
Policy Search via the Signed Derivative

J. Zico Kolter and Andrew Y. Ng

Computer Science Department, Stanford University

{kolter,ang}@cs.stanford.edu

Abstract—We consider policy search for reinforcement learn-
ing: learning policy parameters, for some fixed policy class, that
optimize performance of a system. In this paper, we propose
a novel policy gradient method based on an approximation we
call the Signed Derivative; the approximation is based on the
intuition that it is often very easy to guess the direction in which
control inputs affect future state variables, even if we do not
have an accurate model of the system. The resulting algorithm
is very simple, requires no model of the environment, and we
show that it can outperform standard stochastic estimators of
the gradient; indeed we show that Signed Derivative algorithm
can in fact perform as well as the true (model-based) policy
gradient, but without knowledge of the model. We evaluate the
algorithm’s performance on both a simulated task and two real-
world tasks — driving an RC car along a specified trajectory,
and jumping onto obstacles with an quadruped robot — and in
all cases achieve good performance after very little training.

I. INTRODUCTION

In this paper we consider policy search for reinforcement

learning. In this setting, one considers a parametrized control

policy and then, by interacting with the environment, modifies

the parameters to optimize some cost function. For example,

if our control task was to drive a car along a desired trajectory,

the cost function could penalize deviations from the trajectory,

and the control policy could determine the steering and throttle

as a simple (say, linear) function of current state features; in

this domain, the policy search task would involve learning

the coefficients on the state features to obtain a low cost (i.e.,

follow the trajectory well). We focus in particular on the policy

gradient approach, where we optimize the cost function using

gradient descent with respect to the policy parameters.

While there exist many different methods for approximating

the policy gradients, in this paper we propose a new algorithm

that makes use of what we call the Signed Derivative approx-

imation. This method allows us to compute an approximation

to the policy gradient without a model of the system. Our

algorithm is based on the following simple insight: the only

term in the policy gradient that depends on the dynamics

model is the derivative of future state elements with respect

to the control inputs. However, while these true derivatives

are difficult to compute, we claim that often it is very easy to

estimate the sign of many of these derivatives; that is, we only

want to know the general direction of how control adjustments

will affect the state. Consider again the example of the car

mentioned earlier, where for instance one of the state variables

is lateral deviation from the desired trajectory, and one of the

controls is the steering angle. While it may be very difficult

to know the true derivative of future lateral deviations with

respect to the steering angle, the sign of the derivative is in

fact quite obvious: turning more to the left typically results

in a lateral deviation that is also more to the left. While such

“obvious” derivative signs clearly don’t apply to all control

tasks, we demonstrate in this paper that they do apply in

many interesting domains; in such situations, we show that

we can drastically improve the performance of policy gradient

methods by using these signed derivatives. Indeed, we show

that in many cases, the Signed Derivative method not only

outperforms standard stochastic policy gradient algorithms

(such as the REINFORCE [15] family of algorithm), but

actually performs as well as the true (model-based) policy

gradient algorithm, but without any knowledge of the model,

only the ability to simulate a single trace.

The remainder of this paper is organized as follows. In

Section II we present preliminary material and describe the

general Signed Derivative algorithm more formally. In Section

III we present theoretical results. In Section IV we present

empirical results for the algorithm on a number of different

domains, both simulated and real-world. Finally, in Section V

we discuss related work, and conclude the paper in Section

VI.

II. THE SIGNED DERIVATIVE ALGORITHM

A. Preliminaries and Notation

We consider control in a Markov Decision Process (MDP),

which is a tuple M = (S,A, T,H,C), where S is a set of

states, A is a set of actions, T is the (unknown, but temporarily

assumed to be deterministic) system dynamics T : S×A→ S,

H is a time horizon and C is a known (one-step) cost function

C : S × A → R. Since we are concerned with general,

continuous state and action domains, we let S ⊆ R
n and

A ⊆ R
m. We can capture time-varying dynamics and costs by

including time as a state variable, though for the remainder of

this paper we will make any time dependence explicit. Finally,

although our algorithm is extendable to general cost functions,

for the sake of concreteness we will here assume a common

quadratic form of the reward function

Ct(st, ut) = (st − s⋆
t)

T Qt(st − s⋆
t) + uT

t Rtut

where s⋆
t denotes the desired state of system at time t, and

Qt and Rt are diagonal positive semidefinite matrices that

penalize state deviation and control respectively.

