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Abstract— Kalman filters are a workhorse of robotics and
are routinely used in state-estimation problems. However, their
performance critically depends on a large number of modeling
parameters which can be very difficult to obtain, and are
often set via significant manual tweaking and at a great cost
of engineering time. In this paper, we propose a method for
automatically learning the noise parameters of a Kalman filter.
We also demonstrate on a commercial wheeled rover that our
Kalman filter’s learned noise covariance parameters—obtained
quickly and fully automatically—significantly outperform an
earlier, carefully and laboriously hand-designed one.

I. INTRODUCTION

Over the past few decades, Kalman filters (KFs) [5] and
extended Kalman filters (EKFs) [3] have found widespread
applications throughout all branches of engineering. EKFs take
as input sequences of measurements and controls, and output
an estimate of the state of a dynamic system. They require
a model of the system, comprised of a next state function, a
measurement function, and the associated noise terms. EKFs
are arguably one of the most influential Bayesian techniques
in all of engineering and science.

This paper addresses a fundamental problem with the EKF:
that of arriving at models suitable for accurate state estimation.
The next state function and the measurement function are
sometimes relatively easy to model, since they describe the
underlying physics of the system. But even in applications
where the next-state function and the measurement function
are accurate, the noise terms are often difficult to estimate.
The noise terms capture what the deterministic model fails to:
the effects of unmodeled perturbations on the system.

The noise is usually the result of a number of different
effects:

• Mis-modeled system and measurement dynamics.
• The existence of hidden state in the environment not

modeled by the EKF.
• The discretization of time, which introduces additional

error.
• The algorithmic approximations of the EKF itself, such as

the Taylor approximation commonly used for lineariza-
tion.

All these effects cause perturbations in the state transitions
and measurements. In EKFs, they are commonly characterized
as “noise.” Further, the noise is assumed to be independent
over time—whereas the phenomena described above cause
highly correlated noise. The magnitude of the noise in an
EKF is therefore extremely difficult to estimate. It is therefore

surprising that the issue of learning noise terms remains
largely unexplored in the literature. A notable exception is the
filter tuning literature. (See, e.g., [7], [8] for an overview.)
Although some of their ideas are fairly similar and could
be automated, they focus mostly on a formal analysis of
(optimally) reducing the order of the filter (for linear systems),
and how to use the resulting insights for tuning the filter.

To further motivate the importance of optimizing the
Kalman filter parameters (either by learning or tuning), con-
sider the practical problem of estimating the variance parame-
ter for a GPS unit that is being used to estimate the position x
of a robot. A standard Kalman filter model would model the
GPS readings xmeasured as the true position plus noise:

xmeasured = xtrue + ε,

where ε is a noise term with zero mean and variance σ2. The
GPS’ manufacturer specifications will sometimes explicitly
give σ2 for the unit; otherwise, one can also straightforwardly
estimate σ2 by placing the vehicle at a fixed, known, position,
and measuring the variability of the GPS readings. However,
in practice either of these choices for σ2 will work very
poorly if it is the parameter used in the Kalman filter. This is
because GPS errors are often correlated over time, whereas
the straightforward implementation of the Kalman filter as-
sumes that the errors are independent. Thus, if the vehicle is
stationary and we average n GPS readings, the filter assumes
that the variance of the resulting estimate is σ2/n. However,
if the errors are correlated over time, then the true variance of
the resulting position state estimate can be significantly larger
than σ2. The extreme of this case would be full correlation:
If the errors were perfectly correlated so that all n readings
are identical, then the variance of the average would be σ2

instead of σ2/n.1 Thus, if σ2 was the parameter used in the
filter, it will tend to underestimate the long time-scale variance
of the GPS readings, and perhaps as a result “trust” the GPS
too much relative to other sensors (or relative to the dynamic
model), and therefore give poor estimates of the state.

