Make3D: Learning 3D Scene Structure from a
Single Still Image

Ashutosh Saxena, Min Sun and Andrew Y. Ng

Abstract— We consider the problem of estimating detailed
3-d structure from a single still image of an unstructured
environment. Our goal is to create 3-d models which are both
quantitatively accurate as well as visually pleasing.

For each small homogeneous patch in the image, we use a
Markov Random Field (MRF) to infer a set of “plane parame-
ters” that capture both the 3-d location and 3-d orientation of the
patch. The MRF, trained via supervised learning, models bdt
image depth cues as well as the relationships between diffart
parts of the image. Other than assuming that the environment
is made up of a number of small planes, our model makes no
explicit assumptions about the structure of the scene; thisnables
the algorithm to capture much more detailed 3-d structure than
does prior art, and also give a much richer experience in the @l
flythroughs created using image-based rendering, even forcenes
with significant non-vertical structure.

Using this approach, we have created qualitatively correc8-d
models for 64.9% of 588 images downloaded from the internet.
We have also extended our model to produce large scale 3d

models from a few |mage§. Fig. 1. (a) An original image. (b) Oversegmentation of theg®a to obtain
Index Terms— Machine learning, Monocular vision, Learning ~ “superpixels”. (c) The 3-d model predicted by the algoritt{d) A screenshot

depth, Vision and Scene Understanding, Scene Analysis: Digp ©f the textured 3-d model.

cues.

|. INTRODUCTION these methods therefore do not apply to the many scenesréhat a

Lﬂ made up only of vertical surfaces standing on a horizonta
or. Some examples include images of mountains, trees, (e.g

Fig. 15b and 13d), staircases (e.g., Fig. 15a), arches fgy.11la

Upon seeing an image such as Fig. 1a, a human has no diffic
understanding its 3-d structure (Fig. 1c,d). However, ritirfig
such 3-d structure remains extremely challenging for curre )
computer vision systems. Indeed, in a narrow mathemateaes gnd 15k), rooftops (e.g., Fig. 15m), etc. that often have imuc
it is impossible to recover 3-d depth from a single imagecein richer 3-d structure.
we can never know if it is a picture of a painting (in which case In this paper, our goal is to infer 3-d models that are both
the depth is flat) or if it is a picture of an actual 3-d envirenn quantitatively accurate as well as visually pleasing. We us
Yet in practice people perceive depth remarkably well gijest the insight that most 3-d scenes can be segmented into many
one image; we would like our computers to have a similar seng®all, approximately planar surfaces. (Indeed, modernptten
of depths in a scene. graphics using OpenGL or DirectX models extremely complex

Understanding 3-d structure is a fundamental problem &fenes this way, using triangular facets to model even very
computer vision. For the specific problem of 3-d reconstamgt Complex shapes.) Our algorithm begins by taking an image, an
most prior work has focused on stereovision [4], structurenf attempting to segment it into many such small planar susface
motion [5], and other methods that require two (or more) igsag Using a superpixel segmentation algorithm, [10] we find aerov
These geometric algorithms rely on triangulation to estamasegmentation of the image that divides it into many smalioreg)
depths. However, algorithms relying only on geometry oféexd  (superpixels). An example of such a segmentation is shown in
up ignoring the numerous additionaonocularcues that can also Fig. 1b. Because we use an over-segmentation, planar esrfac
be used to obtain rich 3-d information. In recent work, [§}- in the world may be broken up into many superpixels; however,
exploited some of these cues to obtain some 3-d informatig?@ch superpixel is likely to (at least approximately) licirety
Saxena, Chung and Ng [6] presented an algorithm for predjction only one planar surface.
depths from monocular image features. [7] used monoculpthde For each superpixel, our algorithm then tries to infer the 3-
perception to drive a remote-controlled car autonomoy8ly.[9] d position and orientation of the 3-d surface that it camenfro
built models using a strong assumptions that the scene atensThis 3-d surface is not restricted to just vertical and hamizl
of ground/horizontal planes and vertical walls (and pdgssky); directions, but can be oriented in any direction. Inferriel

) ) position from a single image is non-trivial, and humans dssibg
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the ground; blue patches are more likely to be sky). Our élyor faces. Hassner and Basri [17] used an example-based approac
uses supervised learning to learn how different visual dikes to estimate depth of an object from a known object class. Han
these are associated with different depths. Our learniggridhm and Zhu [18] performed 3-d reconstruction for known specific
uses a Markov random field model, which is also able to tal@ intlasses of objects placed in untextured areas. Crimingsigl Bnd
account constraints on the relative depths of nearby siygdsp Zisserman [19] provided an interactive method for compuBad

For example, it recognizes that two adjacent image patches geometry, where the user can specify the object segmemtatio
more likely to be at the same depth, or to be even co-planan, thd coordinates of some points, and reference height of arcobje
being very far apart. Torralba and Oliva [20] studied the relationship betweer th

Having inferred the 3-d position of each superpixel, we can n Fourier spectrum of an image and its mean depth.
build a 3-d mesh model of a scene (Fig. 1c). We then texture-ma In recent work, Saxena, Chung and Ng (SCN) [6], [21]
the original image onto it to build a textured 3-d model (Fid) presented an algorithm for predicting depth from monocular
that we can fly through and view at different angles. image features; this algorithm was also successfully agpior

Other than assuming that the 3-d structure is made up ofimproving the performance of stereovision [22]. Michelax&na
number of small planes, we make no explicit assumptions tabeind Ng [7] also used monocular depth perception and reieforc
the structure of the scene. This allows our approach to géimer ment learning to drive a remote-controlled car autonomousl
well, even to scenes with significantly richer structurenttmaly in unstructured environments. Delage, Lee and Ng (DLN) [8],
vertical surfaces standing on a horizontal ground, such@shm [23] and Hoiem, Efros and Hebert (HEH) [9] assumed that the
tains, trees, etc. Our algorithm was able to automaticalfigri3-d environment is made of a flat ground with vertical walls. DLN
models that were both qualitatively correct and visuallggsing considered indoor images, while HEH considered outdoanes.e
for 64.9% of 588 test images downloaded from the internefThey classified the image into horizontal/ground and valtic
We further show that our algorithm predicts quantitativetpre regions (also possibly sky) to produce a simple “pop-up’etyp
accurate depths than both previous work. fly-through from an image.