A (time-dependent) policy π : S × R → A is a mapping

from states and times to actions. As we are focused on the

policy-search setting in this paper, here we consider policies

parametrized by some set of parameters θ — we use the

notation u = π(s, t; θ) to denote the policy π, parametrized

by θ, evaluated at state s and time t. For example, a common

class of policies that we will consider in this paper is policies

that are linear in the state features

u = π(s; θ) = θT φ(s, t)

where φ : S × R → R
k is a mapping from states and times

to features and θ ∈ R
m×k is a set of parameters that linearly

map these features into controls.

Given a policy, we define the multi-step cost function (also

called the value function, or just the cost function, as opposed

to the one-step cost function defined above above) as the sum

of all one-step costs over the horizon H ,

J(s0, θ) =

H∑

t=1

Ct(st, ut−1)

where ut = θT φ(st, t) and where st+1 = T (st, ut). We

can now more formally define the policy gradient algorithm

as a gradient descent method that repeatedly updates the

parameters according to

θ ← θ − α∇θJ(s0, θ)

where α is a step size and ∇θJ(s0, θ) is the gradient of the

cost function with respect to the policy parameters. Although,

computing this gradient term can be quite complicated without

a model of the system, in the next section we describe a simple

approximation method.

B. The Signed Derivative Approximation

In this section we derive a simple approximation to the

policy gradient, using an approximation we called the signed

derivative. We want to emphasize that the final form of the

algorithm, shown in Algorithm 1, is quite simple, even though

the derivation is somewhat involved.

To motivate the signed derivative method, we first consider

the basic question of why ones needs a model of the system

to compute the policy gradient ∇θJ(s, θ). We will derive this

result shortly, but it turns out that the policy gradient depends

on the model only through terms of the form
(

∂st

∂ut′

)

for t > t′. These terms are the Jacobians of future states

with respect to previous inputs. They provide the critical

motivation for the signed derivative approximation, so it is

worth looking at them more closely. These Jacobians are

matrices
(

∂st

∂u
t′

)
∈ R

n×m where the i, j element of the
(

∂st

∂u
t′

)

denotes the derivative of the ith element of the state st with

respect to the jth element of ut′ , i.e.,
(

∂st

∂ut′

)

ij

≡
∂(st)i

∂(ut′)j

.

In other words (∂st

∂u
t′

)ij indicates how the ith element of st

would change if we made a small adjustment to the j element

of the control at a previous time t′ (and assuming we are

following the policy θ).

In general, the elements of these Jacobians are quite difficult

to compute, as they depend on the true dynamics model

of the environment and the policy parameters θ. However,

the signed derivative approximation is based on the insight

that often times it is fairly easy to guess the signs of the

dominant entries of these matrices: this only requires knowing

the general direction of how previous control inputs will affect

future states. Returning to the example of driving a car, it may

be very difficult to determine the derivative of a future state

with respect to the steering wheel, but the direction of the

gradient seems fairly obvious: turning the wheel more to the

left will likely result in future states also more to the left.

Furthermore, there is another property of these Jacobians

that allows us to come up with a reasonable approximation:

in many control settings, each state is primarily affected by

only one control input. For example, if we are driving our

car along a straight line, one state variable (for example, the

distance traveled along the line), would be primarily affected

by only one control (in this case, the gas pedal). Indeed, many

control tasks seem to be expressly designed such that this is the

case. For example, imagine trying to drive a car where both

the steering wheel and gas pedal controlled some different

combinations of both the wheel angle and the throttle; while

such a control system is technically “equivalent” to a standard

car, it would take much more work to learn. This suggests,

at least anecdotally, that humans also exploit these orthogonal

control effects, and so we can expect many control tasks to

be designed in this way. In other words, we can expect one

element in each row of the Jacobians to be larger than the

others, corresponding to the “dominant” control element, and

these are precisely those elements where we can guess their

sign.

Given this discussion, the signed derivative approximation is

quite straightforward. We approximate all the Jacobian terms

with a single matrix S ∈ R
n×m, called the signed derivative,

where entries in S correspond to the signs of the dominant

entries in the Jacobians (which, by our discussion above,

means that S has only one non-zero entry per row). Consider

one last time the driving example, and suppose that the car

is facing primarily along the x axis. If we represent the state

of the car as its position and orientation (x, y, θ), and let u1

and u2 be the throttle and steering angle respectively. Then a

reasonable estimate for the signed derivative would be

S =

1 0
0 1
0 1

 .

