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Abstract

Vector representations of words capture relationships in words’ functions and
meanings. Many existing techniques for inducing such representations from data
use a pipeline of hand-coded processing techniques. Neural language models of-
fer principled techniques to learn word vectors using a probabilistic modeling ap-
proach. However, learning word vectors via language modeling produces repre-
sentations with a syntactic focus, where word similarity is based upon how words
are used in sentences. In this work we wish to learn word representations to en-
code word meaning – semantics. We introduce a model which learns semantically
focused word vectors using a probabilistic model of documents. We evaluate the
model’s word vectors in two tasks of sentiment analysis.

1 Introduction

Word representations are a critical component of many natural language processing systems. Rep-
resenting words as indices in a vocabulary fails to capture the rich structure of synonymy and
antonymy among words. Vector representations encode continuous similarities between words as
distance or angle between word vectors in a high-dimensional space. Word representation vectors
have proved useful in tasks such as named entity recognition, part of speech tagging, and document
retrieval [23, 6, 21].

Neural language models [2, 6, 14, 15] induce word vectors by back-propagating errors in a language
modeling task through nonlinear neural networks, or linear transform matrices. Language modeling,
predicting the next word in a sentence given a few preceding words, is primarily a syntactic task.
Issues of syntax concern word function and the structural arrangement of words in a sentence, while
issues of semantics concern word meaning. Learning word vectors using the syntactic task of lan-
guage modeling produces representations which are syntactically focused. Word similarities with
syntactic focus would pair “wonderful” with other highly polarized adjectives such as “terrible” or
“awful.” These similarities result from the fact that these words have similar syntactic properties –
they are likely to occur at the same location in sentences like “the food was absolutely .” In con-
trast, word representations capturing semantic similarity would associate “wonderful” with words of
similar meaning such as “fantastic” and “prize-winner” because they have similar meaning despite
possible differences in syntactic function. The construction of neural language models makes them
unable to learn word representations which are primarily semantic.

Neural language models are instances of vector space models, which broadly refers to any method
for inducing vector representations of words. Turney and Pantel [23] give a recent review of both
syntactic and semantic vector space models. Most VSMs implement some combination of weight-
ing, smoothing, and dimension reducing a word association matrix (e.g. TF-IDF weighting). For
semantic or syntactic word representations VSMs use a term-document or word-context matrix re-
spectively for word association. For each VSM processing stage there are dozens of possibilities,
making the design space of VSMs overwhelming. Furthermore, many methods have little theo-
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retical foundation and a particular weighting or dimension reduction technique is selected simply
because it has been shown to work in practice. Neural language models offer a VSM for syntactic
word vectors which has a complete probabilistic foundation. The present work offers a similarly
well-founded probabilistic model which learns semantic, as opposed to syntactic, word vectors.

This work develops a model which learns semantically oriented word vectors using unsupervised
learning. Word vectors are discovered from data as part of a probabilistic model of word occurrence
in documents similar to a probabilistic topic model. Learning vectors from document-level word
co-occurrence allows our model to learn word representations based on the topical information con-
veyed by words. Building a VSM with probabilistic foundation allows us to offer a principled
solution to word vector learning in place of the hand-designed processing pipelines typically used.
Our experiments show that our model learns vectors more suitable for document-level tasks when
compared with other VSMs.

2 Log-Bilinear Language Model

Prior work introduced neural probabilistic language models [2], which predict the nth word in a
sequence given the n − 1 preceding context words. More formally, a model defines a distribution
P (wn|w1:n−1) where the number of context words is often small (n ≤ 6). Neural language models
encode this distribution using word vectors. Let φw be the vector representation of word w, a neural
language model uses P (wn|w1:n−1) = P (wn|φ1:n−1)

Mnih and Hinton [14] introduce a neural language model which uses a log-bilinear energy function
(lblLm). The model parametrizes the log probability of a word occurring in a given context using an
inner product of the form

log p(wn|w1:n−1) = log p(wn|φ1:n−1) ∝

〈

φn,

n−1
∑

i=1

φT
i Ci

〉

. (1)

This is an inner product between the query word’s representation φn and a sum of the context words’
representations after each is transformed by a position specific matrix Ci. The φ vectors learned as
part of the language modeling task are useful features for syntactic natural language processing
tasks such as named-entity recognition and chunking [21]. As a VSM, the lblLm is a theoretically
well-founded approach to learning syntactic word representations from word-context information.