In practice, a number of authors have observed this effect
on several robots including an autonomous helicopter platform
using GPS for its state estimates [10], and ground rover plat-
forms using a SICK LADAR to estimate their position [13]. In
each of these cases, significant human time was expended to
try to “tweak” the variance parameter to what they guessed
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Fig. 1. Ground rover platform instrumented with inexpensive IMU and GPS.
This robot is commercially provided to contractors in the DARPA LAGR
program.

were more “appropriate” values, so that the Kalman filter
gives more accurate state estimates. For instance, in the GPS
example above, by artificially choosing a larger σ2 than that
suggested by the manufacturer specifications, one would be
able to reduce the KF’s overconfidence in the GPS, and thereby
obtain more accurate state estimates.

In this paper, we propose several machine learning algo-
rithms for automatically choosing the noise parameters of the
Kalman filter or extended Kalman filter (EKF). Our work is
based on the fundamental assumption that during the EKF
development, it is possible to instrument the system to measure
additional variables, which provide highly accurate estimates
for the state variables. These measurements are only available
in the initial tuning phase; later they are no longer available.

An example of this setup is the robot shown in Figure 1.
This figure shows a commercial robot equipped with a low-
cost IMU (inertial measurement unit) and a low-end GPS
receiver (global positioning system). Both are used to estimate
the robot’s geo-referenced location when the robot is in
operation. The vendor of this unit supplies an EKF for pose
estimation which has been optimized manually to achieve
the best performance. A clear option—which the vendor did
not exercise—would have been to attach a highly accurate
differential GPS receiver to the unit to “tune” the EKF. With
such a unit, it becomes possible to receive “ground truth”
information on the actual coordinates of the robot.

This paper presents a family of learning algorithms that
utilizes such information for learning the covariance parame-
ters of an EKF. The idea is relatively straightforward: Train
an EKF so that it maximizes its predictive accuracy, where
“accuracy” is evaluated through the reference data obtained
during training. The different algorithms provide different
criteria for assessing the prediction accuracy of an EKF. Some
simply measure the mean square error of the EKF; others
measure the likelihood of the high-accuracy measurements.
No matter what criterion is being used for training, however,
the trained filters consistently outperform the EKF carefully
tuned by hand. In fact, in our experiments we achieve results

that are significantly more accurate than those provided by
a commercial robot vendor. Thus, our approach promises to
relieve EKF developers of the tedious task of tuning noise
parameters by hand.

II. THE EXTENDED KALMAN FILTER

We will begin with a brief review of the EKF, defining the
basic notation and terminology in this paper. Throughout this
paper we use z ∼ P (z) to denote the random variable z has
distribution P . We use N (z;µ,Σ) to denote the formula for a
density of a Gaussian with mean µ and covariance Σ, evaluated
at z.

The EKF addresses the problem of state estimation in non-
linear continuous dynamical systems. Here, we will formulate
the EKF for the discrete time setting. At each point in time,
the true state of the system being monitored will be denoted
by xt, where t is the time index.

The EKF assumes that state transitions are governed by a
discrete-time continuous-state non-linear law of the form

xt = f(xt−1, ut) + εt.

Here ut is a control, f is a nonlinear function that maps the
control and the state one time step earlier into the state at
time t, and εt is the process noise. The process noise εt is
Gaussian with zero mean and covariance R. Hence we have
that xt ∼ N (xt; f(xt−1, ut), R).

Measurements zt are formed through a non-linear law of
the form

zt = g(xt) + δt.

Here zt is a measurement, g is a nonlinear function of the
state xt, and δt is the measurement noise. The measurement
noise is Gaussian with zero mean and covariance Q. Hence
we have that zt ∼ N (zt; g(xt), Q).

The EKF then provides us with an estimate µt of the
state at time t, along with an expected error of this estimate,
expressed through a covariance Σt. Put differently, given a
Gaussian estimate of the state specified by mean and covari-
ance 〈µt−1,Σt−1〉 at time t−1, the EKF update rule provides
us with an estimate of both quantities at time t.

In detail, the update requires us to linearize the nonlinear
function g and h through Taylor approximation. This is usually
written as follows:

f(xt−1, ut) ≈ f(µt−1, ut) + Ft (xt−1 − µt−1),

g(xt) ≈ g(µt) + Gt (xt − µt).