Extending these ideas, we also consider the problem ofiageat  Our approach uses a Markov Random Field (MRF) to model
3-d models of large novel environments, given only a smalhonocular cues and the relations between various partseof th
sparse, set of images. In this setting, some parts of theescé#mage. MRFs are a workhorse of machine learning, and have
may be visible in multiple images, so that triangulation Suepeen applied to various problems in which local featuresewer
(structure from motion) can be used to help reconstruct themsufficient and more contextual information had to be used.
but larger parts of the scene may be visible only in one imagexamples include stereovision [4], [22], image segmenitafti0],

We extend our model to seamlessly combine triangulatiors cugnd object classification [24].

and monocular image cues. This allows us to build full, photo There is also ample prior work in 3-d reconstruction from
realistic 3-d models of larger scenes. Finally, we also destrate multiple images, as in stereovision and structure from amoti
how we can incorporate object recognition information iot@ |t is impossible for us to do this literature justice heret ecent

model. For example, if we detect a standing person, we kn@Mrveys include [4] and [25], and we discuss this work furiine
that people usually stand on the floor and thus their feet muséction VIIL.

be at ground-level. Knowing approximately how tall peopte a
also helps us to infer their depth (distance) from the canfera
example, a person who is 50 pixels tall in the image is likely 1. VISUAL CUES FORSCENE UNDERSTANDING

about twice as far as one who is 100 pixels tall. (This is also Images are formed by a projection of the 3-d scene onto two
reminiscent of [11], who used a car and pedestrian detecior gjimensions. Thus, given only a single image, the true 3utsire
the.known size of cars/pedestrians to estimate the posifithe ;g ambiguous, in that an image might represent an infinitetm
horizon.) , , , ~ of 3-d structures. However, not all of these possible 3-dcstires
The rest of this paper is organized as follows. Section Uie equally likely. The environment we live in is reasonably

discusses the prior work. Section Il describes the irdosi We gy ctyred, and thus humans are usually able to infer a lear
draw from human vision. Section IV describes the represema ., rect 3.9 structure, using prior experience.

We((j:hloose Ijorsthe _?"d mo((j:iel. Sgctmr;}Vfciescnbes ou(rjpr;lsaf)ll Given a single image, humans use a variety of monocular
models, and Section VI describes the features used. Seetlon .,oq 15 infer the 3-d structure of the scene. Some of these

desc.rlbes the experiments we performed to test our mod Pes are based on local properties of the image, such aseextu
Section VIII extends our model to the case of building large, ixiions and gradients, color, haze, and defocus [6], [26].

.3'd moqlels from SPparse Vviews. Section D_( demonstrat_es h%r example, the texture of surfaces appears different when
information from object recognizers can _be incorporatetd ur viewed at different distances or orientations. A tiled flagith
models for 3-d reconstruction, and Section X concludes. parallel lines will also appear to have tilted lines in an ga

such that distant regions will have larger variations in time
Il. PRIOR WORK orientations, and nearby regions will have smaller vaoisi in
For a few specific settings, several authors have develop@te orientations. Similarly, a grass field when viewed dfedént
methods for depth estimation from a single image. Exampies iorientations/distances will appear different. We will tap some
clude shape-from-shading [12], [13] and shape-from-texf@i4], of these cues in our model. However, we note that local image
[15]; however, these methods are difficult to apply to swefac cues alone are usually insufficient to infer the 3-d struetiror
that do not have fairly uniform color and texture. Nagai ef&6] example, both blue sky and a blue object would give similaalo
used Hidden Markov Models to performing surface reconsionc features; hence it is difficult to estimate depths from |deatures
from single images for known, fixed objects such as hands aabbne.



Fig. 2. (Left) An image of a scene. (Right) Oversegmentedginé&Each
small segment (superpixel) lies on a plane in the 3d wolds viewed in
color)

Fig. 4. (Left) Original image. (Right) Superpixels ovedaiith an illustration
The ability of humans to “integrate information” over spaceof the Markov Random Field (MRF). The MRF models the relati¢shown
i.e. understand the relation between different parts ofirfege, 2{;9‘22 sggviz))betwee” neighboring superpixels. (Only aesudsnodes and
is crucial to understanding the scene’s 3-d structure. {2ap. '
11] For example, even if part of an image is a homogeneous,

featureless, gray patch, one is often able to infer its dénth  \jore formally, we parametrize both the 3-d location and

looking at nearby portions of the image, so as to recogniggientation of the infinite plane on which a superpixel lies b
whether this patch is part of a sidewalk, a wall, etc. Therfn using a set of plane parametesse R®. (Fig. 3) (Any point
our model we will also capture relations between differeattp ¢ € R3 lying on the plane with parameters satisfiesa’q = 1.)

of the image. . . ~ The valuel/|a| is the distance from the camera center to the
Humans recognize many visual cues, such that a particulgggest point on the plane, and the normal vegior < gives

o]

shape may be a building, that the sky is blue, that grass &ngrehe grientation of the plane. If; is the unit vector (also called

that trees grow above the ground and have leaves on top of thggp ray R;) from the camera center to a pointying on a plane

and so on. In our model, both the relation of monocular cuggi, parametersy, thend; = 1/R”« is the distance of point
to the 3-d structure, as well as relations between various 8  om the camera center. !

the image, will be learned using supervised learning. Sigady,
our model will be trained to estimate depths using a trairsag

in which the ground-truth depths were collected using arlase
scanner. It is difficult to infer 3-d information of a region from loca@ues

alone (see Section Ill), and one needs to infer the 3-d irdition
of a region in relation to the 3-d information of other regson
In our MRF model, we try to capture the following properties

V. PROBABILISTIC MODEL

1/|a-\ R; of the images:
« Image Features and depth The image features of a super-
. Pplane with ixel bear some relation to the depth (and orientation) ef th
Camera d . parameter (v guperpixel pth ( )
center ¥,_— ™ '

o Connected structure Except in case of occlusion, neigh-
boring superpixels are more likely to be connected to each
other.

o Co-planar structure: Neighboring superpixels are more
likely to belong to the same plane, if they have similar
features and if there are no edges between them.

« Co-linearity: Long straight lines in the image plane are more
likely to be straight lines in the 3-d model. For example,

Fig. 3. A 2-d illustration to explain the plane parameteand raysR from
the camera.

IV. REPRESENTATION

Our goal is to create a full photo-realistic 3-d model from
an image. Following most work on 3-d models in computer edges of buildings, sidewalk, windows
graphics and other related fields, we will use a polygonalhmes ) ' ' o
representation of the 3-d model, in which we assume the world"\Cte that no single one of these four properties is enough, by
is made of a set of small planddn detail, given an image of 'Self, to predict the 3-d structure. For example, in someesa
the scene, we first find small homogeneous regions in the imalif@l image features are not strong indicators of the detfd (
called “Superpixels” [10]. Each such region representslerent rientation) _(e.g., a_patch ona blank_fea_ture-less wa_lh)JsT our
region in the scene with all the pixels having similar praigsr approach will combine these properties in an MRF, in a way tha

(See Fig. 2.) Our basic unit of representation will be thesalk depends on our “confidence” in each of these properties. ,Here

planes in the world, and our goal is to infer the location anti'€ “confidence” is itself estimated from local image cues) a

orientation of each one. will vary from_reglon to region in the image. .
Our MRF is composed of five types of nodes. The input
2This assumption is reasonably accurate for most artifidiaictures, such to the MRFE occurs through two variables, labeledand e.

as buildings. Some natural structures such as trees couldpe be better These variables correspond to features computed from tageém
represented by a cylinder. However, since our models arte gietailed, e.g.,

about 2000 planes for a small scene, the planar assumptidtsgaite well  PiXels (see SefCtion \_/l_ for details.) and are always Ob_serVed
in practice. thus the MRF is conditioned on these variables. The varable



(a) (b)

Fig. 6. lllustration explaining effect of the choice ef ands; on enforcing
(a) Connected structure and (b) Co-planarity.