For instance, S11 = 1 means that the first state variable (x) is

primarily controlled by the first control input (throttle). This

makes sense, since the car is mostly aligned with the x axis,

so throttle will primarily affect this state. Similarly, y and θ
are primarily affected by the second control (steering), which

also makes sense, because the steering wheel can cause the

car to both turn and veer to the side.

Finally recall, from the beginning of this section, that the

Jacobians were the only terms in the policy gradient that

Algorithm 1 Policy Gradient w/ Signed Derivative (PGSD)

Input:

S ∈ R
m×n: signed derivative matrix

H ∈ Z+: horizon

Qt ∈ R
n×n, Rt ∈ R

m×m: diagonal cost function matrices

α ∈ R+: learning rate

φ : R
n × R→ R

k: feature vector function

θ0 ∈ R
k×m: initial policy parameters

Repeat:

1. Execute policy for H steps to obtain

u0, s1, . . . , uH−1, uH .

2. Compute approximate gradients w.r.t. controls:

∇̃ut
J(s0,Θ)←

H∑

t′=t+1

ST Qt′(st′ − s⋆
t′) + Rtut

3. Update parameters:

θ ← θ −
α

H

H−1∑

t=0

φ(st, t)(∇̃ut
J(s0,Θ))T

required a model. Therefore, after making such the signed

derivative approximation we can now perform (approximate)

policy gradient without the need for any model of the system.

This is precisely the method that we show in Algorithm 1.

The precise form of the gradient updates is derived in the

next section, but the basic idea of the algorithm is simple:

we are just performing policy gradient, replacing the Jacobian

terms with the signed derivative approximation S. It may seem

surprising that the method would perform well, given that the

signed derivative is a very crude approximation to the true

Jacobians; but, we will show, from both a theoretical and

empirical perspective, that we can expect the algorithm to

perform well in many situations.

C. Formal Derivation of the Policy Gradient

Here we prove the claim made in the previous section,

that the policy gradient depends only on the dynamics model

through the Jacobian terms, and we derive the precise form of

the gradient given in Algorithm 1. The derivation is slightly

technical, but the algorithm itself can be understood just from

the discussion above.

To avoid certain dependencies, we have to initially consider

the gradient of the cost function with respect to H different

sets of policy parameters for each time, Θ = {θ0, . . . , θH−1}.
We will then take a gradient step in terms of these parameters,

projected back into the space where they are all equal. The

gradients are given by

∇θt
J(s,Θ) =

(
∂ut

∂θt

)T

∇ut
J(s,Θ)

= φ(st, t) (∇ut
J(s,Θ))

T
.

using the fact that ut = θT
t φ(st, t) and that st doesn’t depend

on θt. Furthermore, using the definition of J ,

∇ut
J(s,Θ) = ∇ut

H∑

t′=1

(st′ − s⋆
t′)

T Qt′(st′ − s⋆
t′) + uT

t Rtut

=

H∑

t′=t+1

(
∂st′

∂ut

)T

Qt′(st′ − s⋆
t′) + Rtut

This gives a gradient with respect to each θi (where, as stated,

the only model-dependent terms are the Jacobians
(

∂s
t′

∂ut

)T

).

Therefore, the gradient of the cost with respect to a single θ
is equivalent to taking a step in the direction of all these θi’s

then projecting onto the space where θ0 = θ1 = . . . = θH−1.

This is accomplished by updating each θt according to

θt ← θt −
α

H

H−1∑

t′=0

∇θ
t′
J(s,Θ),

i.e., the policy gradient with respect to a single parameter θ
is also given by

∇θJ(s, θ) =
1

H

H−1∑

t=0

∇θt
J(s,Θ).

As stated, the only terms that depend on the model in this sum

are the Jacobians. This derivation should make it apparent that

Algorithm 1 is simply approximating the policy gradient by

substituting the signed derivative for all the Jacobian terms.

III. THEORETICAL RESULTS

Given that the signed derivative is admittedly a rather

crude approximation to the true Jacobians, there remains some

question as to why we might expect such an approach to work.