Here Ft and Gt are Jacobian matrices of f and g, respectively,
taken at the filter estimate µ.

The resulting state transition and measurement functions are
now linear in x. For linear systems, the Kalman filter pro-
duces an exact update, by manipulating the various Gaussians
involved. The update is then usually factored into two separate
steps, a prediction step, and a measurement update step. The
prediction step starts with the estimate µt−1 and its covariance



Σt−1 at time t − 1, and produces an estimate for time t:

µ̄t = f(µt−1, ut),

Σ̄t = Ft Σt−1 F>
t + R.

The bar in µ̄t and Σ̄t indicates that these estimates are pure
predictions, before taking the measurement zt into account.
This happens in the measurement update step, in which the
EKF integrates the measurement zt by first calculating the
Kalman gain:

Kt = Σ̄t G>
t (Gt Σ̄t G>

t + Q)−1.

This expression specifies the amount by which the estimate
will be adjusted in accordance to the measurement prediction
error zt − g(µt). This leads to the update of the mean and
variance

µt = µ̄t + Kt (zt − g(µ̄t)),

Σt = (I − Kt Gt) Σ̄t.

To implement an EKF, the designer needs to determine two
sets of things: The nonlinear functions g and f , and the noise
covariances R and Q. While f and g can sometimes be ob-
tained through basic physics considerations,2 the covariances
R and Q are difficult to estimate. It is common practice
to manually tune those matrices until the EKF exhibits the
desired performance. In the presence of ground truth data, one
could try to tune the parameters such that the filter estimates
are as accurate as possible in estimating the ground truth data.
Manual tuning with such an objective is effectively manual
discriminative training of the Kalman filter parameters. In the
next section we present learning procedures that automate such
a tuning process.

III. LEARNING THE FILTER PARAMETERS

We now describe our learning techniques for obtaining
the noise parameters of the Kalman filter automatically. For
simplicity, our discussion will focus on learning R and Q,
though all the presented methods also apply more generally.
All but one of our approaches requires that one is given
a highly accurate instrument for measuring either all or a
subset of the variables in the state xt. Put differently, in the
EKF learning phase, we are given additional values y1, y2, . . .,
where each yt is governed by a projective equation of the type

yt = h(xt) + γt.

Here h is a function, and γt is the noise with covariance P . In
our example below, yt are the readings from a high-end GPS
receiver. The function h will be a projection which extracts the
subset of the variables in xt that correspond to the Cartesian
coordinates of the robot.

2One common exception are the “damping” term in the state dynamics.
For example, if we estimate the gyros of an IMU, or indeed any other sensor,
to have a slowly varying bias (as is commonly done in practice), the bias is
usually modeled as xt = λxt−1 + εt, where 0 < λ < 1 governs the rate at
which the bias xt tends towards zero. The parameters λ and Var(εt) jointly
govern the dynamics of the bias, and λ is an example of a parameter in the
state update equation that is difficult to estimate and is, in practice, usually
tuned by hand.

Let x0:T denote the entire state sequence (x0, x1, . . . , xT ),
and similarly let u1:T , y0:T and z0:T denote the corresponding
observation sequences. Assuming that we have a prior p(x0)
on the initial state at time 0, the state update equation and the
observation equation (together with the known controls u1:T )
define a joint probability distribution on x0:T , y0:T , and z0:T .
Specifically,

p(x0:T , y0:T , z0:T | u1:t) (1)

= p(x0)
T∏

t=1

p(xt|xt−1, ut)
T∏

t=0

p(yt|xt) p(zt|xt),

where

p(xt|xt−1, ut) = N (xt; f(xt−1, ut), R), (2)

p(yt|xt) = N (yt;h(xt), P ), (3)

p(zt|xt) = N (zt; g(xt), Q). (4)

Using the linearization approximations to f and g (h, being
a projection operation, is assumed to be linear), the joint
distribution p(x0:T , y0:T , z0:T ) defined by the EKF model
is actually a joint linear-Gaussian model. [12] Since the
joint distribution is well-defined, so are other quantities
such as the marginal distributions (such as p(y0:T , z0:T ) =
∫

x0:T

p(x0:T , y0:T , z0:T )dx0:T ) and the conditional distribu-
tions (such as p(z0:T |y0:T )) over these same random variables.