Fig. 5. (Left) An image of a scene. (Right) Inferred “soft’lvas ofy;; €
[0,1]. (yi; = O indicates an occlusion boundary/fold, and is shown in bjack
Note that even with the inferreg;; being not completely accurate, the plane
parameter MRF will be able to infer “correct” 3-d models.

planarity, connectedness and co-linearity, we formulateMRF

o , . . . as
indicate our degree of confidence in a depth estimate oltaine
only from local image features. The variablgsindicate the
presence or absence of occlusion boundaries and folds in the

1
PlalX, vy, B;0) = — Hfl(ai|Xi7Vi:Ri§‘9)
. . . . 3
image. These variables are used to selectively enforceasapty

and connectivity between superpixels. Finally, the vdesh are H Falai, ajlyi, Bi By) - (1)
the plane parameters that are inferred using the MRF, whieh w d
call “Plane Parameter MRF” where,q; is the plane parameter of the superpixdFor a total of

Occlusion Boundaries and Folds We use the variableg;; € S; points in the superpixel we user; ., to denote the features for
{0,1} to indicate whether an “edgel” (the edge between twpoint s; in the superpixel. X; = {z; ., € R%* : 5, = 1,..., S;}
neighboring superpixels) is an occlusion boundary/foldnot. are the features for the superpixel (Section VI-A) Similarly,
The inference of these boundaries is typically not completeR; = {R; s, : s; = 1,...,.S;} is the set of rays for superpixel*
accurate; therefore we will infesoft values fory;;. (See Fig. 5.) v is the “confidence” in how good the (local) image features are
More formally, for an edgel between two superpixélsnd j, in predicting depth (more details later).
yi;; = 0 indicates an occlusion boundary/fold, apg, = 1 The first termf; (-) models the plane parameters as a function
indicates none (i.e., a planar surface). of the image features; ,,. We haveR}, a; = 1/d; ,, (where

In many cases, strong image gradients do not correspondHp,, is the ray that connects the camera to the 3-d location of
the occlusion boundary/fold, e.g., a shadow of a buildiriina  point s;), and if the estimated deptt; ,, = =, 0, then the
on a ground surface may create an edge between the part withagtional error would be
shadow and the one without. An edge detector that reliesojust
these local image gradients would mistakenly produce ar.edg  dis; —disi 1 (dis) —1= RrT a_(x:_r 6,) — 1

. . . - 1,85 — flg,5; P \Le,s, VT

However, there are other visual cues beyond local imageegrd dis; dis;

that better indicate whether two planes are connectedinaplor o )
not. Using learning to combine a number of such visual famtyr 1 NErefore, to minimize the aggregate fractional error caéthe

makes the inference more accurate. In [28], Martin, Fowlkd®ints in the superpixel, we model the relation between taaep
and Malik used local brightness, color and texture for leggn Parameters and the image features as
segmentation boundaries. Here, our goal is to learn o@siusi

boundaries and folds. In detail, we modgl; using a logistic S
' ' } T 9 9 J1(o;| X5, v4, Ry 0) = exp | — Z Vis, josiai(xz:siar) -1
response af(y;; = lle;;9) = 1/(1 + exp(—v~ €;5)). where, =

¢;; are features of the superpixelsind j (Section VI-B), andy 2)

are the parameters of the model. During inference, we W#l ushe parameters of this model afe € R52*. We use different

a mean field-like approximation, where we replage with its  parameters &) for rows » = 1,...,11 in the image, because

mean value under the logistic model. the images we consider are roughly aligned upwards (i.e., th
direction of gravity is roughly downwards in the image), and

Now, we will describe how we model the distribution of themda thus it allows our algorithm to learn some regularities ire th

parametersy, conditioned ory. images—that different rows of the image have differentistiagl

Fractional depth error : For 3-d reconstruction, the fractional (orProperties. E.g., a blue superpixel might be more likely & b
relative) error in depths is most meaningful; it is used misture Sky if it is in the upper part of image, or water if it is in the
for motion, stereo reconstruction, etc. [4], [29] For grdetnuth lower part of the image, or that in the images of environments
depthd, and estimated deptf] fractional error is defined dgz_ available on the internet, the horizon is more |Ike|y to behe

d)/d = d/d—1. Therefore, we will be penalizing fractional errorsmiddle one-third of the image. (In our experiments, we ofzli
in our MRF. very similar results using a number of rows ranging from 5 to

MRF Model: To capture the relation between the plane paransi’-S') Herev; = {vis, : 5 = 1,.., 5} indicates the confidence

eters and the image features, and other properties such-as co

4The rays are obtained by making a reasonable guess on thescannimsic
3For comparison, we also present an MRF that only models tthéoBation ~ parameters—that the image center is the origin and the -piqaéct-ratio is
of the points in the image (“Point-wise MRF,” see Appendix). one—unless known otherwise from the image headers.
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Fig. 7. A 2-d illustration to explain the co-planarity terfibe distance of
the points; on superpixelj to the plane on which superpixélies along the
ray R s> is given byd; — da.

of the features in predicting the dept s, at points;.> If the

local image features were not strong enough to predict depﬁ

for point s;, thenv, ;, = 0 turns off the effect of the term
‘RT ai(xgjsiﬁr) —

i,Si ;J
The second ternya(-)
parameters of two superpixelsand j. It uses pairs of points;

ands; to do so:

F20) = Tgar.a en hses; () ©)

We will capture co-planarity, connectedness and co-libgdry
different choices of.(-) and{s;, s;}.

Connected structure We enforce this constraint by choosing hs; (ai,aj,yij,Rj’Sj) = exp (—yij|(Rj,Sj

s; and s; to be on the boundary of the superpixeland j. As
shown in Fig. 6a, penalizing the distance between two sutitpo
ensures that they remain fully connected. The relative(ivaal)
distance between points ands; is penalized by

hs;,s; (Qi, 0,455, Ry, Rj) = exp (—yij|(RZsiai - RjT,sjaj)Cﬂ)
(4)

In detail, R}, a; = 1/d; ,, and R;*fsjaj = 1/d;,,; therefore,

»
U Lesstivel

More likely

/Camera
» center

(a) 2-d image

(b) 3-d world, top view

Fig. 8. Co-linearity. (a) Two superpixels and 7 lying on a straight line
in the 2-d image, (b) An illustration showing that a long &t line in the
image plane is more likely to be a straight line in 3-d.

Rcurves that would project to a straight line in the imagang!;
owever, a straight line in the image plane is more likely ¢oab
straight one in 3-d as well (Fig. 8b). In our model, therefare
will penalize the relative (fractional) distance of a po{atich as

models the relation between the plan%j) from the ideal straight line.

In detail, consider two superpixelsand j that lie on planes
parameterized by; anda; respectively in 3-d, and that lie on a
straight line in the 2-d image. For a poigt lying on superpixel
J4» we will penalize its (fractional) distance along the r&y ;.
from the 3-d straight line passing through superpiixdle.,

a;)dl) (6)

With A, s;(-) = hs; (-)hs; (-). In detail, R} , o; = 1/d;
T

Rj,Sjai 1/d/7

gives the fractional distanqedj_rsj —dj )/ \/djs; dy .