The lblLm method does not provide a tractable solution for inducing word vectors from term-
document data. The model introduces a transform matrix Ci for each context word, which causes
the number of model parameters to grow linearly as the number of context words increases. For
100-dimensional word representation vectors, each Ci contains 104 parameters, which makes for
an unreasonably large number of parameters when trying to learn representations from documents
containing hundreds or thousands of words. Furthermore it is unclear how the model could handle
documents of variable length, or if predicting a single word given all other words in the document
is a good objective for training semantic word representations. Though the details of other neural
language models differ, they face similar challenges in learning semantic word vectors because of
their parametrization and language modeling objective.

3 Log-Bilinear Document Model

We now introduce a model which learns word representations from term-document information
using principles similar to those used in the lblLm and other neural language models. However
unlike previous work in the neural language model literature our model naturally handles term-
document data to learn semantic word vectors. We derive a probabilistic model with log-bilinear
energy function to model the bag of words distribution of a document. This approach naturally
handles long, variable length documents, and learns representations sensitive to long-range word
correlations. Maximum likelihood learning can then be efficiently performed with coordinate ascent
optimization.
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3.1 Model

Starting with the broad goal of matching the empirical distribution of words in a document, we
model a document using a continuous mixture distribution over words indexed by a random variable
θ. We assume words in a document are conditionally independent given the mixture variable θ.
We assign a probability to a document d using a joint distribution over the document and a random
variable θ. The model assumes each word wi ∈ d is conditionally independent of the other words
given θ. The probability of a document is thus,

p(d) =

∫

p(d, θ)dθ =

∫

p(θ)

N
∏

i=1

p(wi|θ)dθ. (2)

Where N is the number of words in d and wi is the ith word in d. We use a Gaussian prior on θ.

We define the conditional distribution p(wi|θ) using a log-linear model with parameters R and b. The

energy function uses a word representation matrix R ∈ R
(β x |V |) where each word w (represented

as a one-hot vector) in the vocabulary V has a β-dimensional vector representation φw = Rw
corresponding to that word’s column in R. The random variable θ is also a β-dimensional vector,

θ ∈ R
(β) which weights each of the β dimensions of words’ representation vectors. We additionally

introduce a bias bw for each word to capture differences in overall word frequencies. The energy
assigned to a word w given these model parameters is,

E(w; θ, φw, bw) = −θTφw − bw. (3)

To obtain the final distribution p(w|θ) we use a softmax,

p(w|θ;R, b) =
exp(−E(w; θ, φw, bw))

∑

w′∈V exp(−E(w′; θ, φw′ , bw′))
=

exp(θTφw + bw)
∑

w′∈V exp(θTφw′ + bw′)
. (4)

The number of terms in the denominator’s summation grows linearly in |V |, making exact compu-
tation of the distribution possible. For a given θ, a word w’s occurrence probability is proportional
to how closely its representation vector φw matches the scaling direction of θ This idea is similar to
the word vector inner product used in the lblLm model.

Equation 2 resembles the probabilistic model of latent Dirichlet allocation (LDA) [3], which models
documents as mixtures of latent topics. One could view the entries of a word vector φ as that word’s
association strength with respect to each latent topic dimension. The random variable θ then defines
a weighting over topics. However, our model does not attempt to model individual topics, but
instead directly models word probabilities conditioned on the topic weighting variable θ. Because
of the log-linear formulation of the conditional distribution, θ is a vector in R

β and not restricted to
the unit simplex as it is in LDA.