While the ultimate test of the algorithm’s usefulness is, of

course, its empirical performance, the results we present here

can give insight and intuition into why we obtain the positive

results shown in latter sections. We first describe the basic

intuition behind the analysis.

There are many possible sources of error for any policy

gradient algorithm, but here we analyze the two types of

error introduced by the signed gradient approximation itself.

First, the signed gradient allows only one control variable

to influence a given state variable; even if a state element

is primarily affected by one control, there most likely exist

smaller influences from the other controls as well. Second,

the signed gradient makes no attempt to capture the relative

magnitudes (or the magnitudes of any kind) of the entries in

the Jacobian. Formally, these approximations are represented

as
∂st

∂ut′
= D(S + Et,t′) (1)

for the signed derivative S and matrices Et,t′ ∈ R
m×n and

positive diagonal D ∈ R
n×n. The D matrix scales the entries

in the signed derivative, accounting for the second type of

error mentioned above. As we will see more formally below,

this type of error isn’t overly costly, since it has the effect

of simple scaling the entries of the cost functions. Especially

in the extreme case where policy gradient finds a solution

that obtains near-zero cost, the actual entries of Qt become

unimportant.

The Et,t′ terms capture other errors: they add arbitrary

constants to the entries in the signed derivative, accounting

for the effects of additional control inputs on the states and

for time-dependent variation in the relative scaling of the

Jacobian. In the worst case, there is little that can be done

about such errors: if the entries of Et,t′ are large, then the

gradient approximation using the signed derivative can be very

far from the true gradient. However, there is a great deal

of reason to believe that, in many situations Et,t′ won’t be

too large: time-varying scaling should be relatively small over

short horizons, and from the discussion in the previous section,

we expect cross-terms in the Jacobian to be relatively small

in magnitude. And as formalized below, if the Et,t′ are small,

then we expect the signed derivative to perform well.

Theorem 1: Using the notation from (1), suppose

‖Et,t′‖2 ≤ ǫ for all t, t′.1 Define the modified cost function

Q̃t = DQt. Then, given additional technical assumptions

(described fully in the appendix), PGSD will converge with

probability one to some solution θ̃ that is “close” to a local

minimum of the cost function JQ̃(θ), the cost function that

uses Q̃t (but the same Rt) as the cost matrices:

‖∇θJQ̃(θ̃)‖ ≤ O(ǫ).

Furthermore, if performing gradient descent with respect to the

true gradient (of the actual cost function) results in η-optimal

policy parameters — i.e., JQ(θ⋆) ≤ η — then PGSD also

obtains an order η-optimal solution2

JQ(θ̃) ≤ κ(D)η + O(ǫ).

Proof: (sketch) The full proof is given in the appendix3,

but we provide a very brief sketch. The proof proceeds in three

steps. First, we show that the gradient approximated using the

signed derivative is equivalent to the true gradient using the

Q̃ costs, plus a bounded error term

∇̃θJQ(θ) = ∇θJQ̃(θ) + Ẽ

for ‖Ẽ‖ ≤ O(ǫ). Second, we show that following this

approximate gradient using a stochastic gradient method will

converge, with probability one, to a point that is close to

a minimum of JQ̃(θ). Finally, we show that given suitable

assumptions about the region of convergence, a policy that is

close to locally optimal for JQ̃(θ) will also be close to locally

optimal for JQ(θ).

IV. EXPERIMENTAL RESULTS

A. Simulated Two-Link Arm

While we will present experiments on real systems shortly,

we begin by presenting an evaluation of our proposed method

1The ‖ · ‖2 norm of a matrix is equivalent to its maximum singular value.
2
κ(·) denotes the condition number of a matrix.

3Additional material, including the full appendix with this proof, is available
at http://cs.stanford.edu/∼kolter/rss09sd.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Two-link pendulum trajectory following task.

on a simulated two-link arm, in order to rigorously com-

pare to previous policy gradient approaches, and to pro-

vide a readily available implementation of our approach.

Code for the all the results in this section is available at

http://cs.stanford.edu/˜kolter/rss09sd. We

emphasize that the purpose of this section is to specifically

compare PGSD with other policy gradient approaches. The

control task itself is fairly straightforward, and many other

approaches such as adaptive control or iterative learning con-

trol could also be applied, though this is beyond the scope of

this paper; we will discuss these related works more in Section

V.

