B Theorem 2.2: Near-optimality of optimal circular input for full
convolution

Theorem B.1 Let p, (z) denote the activation of a single pooling unit in a valid convolution, square-
pooling architecture in response to an input x, and let x%P* and x°P' denote the optimal norm-one

v
inputs for valid and circular convolution, respectively. Then if xP! is composed of a single sinusoid,

Jim [p (497) — po (a2)] = 0.

Proof We proceed by first establishing that the maximal eigenvalues of V'V, limit to those of
C, Cp. Then we show that the optimal input for circular convolution asymptotically attains the same
value when applied to valid convolution. We begin with some definitions.

The strong norm of a square matrix A is ||A|| = maxg-o 1A=l —  /maxy, Ay, where A, are the

[l
eigenvalues of the Hermitian positive semidefinite matrix A* A.

1
The weak norm of a matrix A € RP*P is |A| = (zl) m1 251 |Aij|2> °

Two sequences of n x n matrices { A, } and {B,,} are asymptotically equivalent if

1. A, and B, are uniformly bounded in the strong norm

ARl 1Byl < M < 00,p=1,2,...

2. and A, — B, = D,, goes to zero in weak norm as p — oo,

lim |D,| = 0.
Jim |Dy|

Lemma B.2 Let V), and C,, denote matrices performing valid and circular convolution of a filter
f € R¥XE sith an input of size p, respectively. The sequences of matrices {V;V},} and {C’; C’,,}
are asymptotically equivalent.

Proof Let D), = VV}, — C;C,. First we will show that lim,, .. [D,| = 0. We do this by showing
that the number of nonzero elements in D,, is proportional only to n, not n. Note that both circular
and valid convolution compute the same n — k 4+ 1 X n — k + 1 filter responses in the interior of the
input. Hence nonzero entries in D,, can come only from the n? — (n—k+1)? = 2(k—1)n— (k—1)?
filter responses that circular convolution computes but valid convolution does not. Each of these filter

responses, when squared, will contribute at most () = Z(k;) + 2k? terms to D,,, where the factor of
2 is due to the symmetry of the quadratic form. This is a significant overestimate, but importantly
is only a function of k and not p. Further, we note that for n > 2k, the maximum element of D), is
independent of p, that is, max; ; |d;;| = M. Therefore

1 n2 n?

1Dyl = EZZMUP (1)
i=1 j=1

< (nlg(?(kl)n(klf)QM?)Z @

< Kn2 (3)

where K is not a function of n. Hence lim,_, |D,| = 0. O

Next we show that the matrices are uniformly bounded in the strong norm. For Hermitian matrices,
[|A||? = maxy ||, the maximum magnitude eigenvalue of A. For the circular convolution case

this is simply the square of the magnitude of the maximal Fourier coefficient of f, and hence is

. . - 2 :
bounded for all p. For valid convolution, we note that [|V,z||> = S0 **! (72)”, where v is

the i row of V},. The vector v} contains the filter coefficients f and is otherwise zero; hence it has




only k2 nonzero entries. We can therefore form the vector ; € R** from just those elements of x
which will be involved in computing the dot product, such that v}z = f7%;. Then we have

n—k+1 n—k+1

> ()’ S (Tw)?, 4)

i %

n—k+1
< AP D0 P 5)
i
< KA1 ], (©6)
where the last inequality comes from the fact that each x; can appear at most k2 times in the sum.
The strong norm is therefore bounded, since |[V,/V},|| = max,o w < K2||f|]%. O

Next we appeal to the following theorem, which is a variation on that stated by [1].

Theorem B.3 Let o, and (3, ), denote the eigenvalues of V,, and C,, respectively. Let flwr,wa)
denote the 2D discrete time Fourier transform of the filter f,

flwr,wr) = Z Z flj, kledwrether,

j=—00 k=—0o0

Then

lim maxay, = hm max = P
p—oo k pk k Bpk ‘f|2

f(z,y)? <

where M X
M |f|2 except on a set of total length or measure 0.

Proof The proof is a straightforward generalization of that given in Theorem 4.2, Corollary 4.1, and
Corollary 4.2 of [1]. I

Hence we have established that the optimal pooling unit activity for valid and circular convolution
converges as p grows. Next we show that the optimal norm-one solution for circular convolution, x.,
is near-optimal for valid convolution provided that x. consists of a single sinusoid. The difference
between objective values is
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Recall that the number of nonzero elements in D,, can be written as Kn where K is not a function
of n. Now we establish a bound on each individual element of x.; because x. is a sinusoid that
spans the entire input, and the total norm is constrained, the individual elements diminish in size as
p grows. In particular,

n—1n—1

jweli, ] = ZZ 2[m, qle?m R )

m=0 ¢q=0
n—1n—1

< *ZZ| (8)
m=0 ¢g=0

< V2 9)

n
provided there is only one maximum frequency and hence only one (if the zero, DC frequency
is maximal) or two (if a single nonzero frequency is maximal) nonzero entries in z. Let M be
the maximum magnitude entry in D,, and let T = max; j i |2c[4, j]xc[k []] be the maximum

magnitude of any pair of terms in z.. We note that T < |z.[i, j]||z.[k, ]| < 2. Hence
|ziDpz.] < nKMT (10)
2KM
< ) (1D
n

[\



and so lim,_, [z5D,z.| = 0. Therefore, since from Theorem B.3 we know circular and valid
convolution limit to the same value, and from the preceding analysis we know 227" applied to V,,
attains the same objective when applied to C,,, we know that as p — oo, 227" attains the optimal
value for V,,. O
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