3.2 Learning

Given a document collection D, we assume documents are i.i.d samples and denote the kth docu-
ment as dk. We wish to learn model parameters R and b to maximize,

max
R,b

p(D;R, b) =
∏

dk∈D

∫

p(θ)

Nk
∏

i=1

p(wi|θ;R, b)dθ. (5)

Using MAP estimates for θ, we approximate this learning problem as,

max
R,b

∏

dk∈D

p(θ̂k)

Nk
∏

i=1

p(wi|θ̂k;R, b), (6)

where θ̂k denotes the MAP estimate of θ for dk. We introduce a regularization term for the word
representation matrix R. The word biases b are not regularized reflecting the fact that we want the
biases to capture whatever overall word frequency statistics are present in the data. By taking the
logarithm and simplifying we obtain the final learning problem,

max
R,b

λ||R||2F +
∑

dk∈D

λ||θ̂k||
2
2 +

Nk
∑

i=1

log p(wi|θ̂k;R, b). (7)
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The free parameters in the model are the regularization weight λ and the word vector dimensionality
β. We use a single regularization weight λ for R and θ because the two are linearly linked in the
conditional distribution p(w|θ;R, b).

The problem of finding optimal values for R and b requires optimization of the non-convex objec-
tive function. We use coordinate ascent, which first optimizes the word representations (R and b)

while leaving the MAP estimates (θ̂) fixed. Then we find the new MAP estimate for each document
while leaving the word representations fixed, and continue this process until convergence. The opti-

mization algorithm quickly finds a global solution for each θ̂k because we have a low-dimensional,

convex problem in each θ̂k. Because the MAP estimation problems for different documents are in-
dependent, we can solve them on separate machines in parallel. This facilitates scaling the model to
document collections with hundreds of thousands of documents.

4 Experiments

We evaluate our model with document-level and sentence-level categorization tasks in the domain of
online movie reviews. These are sub-tasks of sentiment analysis which has recently received much
attention as a challenging set of problems in natural language processing [4, 18, 22]. In both tasks
we compare our model with several existing methods for word vector induction, and previously
reported results from the literature. We also qualitatively evaluate the model’s word representations
by visualizing word similarities.

4.1 Word Representation Learning

We induce word representations with our model using 50,000 movie reviews from The Internet
Movie Database (IMDB). Because some movies receive substantially more reviews than others,
we limited ourselves to including at most 30 reviews from any movie in the collection. Previous
work [5] shows function and negating words usually treated as stop words are in fact indicative of
sentiment, so we build our dictionary by keeping the 20,000 most frequent unigram tokens without
stop word removal. Additionally, because certain non-word tokens (e.g. “!” and “:-)” ) are indicative
of sentiment, we allow them in our vocabulary.

As a qualitative assessment of word representations, we visualize the words most similar to a query
word using vector similarity of the learned representations. Given a query word w and another
word w′ we obtain their vector representations φw and φw′ , and evaluate their cosine similarity as

Similarity(φw, φw′) =
φT

w
φ
w′

||φw||·||φ
w′ ||

. By assessing the similarity of w with all other words w′ in

the vocabulary we can find the words deemed most similar by the model. Cosine similarity is often
used with word vectors because it ignores differences in magnitude.

Table 1 shows the most similar words to given query words using our model’s word representations.
The vector similarities capture our intuitive notions of semantic similarity. The most similar words
have a broad range of part-of-speech and functionality, but adhere to the theme suggested by the
query word. Previous work on term-document VSMs demonstrated similar results, and compared
the recovered word similarities to human concept organization [12, 20]. Table 1 also shows the most
similar words to query words using word vectors trained via the lblLm on news articles (obtained
already trained from [21]). Word similarities captured by the neural language model are primarily
syntactic where part of speech similarity dominates semantic similarity. Word vectors obtained from
LDA perform poorly on this task (not shown), presumably because LDA word/topic distributions do
not meaningfully embed words in a vector space.

4.2 Other Word Representations

We implemented several alternative vector space models for comparison. With the exception of the
lblLm, we induce word representations for each of the models using the same training data used to
induce our own word representations.