The two-link pendulum is a well-known control task in

robotics and control. The system, shown in Figure 1 consists

of two planar links; the state consists of the joint angles

and velocities of both joints and the control specifies a

torque at each of the joints. The equations of motion can be

easily derived from Lagrangian dynamics, and we introduce

stochasticity to the system by adding Gaussian noise to the

torques before integrating the equations of motion. The task

we consider here, also shown in the figure, is to move the

end effector along some desired trajectory. When the model

of the system is known, it is fairly easy to apply classical

control methodologies such as inverse dynamics or LQR to

find an optimal controller, but of course we don’t provide this

model to PGSD or other comparable algorithms. We feel that

this is a particularly demonstrative example for the Signed

Derivative algorithm, since it is well-known that there are

cross terms that cause all joints to be affected by all the control

inputs — for instance, a common (more challenging) task is to

swing the pendulum upright and balance by applying torques

only to the elbow — yet we claim that the Signed Derivative

approximation is still reasonable, since joints are primarily

affected by their own control.

The cost function for this domain penalizes deviations from

the desired joint angles (we first computed the trajectory in

joint space), and we use a time horizon of H = 5. Note that

this doesn’t mean that the controller only needs to follow the

trajectory for 5 steps, but rather that at each time the controller

should ideally act optimally with respect to a receding horizon

of H = 5; since the cost function itself “guides” the arm

along the trajectory, such a horizon is suitable. We use a linear

control policy ut = θT φ(st, t) where φ contains 1) deviations

from desired joint angles, 2) deviations from desired joint

velocities, 3) desired joint accelerations, and 4) sin(2πt/ttotal)

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

y

x

Desired Position
Initial PD Controller

Fig. 2. (top) Trajectory from initial PD controller. (bottom) Trajectories from
controller learned using PGSD.

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

y

x

Desired Position
PGSD Policy

Fig. 3. (top) Trajectory from initial PD controller. (bottom) Trajectories from
controller learned using PGSD.

where ttotal is total time for the complete trajectory (this last

term was added to account for a visible periodic pattern in

the controls). This leads to s total of 14 parameters for the

policy. For algorithms that require a stochastic policy, we

added Gaussian noise to the parameters: ut = (θ+ǫt)
T φ(st, t),

(ǫt)ij ∼ N (0, σ).

Figure 4 compares the performance versus time of PGSD,

and a well-known policy gradient RL algorithm, the REIN-

FORCE algorithm.4 All free parameters of the learning algo-

rithms (gradient step sizes, policy noise, number of episodes)

were hand-optimized to give that fastest convergence that

didn’t cause any divergence issues. As the figure shows, PGSD

drastically outperform the other methods, converging much

faster to a low-cost policy. This improvement is especially

notable given that the REINFORCE algorithm is actually

given an advantage: since the task we’re considering is not

episodic (at least not at the time-scale of the horizon), episodic

algorithms don’t immediately apply, and so we instead allow

the algorithm the ability to reset to previous states observed

along the trajectory. The REINFORCE without resets in the

fiture does not have such an advantage, but also performs much

worse. Figures 3 and 2 show the resulting controller learned

4We intentionally scaled the parameters of this control task to be the same
order of magnitude, so more advanced techniques such as natural gradients[6,
11] didn’t improve performance significantly. In preliminary experiments we
also evaluated a variety of finite difference and weight perturbation methods,
but didn’t notice a substantial improvement over REINFORCE for this task.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000

C
o
st

Timestep

PGSD
REINFORCE (w/ resets)

REINFORCE

Fig. 4. Average cost versus time for different policy gradient methods. Costs
are averaged over 20 runs, and shown with 95% confidence intervals. (Best
viewed in color).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 400 800 1200 1600 2000

C
o

st

Timestep

True Gradient (from model)
Optimal LQR controller

PGSD

Fig. 5. Average cost versus time for PGSD versus model-based methods.
Costs are averaged over 20 runs, and shown with 95% confidence intervals.

by the PGSD algorithm after 2000 time steps (4 times through

the trajectory), along with the trajectory achieved by the initial

PD controller (used to initialize all the learning algorithms).

We also compare, in Figure 5, the performance of the

PGSD algorithm, policy gradient using the true gradient from

the model, and an optimal LQR controller. Not surprisingly,

the LQR controller performs best: this controller is built by

linearizing around the (known) dynamics at each operating

point, then computing a series of non-stationary policies for

each point (in total, the LQR controller has 9000 parameters).