A. Generative Approach: Maximizing The Joint Likelihood

We will first discuss a naive approach, which requires access
to the full state vector. Put differently, this approach requires
that h is the identity function, and that the noise in γ is so
small that it can safely be neglected. While this approach is
generally inapplicable simply because it is often difficult to
measure all state variables, it will help us in setting up the
other approaches.

Generative learning proceeds by maximizing the likelihood
of all the data. Since in this section we assume the full state
vector is observed (i.e., for all t we have yt = xt), the
covariance matrices 〈Rjoint, Qjoint〉 are estimated as follows:

〈Rjoint, Qjoint〉 = arg max
R,Q

log p(x0:T , z0:T |u1:T ). (5)

Now by substituting in Eqn. (1), (2) and (4) into Eqn. (5)
we get that the optimization decomposes and we can estimate
Rjoint and Qjoint independently as:

Rjoint = arg max
R

−T log |2πR|

−
T∑

t=1

(xt − f(xt−1, ut))
>R−1(xt − f(xt−1, ut)),

Qjoint = arg max
Q

−(T + 1) log |2πQ|

−
T∑

t=0

(zt − g(xt))
>Q−1(xt − g(xt)).

An interesting observation here is that both the objective for
Rjoint and the objective for Qjoint decompose into two terms:
a term from the normalizer whose objective is to deflate the



determinant of R (Q), and one that seeks to minimize a
quadratic function in which the inverse of R (Q) is a factor,
and which therefore seeks to inflate R (Q). The optimal Rjoint

and Qjoint can actually be computed in closed form and are
given by

Rjoint =
1

T

T∑

t=1

(xt − f(xt−1, ut))(xt − f(xt−1, ut))
>,

Qjoint =
1

T + 1

T∑

t=0

(zt − g(xt))(xt − g(xt))
>.

Note the naive approach never actually executes the filter for
training. It simply trains the elements of the filter. It therefore
implicitly assumes that training the elements individually is as
good as training the EKF as a whole.

B. Minimizing The Residual Prediction Error

The technique of maximizing the joint likelihood, as stated
above, is only applicable when the full state is available
during training. This is usually not the case. Often, h is a
function that projects the full state into a lower-dimensional
projection of the state. For example, for the inertial navigation
system described below, the full state involves bias terms
of a gyroscope that cannot be directly measured. Further,
the technique of minimizing the conditional likelihood never
actually runs the filter! This is a problem if noise is actually
correlated, as explained in the introduction of this paper.

A better approach, thus, would involve training an EKF
that minimizes the prediction error for the values of yt. More
specifically, consider the EKF’s prediction of yt:

E[yt | u1:t, z0:t] = h(µt). (6)

Here, µt is the result of running the EKF algorithm (with
some variance parameters R and Q for the filter), and taking
its estimate for the state xt after the EKF has seen the
observations z0:t (and the controls u1:t). Therefore µt depends
implicitly on R and Q.

The prediction error minimization technique simply seeks
the parameters R and Q that minimize the quadratic deviation
of yt and the expectation above, weighted by the inverse
covariance P :

〈Rres, Qres〉 = arg min
R,Q

T∑

t=0

(yt − h(µt))
>P−1(yt − h(µt)).

If P is any multiple of the identity matrix, this simplifies to

〈Rres, Qres〉 = arg min
R,Q

T∑

t=0

||yt − h(µt)||
2
2. (7)

Thus, we are simply choosing the parameters R and Q that
cause the filter to output the state estimates that minimize the
squared differences to the measured values yt.

This optimization is more difficult than maximizing the joint
likelihood. The error function is not a simple function of the
covariances R and Q. Instead, it is being mediated through
the mean estimates µt, which depend on the covariances R

and Q in a complicated way. The mean estimates µt are the
result of running an EKF over the data. Hence, this learning
criterion evaluates the actual performance of the EKF, instead
of its individual components.