T T
Rj,Sj

Q; —

,s; and
therefore, the term(R;, o; — R} a;)d

ford =

S5 7

djs, cZ; ., The “confidence’y;; depends on the length of the
line and its curvature—a long straight line in 2-d is moreelik

to be a straight line in 3-d.

the term (R, a; — R a;)d gives the fractional distance Parameter Learning and MAP Inference: Exact parameter
\(di.s; — dj.s.)/\/Treidye;| fOr d = \/ds,ds,. Note that in case learning of the model is intractable; therefore, we use Mult
1517 1S3 351 357 T gt

of occlusion, the variableg;; = 0, and hence the two superpixelsConditional Learning (MCL) for approximate learning, whehe
will not be forced to be connected. graphical model is approximated by a product of several matg

. . conditional likelihoods [30], [31]. In particular, we estate the
Co-planarity: We enforce the co-planar structure by choosing & - ; .
. ) . I " .~ ¢, parameters efficiently by solving a Linear Program (LP).g(Se
third pair of pointss; ands; in the center of each superplxelA endix for more details.)
along with ones on the boundary. (Fig. 6b) To enforce c PP )

o} : . o
planarity, we penalize the relative (fractional) distarafepoint M(ﬁp 'nfflr,inﬁ Ofdt;e pI;ne parér;etfer S'f'?". m{alxmlz;ng thg
s/ from the plane in which superpixelliies, along the rayR; ,, oo Honal IKEINOOA (o] X, v,y, B; ), Is efficiently performe
(éee Fig. 7) i by solving a LP. We implemented an efficient method that uses

the sparsity in our problem, so that inference can be peddrin

b (e, a5, Yig, Ry g) = exp (—yij|(R;‘fS,/ o — R;‘fs,/ aj)dsg ) about 4-5 seconds for an image having about 2000 supermirels
I ’ ! ! "(5) asingle-core Intel 3.40GHz CPU with 2 GB RAM. (See Appendix

with hor () = he(-)he (-). Note that if the two superpixels for more details.)

are coﬁlaﬁar, therh;uJ// Z 1. To enforce co-planarity between

two distant planes that are not connected, we can choose thre

such points and use the above penalty.

Co-linearity: Consider two superpixels and j lying on a long
straight line in a 2-d image (Fig. 8a). There are an infinitsbar

VI. FEATURES

For each superpixel, we compute a battery of features taimapt
some of the monocular cues discussed in Section lll. We also
compute features to predict meaningful boundaries in treges,

5The variablev; s, is an indicator of how good the image features argch as occlusion and folds. We rely on a large number of
in predicting depth for points; in superpixeli. We learnv; ,, from the diff tt f feat ¢ ’ k lqorith ob
monocular image features, by estimating the expected liit —z7 6| /d; ffreren ype§ or tea l'!res 0 ma e our algorithm more r us
as ¢ z; with logistic response, withp, as the parameters of the model,and to make it generalize even to images that are very differe
featuresz; andd; as ground-truth depths. from the training set.



Fig. 9. The convolutional filters used for texture energied gradients. The first 9 are 3x3 Laws’ masks. The last 6 aretieated edge detectors 20°.
The first nine Law’s masks do local averaging, edge detecimhspot detection. The 15 Laws’ mask are applied to the in@agiee Y channel of the image.
We apply only the first averaging filter to the color channels @d Cr; thus obtain 17 filter responses, for each of which aleutate energy and kurtosis
to obtain 34 features of each patch.
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Fig. 10. The feature vector. (a) The original image, (b) Sppels for the image, (c) An illustration showing the loicat of the neighbors of superpixel S3C
at multiple scales, (d) Actual neighboring superpixels 8€Sat the finest scale, (e) Features from each neighboringrsigl along with the superpixel-shape
features give a total of 524 features for the superpixel SB@st viewed in coloy.

A. Monocular Image Features segmentations based on these properties. Each elementr of ou

For each superpixel at location we compute both texture- 14 dimensional feature vectas; is then an indicator if two
based summary statistic features and superpixel shapeoaad | SUPErpixelsi and j lie in the same segmentation. For example,
tion based features. Similar to SCN, we use the output of tetgil f two superpixels belong to the same segments in all the 14
(9 Laws masks, 2 color channels in YCbCr space and 6 orientg@@mentations then it is more likely that they are coplarmar o
edges, see Fig. 10). These are commonly used filters thaireapfonnected. Relying on multiple segmentation hypothesetead
the texture of a 3x3 patch and the edges at various orientatio®f One makes the detection of boundaries more robust. The
The filters outputsty, (z,y), n = 1,...,17 are incorporated into features_eij are the input to the classifier for the occlusion
Ei(n) = Y, yes, 1(@,9) % Fa(z,y)[*, where k = 2,4 gives the Poundaries and folds.
energy and kurtosis respectively. This gives a total of 3dies
for each superpixel. We compute features for each supérfoxe
improve performance over SCN, who computed them only for VIl. EXPERIMENTS
fixed rectangular patches. Our superpixel shape and lochtised
features (14, computed only for the superpixel) includexighape A. Data collection
and Ioc_aFion based featu_res in Secti_on 2.2 of [9], and algo th \\e used a custom-built 3-D scanner to collect images (e.g.,
eccentricity of the superpixel. (See Fig. 10.) _ Fig. 11a) and their corresponding depthmaps using lasegs, (e
~ We attempt to capture more “contextual” information by alsgjq 11p). We collected a total of 534 images+depthmapsh wit
including features from neighboring superpixels (we pitle t 5n'image resolution of 2272x1704 and a depthmap resolufion o

largest four in our experiments), and at multiple spati@les 55,305 and used 400 for training our model. These images wer
(three in our experiments). (See Fig. 10.) The featuresete, c|iected during daytime in a diverse set of urban and nhtura

contain information from a larger portion of the image, ahds 51645 in the city of Palo Alto and its surrounding regions.

are more expressive than jgst local features. This makes tthe tested our model on rest of the 134 images (collected
feature vectorz; of a superpixel3d = (4 + 1) * 3+ 14 = 524 ,qing our 3-d scanner), and also on 588 internet images. The
dimensional. internet images were collected by issuing keywords on Goog|
image search. To collect data and to perform the evaluation
of the algorithms in a completely unbiased manner, a person
Another strong cue for 3-d structure perception is boundarnpot associated with the project was asked to collect images of
information. If two neighboring superpixels of an imagepiisy environments (greater than 800x600 size). The person chese
different features, humans would often perceive them todnésp following keywords to collect the images: campus, gardeakp
of different objects; therefore an edge between two supelpi house, building, college, university, church, castle,rgagquare,
with distinctly different features, is a candidate for a loston lake, temple, scene. The images thus collected were frooepla
boundary or a fold. To compute the features between su- from all over the world, and contained environments thatever
perpixelsi and j, we first generate 14 different segmentationsignificantly different from the training set, e.g. hillskes, night
for each image for 2 different scales for 7 different projet scenes, etc. The person chose only those images which were
based on textures, color, and edges. We modified [10] to ereaf “environments,” i.e. she removed images of the geomsdtric

B. Features for Boundaries
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Fig. 11. (a) Original Image, (b) Ground truth depthmap, (€pkh from image features only, (d) Point-wise MRF, (e) Plapeameter MRF.Rest viewed
in color)

f‘“,fv«k'_ugé i ‘ : 2l i
Image Ground-truth ~ Predicted Image Ground-truth  Predicted

Fig. 12. Typical depthmaps predicted by our algorithm ordkmit test set, collected using the laser-scanges{ viewed in coloy.