Latent Semantic Analysis (LSA) [7]. One of the most commonly used tools in information re-
trieval, LSA applies the singular value decomposition (SVD) algorithm to factor a term-document
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Table 1: Similarity of learned word vectors. The five words most similar to the target word (top row)
using cosine similarity applied to the word vectors discovered by our model and the log-bilinear
language model.

romance mothers murder comedy awful amazing

Our
Model

romantic lesbian murdered funny terrible absolutely
love mother crime laughs horrible fantastic
chemistry jewish murders hilarious ridiculous truly
relationship mom committed serious bad incredible
drama tolerance murderer few stupid extremely

LblLm

colours parents fraud drama unsettling unbelievable
paintings families kidnapping monster vice incredible
joy veterans rape slogan energetic obvious
diet patients corruption guest hires perfect
craftsmanship adults conspiracy mentality unbelievable clear

co-occurrence matrix. To obtain a k-dimensional representation for a given word, only the entries
corresponding to the k largest singular values are taken from the word’s basis in the factored matrix.

Latent Dirichlet Allocation (LDA) [3]. LDA is a probabilistic model of documents which assumes
each document is a mixture of latent topics. This model is often used to categorize or cluster doc-
uments by topic. For each latent topic, the model learns a conditional distribution p(word|topic)
for the probability a word occurs within the given topic. To obtain a k-dimensional vector repre-
sentation of each word w, we use each p(w|topic) value in the vector after training a k-topic model
on the data. We normalize this vector to unit length because more frequent words often have high
probability in many topics. To train the LDA model we use code released by the authors of [3].
When training LDA we remove from our vocabulary very frequent and very rare words.

Log-Bilinear Language Model (lblLm) [15]. This is the model given in [14] and discussed in
section 2, but extended to reduce training time. We obtained the word representations from this
model used in [21] which were trained on roughly 37 million words from a news corpus with a
context window of size five.

4.3 Sentiment Classification

Our first evaluation task is document-level sentiment classification. A classifier must predict whether
a given review is positive or negative (thumbs up vs. thumbs down) given only the text of the re-
view. As a document-level categorization task, sentiment classification is substantially more difficult
than topic-based categorization [22]. We chose this task because word vectors trained using term-
document matrices are most commonly used in document-level tasks such as categorization and
retrieval. The evaluation dataset is the polarity dataset version 2.0 introduced by Pang and Lee1

[17]. This dataset consists of 2,000 movie reviews, where each is associated with a binary sentiment
polarity label. We report 10-fold cross validation results using the authors’ published folds to make
our results comparable to those previously reported in the literature. We use a linear support vector
machine classifier trained with LibLinear [8] and set the SVM regularization parameter to the same
value used in [18, 17].

Because we are interested in evaluating the capabilities of various word representation learners, we
use as features the mean representation vector, an average of the word representations for all words
present in the document. The number of times a word appears in a document is often used as a
feature when categorizing documents by topic. However, previous work found a binary indicator of
whether or not the word is present to be a more useful feature in sentiment classification [22, 18].
For this reason we used term presence for our bag-of-words features. We also evaluate performance
using mean representation vectors concatenated with the original bag-of-words vector. In all cases
we normalize each feature vector to unit norm, and following the technique of [21] scale word
representation matrices to have unit standard deviation.

1http://www.cs.cornell.edu/people/pabo/movie-review-data
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Table 2: Sentiment classification results on the movie review dataset from [17]. Features labeled
with “mean” are arithmetic means of the word vectors for words present in the review. Our model’s
representation outperforms other word vector methods, and is competitive with systems specially
designed for sentiment classification.

Features Accuracy (%)

Bag of Words (BoW) 86.75
LblLm Mean 71.30
LDA Mean 66.70
LSA Mean 77.45
Our Method Mean 88.50

LblLm Mean + BoW 86.10
LDA Mean + BoW 86.70
LSA Mean + BoW 85.25
Our Method Mean + BoW 89.35

BoW SVM reported in [17] 87.15
Contextual Valence Shifters [11] 86.20
δ TF-IDF Weighting [13] 88.10
Appraisal Taxonomy [25] 90.20

Table 2 shows the classification performance of our method, other VSMs we implemented, and
previously reported results from the literature. Our method’s features clearly outperform those of
other VSMs. On its own, our method’s word vectors outperform bag-of-words features with two
orders of magnitude fewer features. When concatenated with the bag-of-words features, our method
is competitive with previously reported results which use models engineered specifically for the
task of sentiment classification. To our knowledge, the only method which outperforms our model’s
mean vectors concatenated with bag-of-words features is the work of Whitelaw et al [25]. This work
builds a feature set of adjective phrases expressing sentiment using hand-selected words indicative
of sentiment, WordNet, and online thesauri. That such a task-specific model narrowly outperforms
our method is evidence for the power of unsupervised feature learning.