Computing the gradients for optimizing the residual predic-
tion error is more involved than in the previous case. However,
an optimization that does not require explicit gradient compu-
tations, such as the Nelder-Mead simplex algorithm, can also
be applied. [11]

C. Maximizing The Prediction Likelihood

The objective in Eqn. (7) measures the quality of the state
estimates µt output by the EKF, but does not measure the
EKF’s estimates of the uncertainty of its output. At each
time step, the EKF estimates both µt and a covariance for its
error Σt. In applications where we require that the EKF gives
accurate estimates of its uncertainty [15], we choose instead
the prediction likelihood objective

〈Rpred, Qpred〉 = arg max
R,Q

T∑

t=0

log p(yt | z0:t, u1:t).(8)

Here the yt’s are treated as measurements. This training regime
trains the EKF so as to maximize the probability of these
measurements.

The probability p(yt | z1:t, u1:t) can be decomposed into
variables known from the filter:

p(yt | z0:t, u1:t) =

∫

p(yt | xt) p(xt | z0:t, u1:t)
︸ ︷︷ ︸

∼N (xt;µt,Σt)

dxt.

Under the Taylor expansion, this resolves to

p(yt | z0:t, u1:t) = N (yt;h(µt), Ht Σt H>
t + P ). (9)

Here Ht is the Jacobian of the function h. The resulting
maximization of the log likelihood gives us

〈Rpred, Qpred〉 = arg max
R,Q

T∑

t=0

− log |2πΩt|

−(yt − h(µt))
> Ω−1

t (yt − h(µt)).

Here we abbreviated Ω = Ht Σt H>
t + P . Once again,

this optimization involves the estimate µt, through which
the effects of P and Q are mediated. It also involves the
covariance Σt. We note when the covariance P is small, we
can omit it in this expression.

This objective should also be contrasted with Eqn. (7). The
difference is that here the filter is additionally required to give
“confidence rated” predictions by choosing covariances Σt that
reflect the true variability of its state estimates µt.

D. Maximizing The Measurement Likelihood

We now apply the idea in the previous step to the measure-
ment data z0:T . It differs in the basic assumption: Here we
do not have additional data y1:T , but instead have to tune the
EKF simply based on the measurements z0:T and the controls
u1:T .



Recalling that the EKF model, for fixed u1:t, gives a well-
defined definition for the joint p(x0:t, z0:t | u1:t), the marginal
distribution p(z0:t | u1:t) is also well defined. Thus, our
approach is simply to choose the parameters that maximize
the likelihood of the observations in the training data:

〈Rmeas, Qmeas〉 = arg min
R,Q

log p(z0:T | u1:T ).

The value of the objective is easily computed by noting that,
by the chain rule of probability,

p(z0:T |u1:T ) =

T∏

t=0

p(zt|z0:t−1, u1:T ).

Moreover, each of the terms in the product is given by

p(zt|z0:t−1, u1:T )

=

∫

xt

p(zt|xt, z0:t−1, u1:T )p(xt|z0:t−1, u1:T )dxt

=

∫

xt

p(zt|xt)p(xt|z0:t−1, u1:t)dxt.

The term p(zt|xt) is given by Eqn. (4), and
p(xt|z1:t−1, u1:t−1) = N (µ̄t, Σ̄t), where µ̄t and Σ̄t are
quantities computed by the EKF. Thus this approach also runs
the EKF to evaluate its performance criterion. However since
no ground truth data is used here, the performance criterion
is not predictive performance for the state sequence (which
is what we ultimately care about), but merely predictive
performance on the observations z0:T .

E. Optimizing The Performance After Smoothing

The two discriminative criteria of Sections III-B and III-C
evaluate the performance of the covariance matrices 〈R,Q〉 as
used in the EKF. These criteria can easily be extended to the
smoothing setting. (See, e.g., [8] for details on smoothing.) In
particular let µ̃t be the state estimates as obtained from the
smoother, then the smoother equivalent of Eqn. (7) is:

〈Rres−sm, Qres−sm〉 = arg min
R,Q

T∑

t=0

‖yt − h(µ̃t)‖
2
2.