Fig. 13. Typical results from our algorithm. (Top row) Omail images, (Bottom row) depthmaps (shown in log scalepyels closest, followed by red
and then blue) generated from the images using our planengtea MRF. Best viewed in color.

figure ‘square’ when searching for keyword ‘square’; no othe In Table I, we compare the following algorithms:

pre-filtering was done on the data. (a) Baseline: Both for pointwise MRF (Baseline-1) and plgae
In addition, we manually labele® images with ‘ground-truth’ rameter MRF (Baseline-2). The Baseline MRF is trained witho

boundaries to learn the parameters for occlusion bourslamel any image features, and thus reflects a “prior” depthmap éso

folds. (b) Our Point-wise MRF: with and without constraints (coone
tivity, co-planar and co-linearity).
B. Results and Discussion (c) Our Plane Parameter MRF (PP-MRF): without any consgtrain

We performed an extensive evaluation of our algorithm on 58ith co-planar constraint only, and the full model.
internet test images, and 134 test images collected usintpgier (d) Saxena et al. (SCN), [6], [21] applicable for quantitaterrors

scanner. only.
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HEH screen shot

screen shot 1

screen shot 2

Fig. 14. Typical results from HEH and our algorithiRow 1: Original Image.Row 2 3-d model generated by HEfRow 3 and 4 3-d model generated by
our algorithm. (Note that the screenshots cannot be simipigimed from the original image by an affine transformajidn.image 1, HEH makes mistakes in
some parts of the foreground rock, while our algorithm peedthe correct model; with the rock occluding the houseingiwa novel view. Inimage 2 HEH
algorithm detects a wrong ground-vertical boundary; wisile algorithm not only finds the correct ground, but also uegst a lot of non-vertical structure,
such as the blue slide. image 3 HEH is confused by the reflection; while our algorithm proelsi a correct 3-d model. image 4 HEH and our algorithm
produce roughly equivalent results—HEH is a bit more visupleasing and our model is a bit more detailed.inmage 5 both HEH and our algorithm
fail; HEH just predict one vertical plane at a incorrect looa. Our algorithm predicts correct depths of the pole dmel tiorse, but is unable to detect their
boundary; hence making it qualitatively incorrect.

TABLE |

_ identified® (c) Depth error|logd — logd| on a log-10 scale,
RESULTS: QUANTlTATIVE COMPARISON OF VARIOUS METHODS

averaged over all pixels in the hold-out test set, (d) Averag

METHOD CORRECT | % PLANES | log;y  REL relative depth error’="L. (We give these two numerical errors on

SCN (N/OA) COE&ECT 0198 0530 only the 134 test image; that we (_:ollected_, because groutid-t

HEH 33.1% 50.3% | 0.320 1.423 laser depths are not available for internet images.)

BASELINE-1 0% NA 0.300 0.698 Table | shows that both of our models (Point-wise MRF

NO PRIORS 0% NA 0.170 0.447 and Plane Parameter MRF) outperform the other algorithms

POINT-WISE MRF 23% NA 0.149 0.458 in quantitative accuracy in depth prediction. Plane Patame

Elgslfé:gg-sz 82? 82? 833‘5‘ 8%2 MRF gives better relative depth accuracy and produces sharp
0 0 . . H

CO-PLANAR 45 7% 571% | 0191 0373 depthmaps (I_:lg. 11, 12 a_nd 13). Table | also shows t_hat by

PP-MRE 64.9% 71.2% 0187 0.370 capturing the image properties of connected structurglaparity

and co-linearity, the models produced by the algorithm bezo
significantly better. In addition to reducing quantitateseors, PP-
MRF does indeed produce significantly better 3-d models. twWhe
producing 3-d flythroughs, even a small number of erroneous

(e) Hoiem et al. (HEH) [9]. For faimess, we scale and shiiith planes make the 3-d model visually unacceptable, even kthoug

depthmaps before computing the errors to match the glolzdé sc
of our test images. Without the scaling and shifting, theioteis the major planes in the image (major planes occupy more tidh df the

much higher (7.533 for relative depth error). area), the plane is in correct relationship with its nearesghbors (i.e., the
. . . Orelative orientation of the planes is within 30 degrees)teNthat changing the
We compare the algorithms on the following metrics: (a) %umbers, such as 70% to 50% or 90%, 15% to 10% or 30%, and 3@etegr

of models qualitatively correct, (b) % of major planes cotlg to 20 or 45 degrees, gave similar trends in the results.

SFor the first two metrics, we define a model as correct when €86 df



TABLE Il
PERCENTAGE OF IMAGES FOR WHICHHEH IS BETTER, OUR PP-MRFIs http'//make3d stanford.edu

BETTER, ORIT IS ATIE.
Our algorithm, trained on images taken in daylight around

ALGORITHM | %BETTER the city of Palo Alto, was able to predict qualitatively caxt

TIE 15.8% 3-d models for a large variety of environments—for example,

HEH 22-1;% ones that have hills or lakes, ones taken at night, and even
PP-MRF 62.1% paintings. (See Fig. 15 and the website.) We believe, based o

our experiments with varying the number of training exaraple
(not reported here), that having a larger and more diversefse

the quantitative numbers may still show small errors. LT : . -
training images would improve the algorithm significantly.

Our algorithm gives qualitatively correct models fet.9% of
images as compared 83.1% by HEH. The qualitative evaluation
was performed by a person not associated with the project
following the guidelines in Footnote 6. Delage, Lee and Ng [8  v/|||. L ARGER3-D MODELS FROM MULTIPLE IMAGES
and HEH generate a popup effect by folding the images at
“ground-vertical” boundaries—an assumption which is noiet A 3-d model built from a single image will almost invariably
for a significant number of images; therefore, their metr@tsin  pe an incomplete model of the scene, because many portions of
those images. Some typical examples of the 3-d models avenshqne scene will be missing or occluded. In this section, we wil

in Fig. 14. (Note that all theestcases shown in Fig. 1, 13, 14se poth the monocular cues and multi-view triangulatioesco
and 15 are from the dataset downloaded from the interne&pXCcreate better and larger 3-d models.

Fig. 15a which is from the laser-test dataset.) These ex@8npl Gjyen 4 sparse set of images of a scene, it is sometimes [ossib
also show that our models are often more detailed, in thgtahe . -onstryct a 3-d model using techniques such as struatome f

often able to model the scene with a multitude (over a hundreg, ;:ion (SFM) [5], [32], which start by taking two or more