4.4 Subjectivity Detection

As a second evaluation task, we performed sentence-level subjectivity classification. In this task, a
classifier is trained to decide whether a given sentence is subjective, expressing the writer’s opinions,
or objective, expressing purely facts. We used the dataset of Pang and Lee [17] which gathered sub-
jective sentences from movie review summaries and objective sentences from movie plot summaries.
This task is substantially different from the review classification task because it uses sentences as
opposed to entire documents and the target concept is subjectivity instead of opinion polarity. We
randomly split the 10,000 examples into 10 folds and report 10-fold cross validation accuracy using
the SVM training protocol of [17].

Table 3 shows classification accuracies from the sentence subjectivity experiment. Our model pro-
vided superior features when compared against other VSMs, and slightly outperformed the bag-of-
words baseline. Further improvement over the bag-of-words baseline is obtained by concatenating
the two sets of features together.

5 Related Work

Prior work has developed several models to learn word representations via a probabilistic language
modeling objective. Mnih and Hinton [14, 15] introduced an energy-based log-bilinear model for
word representations following earlier work on neural language models [2, 16]. Successful appli-
cation of these word representation learners and other neural network models include semantic role
labeling, chunking, and named entity recognition [6, 21].

In contrast to the syntactic focus of language models, probabilistic topic models aim to capture
document-level correlations among words [20]. Our probabilistic model is similar to LDA [3],
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Table 3: Sentence subjective/objective classification accuracies using the movie review subjectivity
dataset of [17]. Features labeled with “mean” are arithmetic means of the word vectors for words
present in the sentence.

Features Accuracy (%)

Bag of Words (BoW) 90.25
LblLm Mean 78.45
LDA Mean 66.65
LSA Mean 84.11
Our Method Mean 90.36

LblLm Mean + BoW 87.29
LDA Mean + BoW 88.82
LSA Mean + BoW 88.75
Our Method Mean + BoW 91.54

BoW SVM reported in [17] 90

which is related to pLSI [10]. However, pLSI doesn’t give a well-defined probabilistic model over
previously unseen novel documents. The recently introduced replicated softmax model [19] uses an
undirected graphical model to learn topics in a document collection.

Turney and Pantel [23] offer an extensive review of VSMs which employ a matrix factorization
technique after applying some weighting or smoothing operation to the matrix entries. Several
recent techniques learn word representations in a principled manner as part of an application of
interest. These applications include retrieval and ranking systems [1, 9], and systems to represent
images and textual tags in the same vector space [24]. Our work learns word representations via the
more basic task of topic modeling as compared to these more specialized representation learners.

6 Discussion

We presented a vector space model which learns semantically sensitive word representations via a
probabilistic model of word occurrence in documents. Its probabilistic foundation gives a theoreti-
cally justified technique for word vector induction as an alternative to the overwhelming number of
matrix factorization-based techniques commonly used. Our model is parametrized as a log-bilinear
model following recent success in using similar techniques for language models [2, 6, 14, 15]. By
assuming word order independence and replacing the language modeling objective with a document
modeling objective, our model captures word relations at the document level.

Our model’s foundation is closely related to probabilistic latent topic models [3, 20]. However,
we parametrize our topic model in a manner which aims to capture word representations instead of
latent topics. In our experiments, our method performed better than LDA which models latent topics
directly.

We demonstrated the utility of our learned word vectors on two tasks of sentiment classification.
Both were tasks of a semantic nature, and our methods’ word vectors performed better than word
vectors trained with the more syntactic objective of language modeling. Using the mean of word
vectors to represent documents ignores vast amounts of information that could help categorization –
negated phrases for example. Future work could better capture the information conveyed by words
in sequence using convolutional models over word vectors.
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