The smoother likelihood objective is given by conditioning on
all observations (instead of only up to time t as in the filter
case). So the smoother equivalent of Eqn. (8) is:

〈Rpred−sm, Qpred−sm〉 = arg max
R,Q

T∑

t=0

log p(yt|z0:T , u1:T ).

The smoother likelihood objective is closely related to the
training criteria used for conditional random fields which are
widely used in machine learning to predict a sequence of
labels (states) from all observations. (See, e.g., [6] and [4]
for details.)

The two criteria proposed in this section are optimizing
the covariance matrices 〈R,Q〉 for smoother performance, not
filter performance. So we expect the resulting covariance ma-
trices 〈R,Q〉 (although good for smoothing) not to be optimal
for use in the filter. This is confirmed in our experiments.

F. Training

The previous text established a number of criteria for train-
ing covariance matrices; in fact, the criteria make it possible
to also tune the functions f and g, but we found this to be of
lesser importance in our work.

The training algorithm used in all our experiments is a
coordinate ascent algorithm: Given initial estimates of R and
Q, the algorithm repeatedly cycles through each of the entries
of R and Q. For each entry p, the objective is evaluated
when decreasing and increasing the entry by αp percent. If
the change results in a better objective, the change is accepted
and the parameter αp is increased by ten percent, otherwise αp

is decreased by fifty percent. Initially we have αp = 10. We
find empirically that this algorithm converges reliably within
20-50 iterations.

IV. EXPERIMENTS

We carried out experiments on the robot shown in Fig-
ure 1. This is a differential drive robot designed for off-
road navigation. For state estimation, it is instrumented with
a low cost GPS unit; a low cost inertial measurement unit
(IMU) consisting of 3 accelerometers for measuring linear
accelerations, and 3 gyroscopes for measuring rotational veloc-
ities; a magnetometer (magnetic compass); and optical wheel
encoders (to measure forward velocity, assuming rigid contact
with the ground). The GPS is WAAS enabled, and returns
position estimates at 1Hz with a typical position accuracy of
about 3 meters.

These vehicles were built by Carnegie Mellon University for
a competition in which each team obtains an identical copy
of the vehicle, which can be used for software development.
The software developed by each team will then be tested on
a separate (but identical) vehicle at a Carnegie Mellon site.
Since we have our own vehicle, we are able to install an
accurate GPS unit onto it to get additional, more accurate, state
estimates during development time. Specifically, we mounted
onto our vehicle a Novatel RT2 differential GPS unit, which
gives position estimates yt at 20Hz to about 2cm accuracy.
While we could use the accurate GPS unit for development,
the hardware on which our algorithms will be evaluated will
not have the more accurate GPS.

The vehicle also comes with a carefully hand-tuned EKF.
Since this pre-existing EKF was built by a highly experienced
team of roboticists at Carnegie Mellon (not affiliated with the
authors), we believe that it represents an approximate upper-
bound on the performance that can reasonably be expected
in a system built by hand-tweaking parameters (without using
ground truth data). We therefore evaluate our learning algo-
rithms against this hand-designed EKF.

The state of the vehicle is represented as a five dimensional
vector, including its map coordinates xt and yt, orientation
θt, forward velocity vt and heading gyro bias bt. [2] The
measurement error of a gyroscope is commonly characterized
as having a Gaussian random component, and an additive
bias term that varies slowly over time. Neglecting to model
the bias of the gyroscope will lead to correlated error in the



robot’s heading over time, which will result in poor estimation
performance.

More formally, our EKF’s state update equations are given
by:

xt = xt−1 + ∆t vt−1 cos θt−1 + εfor
t cos θt−1

− εlat
t sin θt−1,

yt = yt−1 + ∆t vt−1 sin θt−1 + εfor
t sin θt−1

+ εlat
t cos θt−1,

θt = θt−1 + ∆t (rt + bt) + εθ
t ,

vt = vt−1 + ∆t at + εv
t ,

bt = bt−1 + εb
t .

Here εfor
t and εlat

t are the position noise in the forward and
lateral direction with respect to the vehicle. The control is
ut = (rt at)

>, where rt is the rotational velocity command,
and at is the forward acceleration.