However, using only 14 parameters, the true policy gradient

and PGSD algorithm are able to obtain a controller that per-

forms relatively close to this full LQR controller. Furthermore,

the most important result is that the learning curve for PGSD

is virtually indistinguishable from the true policy gradient

learning curve; despite the rather crude approximation made

by the signed derivative, this resulting algorithm performs just

as well on this task, and requires no model of the system (and

therefore also less computation time, since there is no need

for time-consuming finite difference computations).

B. Autonomous RC Driving

In this section we apply the PGSD algorithm to the task

of learning to drive an autonomous RC car along a desired

Fig. 6. RC car used for the driving experiments.

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Desired Position
Initial PD Controller

Fig. 7. Desired trajectory for the autonomous RC driving experiments, with
trajectory for initial PD controller

trajectory. Figure 6 shows the car, a Tamiya TRF415, which

is about 40cm long and 20cm wide. A pattern of LED lights

is attached to the car, and tracked by an external PhaseSpace

motion capture system for pose estimation. All processing is

done on a workstation PC, with controls transmitted to the car

at 50hz.

The simplest representation of the car’s state is as six

dimensional vector representing the 2D position x, y, the

orientation θ, and the time derivatives ẋ, ẏ, θ̇. However, a more

natural representation for the signed derivative approach is

to represent the car’s state relative to some desired trajectory

— here the trajectory is specified as a continuous spline that

gives the desired state as a function of time. In this alternate

representation, the state consists of the longitudinal, lateral,

and angular deviation (and their derivatives) from the desired

trajectory. The control is two dimensional, consisting of a

commanded throttle and steering angle.

We use the same form of linear controller as in the previous

sections, but where φ(s, t) now contains 1) the full state

(represented as the deviation terms), 3) the desired velocities,

relative to the car frame, 3) the deviations for a target state

0.5 seconds and 4) a constant term. Some of the θ parameters

are forced to be zero (so that, for instance, the throttle doesn’t

depend on the lateral deviation), for a total of 16 parameters

in the policy. The cost function penalizes the longitudinal,

lateral, and angular deviation, any control outside a specified

valid range, and control that changes more that some amount

between two time steps (to minimize oscillations). We used a

time horizon of H = 25.

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Desired Position
PGSD Policy

Fig. 8. Desired trajectory for the autonomous RC driving experiments,
with typical trajectory learned using PGSD after approximately 20 seconds
of learning.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

C
o

st

Time (seconds)

PGSD

Fig. 9. Average cost versus time for the PGSD algorithm on the RC car task.
Costs are averaged over 10 runs, and shown with 95% confidence intervals.

Figures 8 and 7 show the control task we consider: driving

the car in an irregular figure-eight pattern at varying speeds

(2.0 m/s along the larger loop, 1.5 m/s along the smaller loop).

The figure also shows the trajectory followed by an initial PD

controller: while the PD controller follows the overall pattern

of the trajectory, it clearly does not perform very well. Figure

9 shows the learning curve of the PGSD algorithm. As the

figure shows, PGSD is able to very quickly — within an

average of 20 seconds, about 3 times around the trajectory

— obtain a policy that performs far better than the initial PD

controller. We show a typical trajectory from one of these

learned controllers in Figure 8. The learned policies do not

perform flawlessly — the car still sometimes veers off the

desired path — but we feel this is largely due to the limited

policy class itself; to perform better, one might need more

complex, time-varying policies, to capture the fact that the car

needs to behave differently at different points along the path.

Nonetheless, PGSD converges to a very reasonable policy —

in fact, better than any we were able to hand tune in the same

policy class — in just 20 seconds of learning.

C. LittleDog Jumping

In this section we present results on applying PGSD to

the task of “jumping” the front legs of a quadruped robot to

quickly climb up large steps. The “LittleDog” robot that we

Fig. 10. The LittleDog robot.

Fig. 11. The desired task for the LittleDog: climb over three large steps.

use for this task, shown in Figure 10, is designed and built by

Boston Dynamics, Inc. The task we are concerned with here is

shown in Figure 11: we want to quickly climb up three steps,

whose height is approximately equal to the robot’s ground

clearance. Because the steps are so large, the most efficient

motion to climb up is to jump the two front legs on a step,

then pull the rest of the body up.

