So for bounded fan-in Bayesian networks, the sam-
penalty term for structure complexity. As evaluating theple complexity is independent of the number of variables
likelihood is only possible for the class of Markov net- in the network.
works in which inference is tractable, there have been two Results analyzing the complexity of structure learning
main research tracks for ML structure learning. The first,of Bayesian networks fall largely into two classes. The first
starting with the work of Della Pietra et al. (1997), usesclass of results assumes that the generating distribugion i
local-search heuristics to add factors into the network (se DAG-perfect with respect to some DAG with at mostk
also McCallum, 2003). The second searches for a strugarents for each node. (That B,andG satisfy precisely
ture within a restricted class of models in which inferencethe same independence assertions_) In this case, a|ge|’ithm
is tractable, more specifically, bounded treewidth Markovhased on various independence tests (Spirtes et al., 2000;
networks. Indeed, ML learning of the class of tree MarkovCheng et al., 2002) can identify the correct network struc-
networks — networks of tree-width 1 — can be performedtyre at the infinite sample limit, using a polynomial num-
very efficiently (Chow & Liu, 1968). Unfortunately, Sre- per of independence tests. Chickering and Meek (2002)
bro (2001) proves that for any tree-widkhgreater than 1, relax the assumption that the distribution be DAG-perfect;
even finding the ML treewidtit-network is NP-hard. Sre-  they show that, under a certain assumption, a simple greedy
bro also provides an approximation algorithm, but the apalgorithm will, at the infinite sample limit, identify a net-
proximation factor is a very large multiplicative factor of work structure which is a minimal I-map of the distribu-
the log-likelihood, and is therefore of limited practicaeu  tion. They provide no polynomial time guarantees, but such
Several heuristic algorithms to learn small-treewidth mod guarantees m|ght hold for models with bounded connected-
els have been proposed (Malvestuto, 1991; Bach & Jordamess (such as the ones our algorithm considers).

2002; Deshpande et al., 2001), but (not surprisingly, given - The second class of results relates to the problem of find-
the NP-hardness of the problem) they do not come with any, g 5 network structure whose score is high, for a given

performance guarantees. set of samples and some appropriate scoring function. Al-
Recently, Narasimhan and Bilmes (2004) provided ahough finding the highest-scoring tree-structured networ
polynomial time algorithm with a polynomial sample com- can be done in polynomial time (Chow & Liu, 1968),
plexity guarantee for the class of Markov networks of Chickering (1996) shows that the problem of finding the
bounded tree width. They do not provide any gracefulhighest scoring Bayesian network where each variable has
degradation guarantees when the generating distribugion at mostk parents is NP-hard, for arly> 2. (See Chicker-
not a member of the target class. Their algorithm com-ng et al., 2003, for details.) Even finding the maximum
putes approximate conditional independence informationikelihood structure among the class of polytrees (Das-
followed by dynamic programming to recover the boundedgupta, 1999) and paths (Meek, 2001) is NP-hard. These
tree width structure. The parameters for the recoveredesults do not address the question of the number of sam-
bounded tree width model are estimated by standard Miples for which the highest scoring network is guaranteed to
methods. Our algorithm applies to a different famlly of be close to the true generating distribution.

distributions: factor graphs of bounded connectivity (in- Hoffgen (1993) analyzes the problem of PAC-learning
cluding graphs in which inference is intractable). Factoryq gircture of Bayesian networks with bounded fan-in,
graphs with small connectivity can have large tree widthghq\ying that the sample complexity depends only logarith-
(€.9., grids) and factor graphs with small tree width canyica|ly on the number of variables in the network (when
have large connectivity (e.g., star graphs). considering KL-divergence normalized by the number of
variables in the network). Hoffgen does not provide an ef-
5.2 Bayesian Networks ficient learning algorithm (and to date, no efficient leagnin
algorithm is known), stating only that if the optimal net-
ML parameter learning in Bayesian networks (possiblyyork for a given data set can be found (e.g., by exhaus-
with smoothing) only requires computing the empirical tyye enumeration), it will be close to optimal with high
conditional probabilities of each variable given its pdren probability. By contrast, we provide a polynomial-time
instantiations. learning algorithm with similar performance guarantees fo
Dasgupta (1997), following earlier work by Friedman Bayesian networks with bounded fan-in and bounded fan-
and Yakhini (1996), analyzes the sample complexity ofout. However, we note that our algorithm does not con-
learning Bayesian networks, showing that the sample comstruct a Bayesian network representation, but rather a fac-
plexity is polynomial in the maximal number of different tor graph; this factor graph may not be compactly repre-
instantiations per family. His sample complexity result sentable as a Bayesian network, but it is guaranteed to en-
has logarithmic dependence on the number of variables igode a distribution which is close to the generating distrib
the network, when using the KL-divergence normalized byution, with high probability.
the number of variables in the network. In this paper, we