The observation equations are given by

x̃t = xt + δx
t ,

ỹt = yt + δy
t ,

θ̃t = θt + δθ
t ,

ṽt = vt + δv
t .

In our model, εt is a zero mean Gaussian noise vari-
able with covariance diag(σfor, σlat, σθ, σv, σb). Similarly,
δt is a zero mean Gaussian noise variable with covariance
diag(γx, γy, γθ, γv). In our experiments, the nine parameters
σfor, σlat, σθ, σv, γx, γy, γθ, γv were fit using the learning
algorithms. Furthermore, our model assumed that γx = γy .

Our experimental protocol was as follows. We collected two
sets of data (100s each) of driving the vehicle around a grass
field, and used one for training, the other for testing. Because
the observations yt do not contain the complete state (but only
position coordinates), the “naive approach” of maximizing the
joint likelihood is not directly applicable. However the highly
accurate position estimates allow us to extract reasonably
accurate estimates of the other state variables.3 Using these
state estimates as a substitute for the real states, we estimate
the covariances 〈Rjoint, Qjoint〉 using the joint likelihood cri-
terion. The estimates 〈Rjoint, Qjoint〉 are used for initialization
when using the other criteria (which do not have closed form
solutions).

We evaluate our algorithms on test data using two error
metrics. The first is the RMS error in the estimate of the

3More specifically, we ran an extended Kalman smoother to obtain esti-
mates for θt, vt, bt. This smoother used very high variances for the measured
θ̃t, ṽt, and very small variances for the position measurements x̃t, ỹt. The
smoother also assumed very high process noise variances, except for the
gyro bias term. This choice of variances ensures the smoother extracts state
estimates that are consistent with the highly accurately measured position
coordinates. The results from the smoother were not very sensitive to
the exact choice of the variances. In the reported experiments, we used
diag(1, 1, 1, 1, .0012) for the process noise and diag(.022, .022, 102, 102)
for the measurement noise.

vehicle’s position (cf. Eqn. 7):
(

1

T

T∑

t=1

||h(µt) − yt||
2

)1/2

.

Above, µt is the EKF estimate of the full state at time t, and
h(µt) is the EKF estimate of the 2D coordinates of the vehicle
at time t.

The second error metric is the prediction log-loss

−
1

T

T∑

t=1

log p(yt | z0:t, u1:t).

Following the discussion in Section III.C, the main difference
between these two metrics is in whether it demands that the
EKF gives accurate covariance estimates.

The highly accurate GPS outputs position measurements
at 20Hz. This is also the frequency at which the built-
in hand-tuned filter outputs its state estimates. We use the
corresponding time discretization ∆t = .05s for our filter.

Each of our learning algorithms took about 20-30 minutes
to converge. Our results are as follows (smaller values are
better):4

Learning Algorithm RMS error log-loss
Joint 0.2866 23.5834
Res 0.2704 1.0647
Pred 0.2940 -0.1671
Meas 0.2943 60.2660
Res-sm 0.3229 2.9895
Pred-sm 0.5831 0.4793
CMU hand-tuned 0.3901 0.7500

In this table, “Res” stands for the algorithm minimizing the
residual prediction error (〈Rres, Qres〉), etc.

As expected the filters learned using the smoother criteria of
Section III-E (Res-sm,Pred-sm) are outperformed by the filters
learned using the corresponding filter criteria (Res,Pred). So
from here on, we will not consider the filters learned using
the smoother criteria.