However, jumping the front legs on the LittleDog robot is

not a trivial task. The LittleDog’s legs are not powerful enough

to force its body off the ground, so the only means of jumping

is to lean the body backwards until the virtually all the mass

rests on the hind legs, then quickly raise the front legs and

push forward before the robot falls over. Figure 12 shows a

properly executed front leg jump. However, if the weight is

not shifted properly, the robot will either plant it’s feet into

the step, or flip over backward. It’s very difficult to correct

such failures, because usually by the time it is apparent that

the robot has failed to jump properly, the robot does not have

the power to correct itself. Therefore, jumping is a “one-off”

maneuver: we guess an amount to shift backward, then apply

an open-loop sequence of joint commands, hoping to jump

successfully. The situation is made complicated because the

“correct”amount to shift the weight depends, for example, on

the state of the robot, namely the current position of the COG

relative to the back feet, and the forward velocity of the robot.

Because we want a policy that can jump regardless of the

initial conditions, we applied the PGSD algorithm to learn a

jumping policy that predicts the correct amount to shift given

features of the current state.

Fig. 12. A properly executed jump.

Although full state space for the LittleDog is 36 dimensional

(12 joints and twelve joint velocities plus a 6D pose and

6D pose velocities), we don’t need to take into account

the complete state. Rather, the only state element that is

particularly crucial for the jumping maneuver is the pitch of

the body: if the pitch is too small, the dog won’t clear the step,

but if it is too large, the dog will flip backward. Therefore, the

cost function can depend only on the pitch of the dog. The

control is a number that indicates how far back to shift the

weight before pushing forward; we determine the control as

a linear function of three features: 1) the current shift of the

center of mass, 2) the forward velocity of the dog and 3) a

constant term.

There is one straightforward generalization of the PGSD

algorithm, as presented so far, that we make for this task.

Although the cost function depends only on the pitch of the

robot, it is difficult to know the “optimal” pitch — unlike

previous tasks where the optimal state value was clearly

defined. Instead, the readily observable quantity is simply

whether the jump succeeded, or whether the robot either didn’t

clear the step or flipped over. Therefore, if we define the one-

step cost as the ℓ1 error between the pitch and optimal pitch,

then the gradient is just the sign of the direction we should

move our control in. When H = 1, the PGSD update then

takes on a very simple form:

θ ←

θ − αφ(s) robot didn’t clear step

θ jump succeeded

θ + αφ(s) robot flipped backwards

Despite the simplicity of this update rule, it works well in

practice. We evaluated this PGSD variant on the LittleDog

robot, attempting to climb the three steps as shown in Figure

11. After 28 failures (either flipping backwards or failing

to clear the step), the robot successfully jumped all three

steps for the first time. After 59 failures, the learning process

had converged on a stable controller: the robot succeeded in

climbing all three steps for 13 out of the next 20 trials. This is

far better than any policy we had been able to code by hand.5

A video of the learning process on the dog is available at the

website mentioned previously.

5While it is possible to increase the reliability of the system by adding extra
steps to ensure that the robot always enters a similar configuration before each
jump, in these experiments we wanted to test precisely how well a controller
could perform under many different circumstances.

V. RELATED WORK

As mentioned in the introduction, there is a great deal of

work on policy gradient methods for reinforcement learning.

If a model of the system is known, then we can compute the

gradient using simple finite difference methods — this holds

even in stochastic domains if we are allowed to fix the random

seeds which lead to this stochasticity, an approach known as

the PEGASUS algorithm [10]. These model-based methods

have been applied to many robotics domains. However, such

a model might not always be available, or might be difficult to

learn from data. Additionally, as we have shown, our PGSD

method can sometimes perform as well as the model-based

methods without any model other than the signed derivative

approximation.

In situations where we have no model, we can still apply

finite difference methods or weight perturbation, so long as

the step sizes are large enough to overcome noise. Such an

approach was successfully applied to the task of learning a

quadruped trotting gait in [8]. Recently, [13] investigated the

effect of sampling distributions on the signal-to-noise ratio of

these and similar gradient updates.