of planes. . photographs, then find correspondences between the imaugs,
~We performed a further comparison. Even when both alggna|y use triangulation to obtain 3-d locations of the psinf
rithms are eva_lluated as qualltatlvely correct on an image Oy, images are taken from nearby cameras (i.e., if the b@seli
result could still be superior. Therefore, we asked the @em® yisiance is small), then these methods often suffer fromgelar
compare the two methods, and deqde which one is better, OhdSingulation errors for points far-away from the cam@r,
fatle.7 Table 1l shows that our algorithm outputs the bettgr mOd%bnverser, one chooses images taken far apart, then dften t
in 62.1%. of t.he cases, while HEH outputs better model in 22'1%11ange of viewpoint causes the images to become very differe
cases (tied in the rest). so that finding correspondences becomes difficult, sometime
Full QOcumentation describing. the details of the unbiasqgading to spurious or missed correspondences. (Worsdathe
human judgment process, along with the 3-d flythroughs medu paseline also means that there may be little overlap between
by our algorithm, is available online at: the images, so that few correspondences may even existseThe
http://make3d.stanford.edu/research difficulties make purely geometric 3-d reconstruction aijons
Some of our models, e.g. in Fig. 15j, have cosmetic defectsfail in many cases, specifically when given only a small set of
e.g. stretched texture; better texture rendering tectasiquould images.
make the models more visually pleasing. In some cases, & smaHowever, when tens of thousands of pictures are available—
mistake (e.g., one person being detected as far-away inlbly. for example, for frequently-photographed tourist atti@ts such
and the banner being bent in Fig. 15k) makes the model look ba@ national monuments—one can use the information present
and hence be evaluated as “incorrect.” in many views to reliably discard images that have only few
Finally, in a large-scale web experiment, we allowed users torrespondence matches. Doing so, one can use only a small
upload their photos on the internet, and view a 3-d flythrougbubset of the images available-15%), and still obtain a “3-
produced from their image by our algorithm. About 2384@& point cloud” for points that were matched using SFM. This
unique users uploaded (and rated) about 26228 infagésers approach has been very successfully applied to famousitbgsid
rated 48.1% of the models as good. If we consider the imagasch as the Notre Dame; the computational cost of this dkgori
of scenes only, i.e., exclude images such as company logass significant, and required about a week on a cluster of
cartoon characters, closeups of objects, etc., then thepge computers [33].
was 57.3%. We have made the following website available for The reason that many geometric “triangulation-based” wuth
downloading datasets/code, and for converting an image3tala sometimes fail (especially when only a few images of a scege a
model/flythrough: available) is that they do not make use of the informatiorsg@né
in a single image. Therefore, we will extend our MRF model
"To compare the algorithms, the person was asked to countuimder of g seamlessly combine triangulation cues and monoculagéma

errors made by each algorithm. We define an error when a mégorepn . s .
the image (occupying more than 15% area in the image) is imgvfocation cues to build a full photo-realistic 3-d model of the scensing

with respect to its neighbors, or if the orientation of thar® is more than 30 monocular cues will also help us build 3-d model of the parts

degrees wrong. For example, if HEH fold the image at incarace (see that are visible only in one view.

Fig. 14, image 2), then it is counted as an error. Similaflyyé predict top

of a building as far and the bottom part of building near, mgkihe building

tilted—it would count as an error. 9l.e., the depth estimates will tend to be inaccurate for abjeat large
8No restrictions were placed on the type of images that usamsupload. distances, because even small errors in triangulationragillt in large errors

Users can rate the models as good (thumbs-up) or bad (thdovias). in depth.
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Fig. 16. An illustration of the Markov Random Field (MRF) farferring
3-d structure. (Only a subset of edges and scales shown.)

Fig. 17. An image showing a few matches (left), and the regpi8-d

model (right) without estimating the variablgs for confidence in the 3-d
matching. The noisy 3-d matches reduce the quality of theeig@hote the
A. Representation cones erroneously projecting out from the wall.)

Given two small plane (superpixel) segmentations of two
images, there is no guarantee that the two segmentations
“consistent,” in the sense of the small planes (on a spedifiect)
in one image having a one-to-one correspondence to theglane
the second image of the same object. Thus, at first blush &aapp
non-trivial to build a 3-d model using these segmentatienge K"
it is impossible to associate the planes in one image to those  f3(eldr, yr, R, Q) o H exp (_yTi
another. We address this problem by using our MRF to reason =1
simultaneously about the position and orientation of eygane This term places a “soft” constraint on a point in the plane to
in every image. If two planes lie on the same object, then thave its depth equal to its triangulated depth.

MRF will (hopefully) infer that they have exactly the samel3- \jap |nference: For MAP inference of the plane param-
position. More formally, in our model, the plane parametefS eters, we need to maximize the conditional log-likelihood
of each smalli*” plane in then'” image are represented by Bog P(a|X,Y,dr;0). All the terms in Eq. 7 arel; norm of a

node in our Markov Random Field (MRF). Because our modghear function ofa; therefore MAP inference is efficiently solved
usesL; penalty terms, our algorithm will be able to infer modeIsuSing a Linear Program (LP).

for which ;" = «j*, which results in the two planes exactly

overlapping each other.

e (fractional) error in the triangulated depthg; and d; =
1/(RT a;). For K™ points for which the triangulated depths are
available, we therefore have

driRiTa; — 1‘) )

C. Triangulation Matches

B. Probabilistic Model In this section, we will describe how we obtained the corre-

) spondences across images, the triangulated depthand the

In addition to the image features/depth, co-planaritynemted «confidences”y in the f3(-) term in Section VIII-B.
structure, and co-linearity properties, we will also caolesi the We start by computing 128 SURF features [34], and then
depths obtained from triangulation (SFM)—the depth of th®p cajculate matches based on the Euclidean distances between
is more likely to be close to the triangulated depth. Simiitathe the features found. Then to compute the camera papes
probabilistic model for 3-d model from a single image, moft QRotation, Translation] € R3%4 and the depthsi; of the
these cues are noisy indicators of depth; therefore our MBéein points matched, we use bundle adjustment [35] followed lygus
will also reason about our “confidence” in each of them, usingionocular approximate depths to remove the scale ambiguity
latent variablegyr (Section VIII-C). However, many of these 3-d correspondences are noisy; for

Let Q" = [Rotation, Translation] € R*** (technically example, local structures are often repeated across areifeag,
SE(3)) be the camera pose when imageas taken (w.r.t. a fixed Fig 17, 19 and 21)° Therefore, we also model the “confidence”
reference, such as the camera pose of the first image), adg Iety:ri in the i*" match by using logistic regression to estimate the
be the depths obtained by triangulation (see Section VIMEe  probability P(y7; = 1) of the match being correct. For this, we
formulate our MRF as use neighboring 3-d matches as a cue. For example, a group of

P(a|X,Y, dp; 6) O(Hfl(anp(nyyn’Rn’Qn;en) spatially consistent 3-d matches is more likely to be cartiean
n

BT T An 10ncreasingly many cameras and camera-phones come equigiheGPS,

H fa(a"ly", R, Q") and sometimes also accelerometers (which measure gaaatyfation). Many

n photo-sharing sites also offer geo-tagging (where a user sgecify the

nymon pn AN longitude and latitude at which an image was taken). Thegefee could also

H fs(@ldr, y7, B", Q") ) use such geo-tags (together with a rough user-specifiechastiof camera

" orientation), together with monocular cues, to improve gegformance of

where, the superscript is an index over the images, For ancorrespondence algorithms. In detail, we compute the appede depths of

imagen, o} is the plane parameter of superpixein imagen the points using monocular image featuresdas- z7'9; this requires only
’ 7 .

s ti ill d th int for brevit dtevri computing a dot product and hence is fast. Now, for each poi@ain image
ometmes, we will drop thé Superscript Tor brevity, andivtt g ¢4 \yhich we are trying to find a correspondence in image Ajdslly we

in place ofa™ when it is clear that we are referring to a particulawould search in a band around the corresponding epipolaritinimage A.
image. However, given an approximate depth estimated from from onolar cues,

: . . we can limit the search to a rectangular window that compr@dy a subset
The first term f1()) and the second termf(-) capture the of this band. (See Fig. 18.) This would reduce the time regufor matching,

monocular properties,_and are same as in Eq. 1. Wefyse ‘and also improve the accuracy significantly when there greated structures
to model the errors in the triangulated depths, and penalizethe scene. (See [2] for more details.)
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a single isolated 3-d match. We capture this by using a feat:
vector that counts the number of matches found in the press
superpixel and in larger surrounding regions (i.e., at ipldt
spatial scales), as well as measures the relative qualttyeles
the best and second best match.