We see that the hand-tuned EKF had an RMS error of about
40cm in estimating the position of the vehicle, and that all
of our learned filters obtain significantly better performance.
Using the parameters learned by maximizing the prediction
likelihood (〈Rpred, Qpred〉), we also obtain better log-loss
(negative log likelihood). Minimizing the residual prediction
error on the training data results in smallest residual error on
the test data. Similarly, minimizing the log-loss (or, equiva-
lently, maximizing the prediction likelihood) on the training
data results in smallest log-loss on the test data. Thus, dis-
criminative training allows us to successfully optimize for the
criteria we care about. We also notice that, although the filters
trained by joint likelihood maximization and measurement
likelihood maximization have small RMS error, they perform
poorly on the log-loss criterion. This can be explained by

4All results reported are averaged over two trials, in which half of data is
used for training, and the other half for testing.
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Fig. 2. Typical state estimation results. Plot shows ground truth trajectory (black solid line); on-board (inexpensive) GPS measurements (black triangles);
estimated state using the filter learned by minimizing residual prediction error (blue dash-dotted line); estimated state using the filter learned maximizing the
prediction likelihood (green dashed line); and estimated state using the CMU hand-tuned filter (red dotted line). (Colors where available.)
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Fig. 3. Close-up of part of Figure 2. (Same legend as previous figure.)



correlated noise. More specifically, correlated noise causes
the model trained by maximizing the joint likelihood to be
overconfident about its state estimates, which results in the
larger log-loss. The effect of correlated noise on the model
trained by maximizing the measurement likelihood is even
more significant. The model learns very small measurement
variances, which allow it to track the measurements more
closely. Unfortunately, in the case of correlated noise, tracking
the measurements more closely does not mean tracking the
state of the system more closely. The small measurement
variances result in significant overconfidence in the state
estimates, which causes the log-loss to be significantly higher.

Figure 2 shows a typical trajectory taken by the vehicle,
as well as the estimates from two of the learned filters and
the CMU hand-tuned filter. It is visually fairly clear from
the figure that the learned filters are more accurately tracking
the ground truth trajectory than the hand-tuned filter. Figure 3
shows a close-up of part of Figure 2. To reduce clutter, we have
plotted only the output of two of the six learned filters here;
however all learned filters have outputs that look visually very
similar. One exception is that—as explained in the previous
paragraph—filters learned by maximizing the measurement
likelihood tend to follow the (often noisy) GPS measurements
more closely.

V. CONCLUSION

We have presented a highly related family of algorithms for
training the noise parameters of an EKF. All algorithms follow
the same idea: Adjust the covariances of the EKF in a way
that maximizes their predictive accuracy. Experimental results
show that this training routine has two major advantages over
previous best practice. First, it eliminates the need for a hand-
tuning phase, thereby making it easier to develop working
EKFs. Second, we find that the learned EKF is more accurate
than even a well-tuned EKF constructed by hand. Among
the learned filters, the best results were obtained by using
discriminative training, which evaluates candidate covariances
by evaluating the predictive performance of the EKF when
using these covariances.

In our experiments we compare to a commercial EKF,
provided as part of a robot developed for a major DARPA
program. Clearly, it is difficult to assess how much tuning
went into the EKF, and whether this is actually as good as
can be done through manual tweaking. However, the EKF is
central to the application of this robotic system, and we expect
the development team spent at least a few days developing this
EKF. Our approach outperforms this EKF by a large margin,
based on a few minutes of data and a few minutes of learning.
This suggests that our approach may yield better results with
less development time.

We note that our training approach is also applicable to
broader problems of EKF training. In particular, we chose not
to learn the physical model as expressed in the state transition
and the measurement functions. However, given an appropriate

parameterization of these functions, it appears to be feasible
to tune those functions as well. However, it remains an open
question to which extent over-fitting poses a problem when
doing so in practice.

The holistic training algorithms presented in this paper are
highly related to an ongoing debate in the field of machine
learning on using discriminative vs. generative algorithms for
supervised learning. There, the consensus (assuming there is
ample training data) seems to be that it is usually better
to directly minimize the loss with respect to the ultimate
performance measure, rather than an intermediate loss function
such as the likelihood of the training data; see, e.g., [14], [9],
[1]. This is because the model—no matter how complicated—
is almost always not completely “correct” for the problem
data. By analogy, when choosing the noise parameters for
an EKF, we are interested in choosing parameters that lead
to the EKF outputting accurate state estimates, rather than
necessarily choosing the noise parameters that most correctly
reflects each measurement’s true variance (such as would be
obtained from the maximum likelihood estimate or from most
manufacturer specs, as discussed above).
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