A related but different approach uses a likelihood ratio

trick to obtain an estimate of the gradient using a number

of episodes run under the system and policy of interest: the

REINFORCE [15] algorithm was the first of such methods,

but many extensions and generalization have been proposed

[4, 5, 11, 7]. There has also been work on estimating and

using the natural gradient, a gradient that is invariant to

reparameterizations of the policy [6, 3, 12]. However, most

of these algorithms require running multiple episodes in order

to obtain a reasonable estimate of the gradient (or natural

gradient), which is difficult for non-episodic tasks such as

those we consider. In these domains, PGSD has the strong

advantage of only requiring a single episode to obtain an

estimate of the gradient.

Our work also shares a strong connection to [1]. This

paper proposes a method for using inaccurate simulation

models by using only the local gradient information implied

by these models. This is quite similar in spirit to our approach,

except we discard any need for even an inaccurate simulator,

and encode all necessary information directly in the signed

gradient: the approximation may be rougher, but unlike this

past approach PGSD does not require performing any local

policy search in a simulator.

Finally, we want to note the connection between the al-

gorithm we propose here and the field of adaptive control

[14, 2] — in particular the subtopics of Model Reference

Adaptive Control (MRAC) and Self-Tuning Regulators — and

Iterative Learning Control (ILC) [9]. The general philosophy

of these approaches is similar to PGSD: they use an error

signal (i.e., between the actual and desired state) to directly

adapt the parameters. However, typical formulations of MRAC

or ILC use hand-crafted update rules to modify the controller,

with the focus on analyzing stability properties of the resulting

controllers. In contrast, PGSD uses a general update rule that

derives completely from the Reinforcement Learning setting of

long time horizons and general cost functions, plus the Signed

Derivative approximation of the model derivatives. derivatives.

Generally speaking however, PGSD could be viewed some-

what as an instance of MRAC or ILC, with a very particular

form for the update rule.

VI. CONCLUSION

In this paper, we proposed the Signed Derivative method, a

method for approximating policy gradients, using the insight

that often times it is very easy to guess the direction in

which control inputs will affect future states. We show that

this algorithm, Policy Gradient with the Signed Derivative

(PGSD) can perform very well compared to stochastic gradient

estimators, and in fact can perform as well as the true gradient,

even though it has no knowledge of the true environment’s

model. We further evaluated our algorithm on two real-world

control tasks — driving an RC car and jumping with a

quadruped robot — and demonstrated very good performance

on both domains. While we stress that the PGSD approach

is not suitable for all situations (for instance, if the effects of

controls on the system is entirely unknown), we feel that in

many situations the approach applies quite easily, and offers

very substantial performance benefits.

REFERENCES

[1] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using innaccurate
models in reinforcement learning. In Proceedings of the International
Conference on Machine Learning, 2006.

[2] Karl Johan Astrom and Bjorn Wittenmark. Adaptive Control. Prentice
Hall, 1994.

[3] J. Andrew Bagnell and Jeff Schneider. Covariant policy search. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence,
2003.

[4] Jonathan Baxter and Peter L. Bartlett. Infinite-horizon gradient-based
policy search. Journal of Artificial Intelligence Research, 15:319–350,
2001.

[5] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance
reduction techniques for gradient estimates in reinforcement learning.
Journal of Machine Learning Research, 5:1471–1530, 2004.

[6] Sham Kakade. A natural policy gradient. In Neural Information
Processing Systems 14, 2001.

[7] Jens Kober and Jan Peters. Policy search for motor primitives in robotics.
In Neural Information Processing Systems 21, 2009.

[8] Nate Kohl and Peter Stone. Machine learning for fast quadrupedal
locomotion. In Proceedings of the AAAI, pages 611–616, July 2004.

[9] Kevin L. Moore. Iterative learning control: an expository overview.
Applied and Computational Controls, Signal Processing, and Circuits,
1(1):151–214, 1999.

[10] Andrew Y. Ng and Michael Jordan. Pegasus: A policy search method
for large mdps and pomdps. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 2000.

[11] Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In
Proceedings of the IEEE Conference on Intelligent Robotics Systems,
2006.

[12] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic.
In Proceedings of the European Conference on Machine Learning, 2005.

[13] John W. Roberts and Russ Tedrake. Signal-to-noise ratio analysis of
policy gradient algorithms. In Neural Information Processing Systems
21, 2009.

[14] Shankar Sastry and Marc Bodson. Adaptive Control: Stability, Conver-
gence, and Robustness. Prentice-Hall, 1994.

[15] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8:229–256,
1992.