Fig. 18. Approximate monocular depth estimates help totlitné search
area for finding correspondences. For a point (shown as aotdrdimage
B, the corresponding region to search in image A is now a ngi¢a(shown
in red) instead of a band around its epipolar line (shown urepin image A.

D. Phantom Planes

This cue enforces occlusion constraints across multipha- e
eras. Concretely, each small plane (superpixel) comes fia
image taken by a specific camera. Therefore, there must b
unoccluded view between the camera and the 3-d positionaof
small plane—i.e., the small plane must be visible from theea |
location where its picture was taken, and it is not plausible
any other small plane (one from a different image) to haveda
position that occludes this view. This cue is important lbesea
often the connected structure terms, which informally trytte”
points in two small planes together, will result in modelattare Fig. 23. (Left) Original Images, (Middle) Snapshot of thel 8aodel without
inconsistent with this occlusion constraint, and resufivimt we ;Sf'(;]r?ngﬁfrft information, (Right) Snapshot of the 3-d matiel uses object
call “phantom planes”—i.e., planes that are not visiblarfrthe '
camera that photographed it. We penalize the distance bettie
offending phantom plane and the plane that occludes its frmw
the camera by finding additional correspondences. Thissténd
make the two planes lie in exactly the same location (i.e¢ tilae
same plane parameter), which eliminates the phantom&iodu
problem.

al. [36] showed that knowledge of objects could be used to get
crude depth estimates, and Hoiem et al. [11] used knowlefige o
objects and their location to improve the estimate of theézoor
In addition to estimating the horizon, the knowledge of otje
and their location in the scene give strong cues regardiadttl
structure of the scene. For example, that a person is mosdy lik
to be on top of the ground, rather than under it, places certai
restrictions on the 3-d models that could be valid for a given
In this experiment, we create a photo-realistic 3-d model ¢hage.
a scene given only a few images (with unknown location/pose) Here we give some examples of such cues that arise when
even ones taken from very different viewpoints or with dttl information about objects is available, and describe howces
overlap. Fig. 19, 20, 21 and 22 show snhapshots of some %fcode them in our MRF:
models created by our algorithm. Using monocular cues, our(a) “Object A is on top of object B”
algorithm is able to create full 3-d models even when largehis constraint could be encoded by restricting the poipts R?
portions of the images have no overlap (Fig. 19, 20 and 21 object A to be on top of the points € R* on object B, i.e.,
In Fig. 19, monocular predictions (not shown) from a singlg] ; > 57z (if z denotes the “up” vector). In practice, we actually
image gave approximate 3-d models that failed to capture thge a probabilistic version of this constraint. We repregbis
arch structure in the images. However, using both monocul@equality in plane-parameter spacg & R;d; = Ri/(a;pri)).
and triangulation cues, we were able to capture this 3-d arg§ penalize the fractional errqr = RiTz“RjTaj _RjTgRiaigdtj
structure. The models are available at: (the constraint corresponds % > 0), we choose an MRF
http://make3d.stanford.edu/research potential ks, s, (.) = exp (—yi; (€ + [£])), wherey;; represents
the uncertainty in the object recognizer output. Note that f
y;5 — oo (corresponding to certainty in the object recognizer),
IX. INCORPORATINGOBJECTINFORMATION this becomes a “hard” constraiit? 2/ (ol R;) > Rfé/(aij).
In this section, we will demonstrate how our model can In fact, we can also encode other similar spatial-relatibps
also incorporate other information that might be availalit® choosing the vecto£ appropriately. For example, a constraint
example, from object recognizers. In prior work, Sudderth €Object A is in front of Object B”can be encoded by choosing

E. Experiments
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@) (b) (© (d)

Fig. 19. (a,b,c) Three original images from different vieigs; (d,e,f) Snapshots of the 3-d model predicted by ogorihm. (f) shows a top-down view;
the top part of the figure shows portions of the ground coliyettodeled as lying either within or beyond the arch.

(@) (b) (© (d)
Fig. 21. (a,b) Two original images with many repeated stned; (c,d) Snapshots of the 3-d model predicted by our ighgor

2 to be the ray from the camera to the object. Detector [37] to detect pedestrians. For these objects,nwedzd
(b) “Object A is attached to Object B” the (a), (b) and (c) constraints described above. Fig. 2&/sltloat

For example, if the ground-plane is known from a recognizensing the pedestrian and ground detector improves the acygof

then many objects would be more likely to be “attached” to thgae 3-d model. Also note that using “soft” constraints in MBF

ground plane. We easily encode this by using our connectg@&ection 1X), instead of “hard” constraints, helps in egtiing

structure constraint. correct 3-d models even if the object recognizer makes aakest
(c) Known plane orientation

If orientation of a plane is roughly known, e.g. that a person

is more likely to be “vertical”, then it can be easily encoded X. CONCLUSIONS

by adding to Eq. 1 a termf(a;) = exp (_w”a?é'); here, w; We presented an algorithm for inferring detailed 3-d suet

represents the confidence, ahdepresents the up vector. from a single still image. Compared to previous approaches,
We implemented a recognizer (based on the features dedcriladgorithm creates detailed 3-d models which are both gtznti

in Section VI) for ground-plane, and used the Dalal-Triggévely more accurate and visually more pleasing. Our apgroa
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Fig. 22. (a,b,c,d) Four original images; (e,f) Two snapstsitown from a larger 3-d model created using our algorithm.

begins by over-segmenting the image into many small homodeearning (MCL) [30], [31] to divide the learning problem ot
neous regions called “superpixels” and uses an MRF to infemaller learning problems for each of the individual deasit
the 3-d position and orientation of each. Other than assymiMCL is a framework for optimizing graphical models based on a
that the environment is made of a number of small planes, weoduct of several marginal conditional likelihoods eaelying
do not make any explicit assumptions about the structurd@f ton common sets of parameters from an underlying joint model
scene, such as the assumption by Delage et al. [8] and Hoienaetl predicting different subsets of variables conditionadther
al. [9] that the scene comprises vertical surfaces standin@ subsets.
horizontal floor. This allows our model to generalize wellee In detail, we will first focus on learning, given the ground-
to scenes with significant non-vertical structure. Our atgon truth depthsd (obtained from our 3-d laser scanner, see Sec-
gave significantly better results than prior art; both innsrof tion VII-A) and the value ofy;; andv; ,,. For this, we maximize
quantitative accuracies in predicting depth and in ternfsaaftion the conditional pseudo log-likelihodidg P(«| X, v, y, R;6,) as
of qualitatively correct models. Finally, we extended thefeas to "
building 3-d models using a sparse set of images, and shoowed h Or = arg %?XZ log fu(ail Xi, vi, Ry 0r)
to incorporate object recognition information into our imed. !