6 Discussion Chickering, D., & Meek, C. (2002). Finding optimal Bayesian
networks.Proc. UAI

We have presented polynomial time algorithms for parachickering, D., Meek, C., & Heckerman, D. (2003). Large-
meter estimation and structure learning in factor graphs of sample learning of Bayesian networks is haPdoc. UAL
bounded factor size and bounded connectivity. When th&how, C. K., & Liu, C. N. (1968). Approximating discrete prob-
generating distribution is within this class of networksr o ability distributions with dependence tre¢BEE Transactions
algorithms are guranteed to return a distribution closgtoi on Information Theory

using a polynomial number of samples. When the generat€omets, F. (1992). On consistency of a class of estimators for

ing distribution is not in this class, our algorithm degrade ~ €xponential families of Markov random fields on the lattice.
gracefully Annals of Statistics

While of significant theoretical interest, our algorithms, Coﬁr{):y' \'>Aviie§ Thomas, J. A. (1991)Elements of information
as described, are probably impractical. From a statisticzjlj asgupt.a s ('1997) The sample complexity of learning fixed
perspective, our algorithm is based on the canonical para-: Structure Bavesian networklachine Learnin
meterization, which is evaluated relative to a canonical asD @S 1/999 Learni VireSs UAE:
signmentx. Many of the empirical estimates that we com- ""59“‘? a, S ( ) garnlng polyfreesoc. LA
putein the algortihm use only a subset of the samples that®, EF2I0: o 1 RGeSt e Trangactions on patter
are (in some ways) consistent wigh As a consequence, Analvsis and Machine Intelligen

vays) € ) c#9, 380-393.
we make very inefficient use of data, in that many sampleﬁ Y g

mav never b d. In regimes where data is not abundarn eshpande, A., Garofalakis, M. N., & Jordan, M. I. (2001). Ef-
ay never be used. €gimes where data IS not abundant, ;e stepwise selection in decomposable modetec. UAI

this limitation may be quite significant in practice. (pp. 128-135). Morgan Kaufmann Publishers Inc.

From a computational perspective, our algorithm usesriedman, N., & Yakhini, Z. (1996). On the sample complexity
exhaustive enumeration over all possible factors up to some of learning Bayesian network®roc. UAL

size k, and over all possible Markov blankets up to size Geman, S., & Graffigne, C. (1986). Markov random field image
b. When we fixk andb to be constant, the complexity is  models and their applications to computer visiéttoc. of the
polynomial. But in practice, the set of all subsets of gize  International Congress of Mathematicians

or b is much too large to search exhaustively. Guyon, X., & Kiinsch, H. (1992). Asymptotic comparison of es-

However, even aside from its theoretical implications timators in the ising model. I$tochastic models, statistical
the al orithr’n we propose might provide insight into the de,— methods, and algorithms in image analysis, lecture notes in
g prop > 9 p 9 . statistics Springer, Berlin.
velopment of new learning algorithms that do work well in

. . . Hammersley, J. M., & Clifford, P. (1971). Markov fields on finite
practice. In particular, we might be able to address the sta- graphs and lattices. Unpublished.

tistical “mltatlon.by puttlng' tOgeth?r Can9nlca| faptome Hoffgen, K. L. (1993). Learning and robust learning of product
mates from multiple canonical assignmexrtdNe might be distributions.Proc. COLT
able to address the computational limitation using a MOT&, 1ang, F., & Ogata, Y. (2002). Generalized pseudo-likelihood

clever (perhaps heuristic) algorithm for searching ovérsu  egtimates for Markov random fields on latticnnals of the
sets. Given the limitations of existing structure learning Institute of Statistical Mathematics

a!gorithms for undirected model_s, we belieye that the techy; ¢ & Seymour, L. (1996). A consistent model selection proce-
niques suggested by our theoretical analysis might be worth dure for Markov random fields based on penalized pseudolike-

exploring. lihood. Annals of Applied Probability
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