The problem of depth perception is fundamental to computer +Zlog fa(ai, ajlyij, Ri, R;)
vision, one that has enjoyed the attention of many reseescrel B3
seen significant progress in the last few decades. Howevwer, Now, from Eg. 1 note thaf,(-) does not depend ofy.; therefore
vast majority of this work, such as stereopsis, has usedipteult the learning problem simplifies to minimizing thig norm, i.e.,
image geometric cues to infer depth. In contrast, singlagen ¢ — argming 3, Zf;:l Viisi }%(I;’F,sﬁr) —1l.
cues offer a largely orthogonal source of information, ohatt |y the next step, we learn the parametersof the logistic
has heretofore been relatively underexploited. Given teith regression model for estimating in footnote 5. Parameters of
and shape perception appears to be an important buildindkblg, |ogistic regression model can be estimated by maximizieg t
for many other applications, such as object recognition, [BB],  conditional log-likelihood. [42] Now, the parameters of the
grasping [39], navigation [7], image compositing [40], andeo |ogistic regression modeP(y;;|e;;;v) for occlusion boundaries
retrieval [41], we believe that monocular depth percepti@s ang folds are similarly estimated using the hand-labeleiy-

the potential to improve all of these applications, paféidy in  truth ground-truth training data by maximizing its condital log-
settings where only a single image of a scene is available. |ikelihood.

ACKNOWLEDGMENTS
A.2 MAP Inference

We thank Rajiv Agarwal and Jamie Schulte for help in col- Wh . . find the MAP esi
lecting data. We also thank Jeff Michels, Olga Russakovsid a en given a new test-set image, we fin the - estimate
of the plane parameters by maximizing the conditional log-

Sebastian Thrun for helpful discussions. This work was etpgd lihood ] N h e f
by the National Science Foundation under award CNs-055178%elihood log P(alX, v, Y, R; 6r). Note that we solve for as a

by the Office of Naval Research under MURI N00014O71074§9ntinu0us variable optimization problem, which is unlikany
and by Pixblitz Studios. other techniques where discrete optimization is more p@pul
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APPENDIX
A.1 Parameter Learning

Since exact parameter learning based on conditional igetl — arg maxlog 1 Hfl(a”Xi, v, Ri; 0r) Hfz(% ojlyij, Ri, Rj)
for the Laplacian models is intractable, we use Multi-Cdiodil * Z %

o = argmaxlog P(a| X, v,y, R; 0)
«

2%
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Note that the partition functiot¥ does not depend on. There- We formulate our MRF as
fore, from Eq. 2, 4 and 5 and fat = 210,, we have 1
P(IX,Y, R;0) = - [ [ fi(dilwi,vis0) [] faldi djlysj, Ri, By)
i

= argmina Zszl (Zssjzl Vi s; (stiai)di,si — 1’ i, jEN
7 fg(d7d7dk?|yk7R7R7Rkl)
+ Z Z Yij (RZ—‘SIOZ'L_R;T‘SJOZJ)ds“S] ’Lj,lk_IEN " B ‘ J
JEN (i) si,5;E€DBij ] ' ) »
n Z Z R, as— BT, o) where, d; € R is the depth (in _Iog scalg) at a point
Yij |Utg,s; % 3,853/ 485 z; are the image features at point The first term fi(.)

JEN() 5 €C; models the relation between depths and the image features as

where K is the number of superpixels in each imageé(i) is f1(dilzi,yi;0) = exp (—yi|di —friT9r(i)|)- The second term
the set of “neighboring” superpixels—one whose relations af2(-) models connected structure by penalizing differences in
modeled—of superpixel; B;; is the set of pair of points on the the depths of neighboring points a&(d;, d;ly:;, Ri, R;) =
boundary of superpixel and j that model connectivityC; is  exp (—wi;l|(Rid; — R;jd;)||1). The third termf3(-) depends on
the center point of superpixgl that model co-linearity and co- three pointsi,j and k, and models co-planarity and co-linearity.
planarity; andds,s, = \/ds,ds,. Note that each of terms is aFor modeling co-linearity, we choose three poinfsq;, andgy

L, norm of a linear function of; therefore, this is a; norm lying on a straight line, and penalize the curvature of tie:li
minimization problem, [43, chap. 6.1.1] and can be compactl Fa(di, dj, dglyssu. Ri Ry, Ry) =

written as
exp (—yijkl|Rjd; — 2Rid; + Rydyll1)

argming [[Az —bll1 + [|Bzlly + || Czlh wherey; ;.. = (yi; +y;1 +vir)/3. Here, the “confidence” term;;

wherez € R35*1 is a column vector formed by rearranging thdS Similar to the one described for Plane Parameter MRF; pixce
three x-y-z components af; € R3 aswsi_o = iy, o311 = in cases when the points do not cross an edgel (because modes i

and z3; = a;,; A is a block diagonal matrix such thatthis MRF are a dense grid), when we ggf to zero.

Qg
Aj( =1 S) + si, (31’—2):32‘] = R, d;svisand by €

1,84

R* 1 is a column vector formed fromy; ,,. B and C are -4 Goa
all block diagonal matrices composed of rais d and y; they /
represent the cross terms modeling the connected structore /
planarity and co-linearity properties. q // g
In general, finding the global optimum in a loopy MRF is diffi- L g : L+l
cult. However in our case, the minimization problem is andan “hy ﬂl o
Program (LP), and therefore can be solved exactly using any // // // e
linear programming solver. (In fact, any greedy methodudeig // /////
a loopy belief propagation would reach the global minimaoy F /R S
fast inference, we implemented our own optimization method f_——""7 9.,

one that captures the sparsity pattern in our problem, and by

approximating thel,; norm with a smooth function: ) ) ] o )
Fig. 24. Enforcing local co-planarity by using five points.

2]l = T(x) = L [log (1 + exp(—fx)) + log (1 + exp(5)) ] _ __

We also enforce co-planarity by penalizing two terms
Note that ||lz|l; = limg_, [z]|g, and the approximation can h(di,j—1:dij, dij41, Yi (j—-1):(j+1)> Bij—1, Rijs Rij41), and
be _m_ade_ arbitrarily close by increasing during steps of the h(diflyj,di7j7di+1,j7y(i—l):(i-ﬁ-l),j’Ri*l,j?Ri,j7Ri+.17j)- Each
optimization. Then we wrote a customized Newton method dasgrm enforces the two sets of three points to lie on the same
solver that computes the Hessian efficiently by utilizing thline in 3-d; therefore in effect enforcing five poings_1 ;, ¢ ;.
sparsity. [43] ¢i+1,j» Gi,j—1, and g; ;41 lie on the same plane in 3-d. (See
Fig. 24.)

Parameter learning is done similar to the one in Plane
Parameter MRF. MAP inference of depths, i.e. maximizing
For comparison, we present another MRF, in which we useg P(d|X,Y, R;0) is performed by solving a linear program (LP).
points in the image as basic unit, instead of the superpixeldowever, the size of LP in this MRF is larger than in the Plane

and infer only their 3-d location. The nodes in this MRF ar®arameter MRF.
a dense grid of points in the image, where the value of eack nod
represents its depth. The depths in this model are in logdcal REFERENCES
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