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Abstract

Natural language parsing has typically been done with small sets of discrete cate-
gories such as NP and VP, but this representation does not capture the full syntactic
nor semantic richness of linguistic phrases, and attempts to improve on this by lex-
icalizing phrases only partly address the problem at the cost of huge feature spaces
and sparseness. To address this, we introduce a recursive neural network architec-
ture for jointly parsing natural language and learning vector space representations
for variable-sized inputs. At the core of our architecture are context-sensitive re-
cursive neural networks (CRNN). These networks can induce distributed feature
representations for unseen phrases and provide syntactic information to accurately
predict phrase structure trees. Most excitingly, the representation of each phrase
also captures semantic information: For instance, the phrases “decline to com-
ment” and “would not disclose the terms” are close by in the induced embedding
space. Our current system achieves an unlabeled bracketing F-measure of 92.1%
on the Wall Street Journal dataset for sentences up to length 15.

1 Introduction

Syntactic parsing has been a central task in natural language processing because of its key impor-
tance in mediating between linguistic expression and meaning. For example, much work has shown
the importance and usefulness of syntactic representations for subsequent tasks such as relation
extraction and semantic role labeling [GP02].

Syntactic descriptions standardly use coarse discrete categories such as NP for noun phrases, or PP
for prepositional phrases. However, the work of Klein and Manning [KM03] greatly improved pars-
ing results through manual feature engineering and defining more fine-grained syntactic categories
which better capture phrases with similar behavior. Recent successful work in discriminative pars-
ing has also shown gains from careful engineering of features [TKC+04, FKM08]. Another main
direction for parsing gains has been through lexicalization [Col03, Cha00]. In lexicalized parsers
each rule is associated with a lexical item. This is very effective for solving ambiguous attachment
decisions, among other things, but requires models with vast numbers of features, and complex
shrinkage estimation schemes to deal with the sparsity of observations of words. Instead of lexical-
izing rules, Petrov et al. demonstrated how more fine-grained syntactic categories can be learned
automatically [PBTK06]. However, subdividing a category like NP into 30 or 60 subcategories can
only provide a very limited and poor representation of phrase meaning and semantic similarity.

Like Petrov, we tackle the problem of representing categories and phrases. However, unlike pre-
vious work on parsing, our architecture jointly learns how to parse and how to represent phrases
in a continuous vector space of features, without manual engineering. The learned feature repre-
sentations capture syntactic and semantic information and are the only input to the parser. In our
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experiments we show that these representations can help to inform parsing decisions, be used for
learning category classifiers and capture interesting similarities between previously unseen phrases.

Our joint parsing and feature learning architecture is inspired by the recent reinvigoration of neural
networks which jointly learn continuous feature representations for words [BDVJ03], and language
models or classifiers. Collobert and Weston [CW08] have shown that neural networks can perform
well on sequence labeling language processing tasks while also learning appropriate features. Their
framework has interesting properties: (i) they use the same convolutional neural network architecture
for several different tasks, (ii) their performance is competitive on many of these tasks and (iii) they
introduce a method that can use large quantities of unlabeled text for learning syntactico-semantic
distributed word representations. However, their model is lacking in that it cannot represent the
recursive structure inherent in natural language. They partially circumvent this problem by using
either independent window-based classifiers or a convolutional layer.

We introduce a neural network which learns recursive structure. Like Collobert and Weston we
jointly learn the necessary features. However, our architecture allows us to not only embed single
lexical units but also to embed unseen phrases and variable-sized inputs in a syntactically coherent
order. It has already been shown [CW08, TRB10] that neural network induced word representations
can be used successfully as features for tasks such as named entity recognition (NER). Our task
for evaluating this architecture is unlabeled syntactic parsing of English sentences into their phrase
structure.

At the core of our technique are recursive neural networks (RNN). RNNs have first been introduced
by [GK96] to learn distributed representations of structured objects such as logical terms.

There has been previous work that used neural networks for parsing. Henderson [Hen03] introduced
a left-corner parser to estimate probabilities of parsing decisions conditioned on the parsing history.
The input to Henderson’s model are pairs of frequent words and their part-of-speech (POS) tags.
The latter come from a separate POS tagger. In contrast, our work incorporates POS tagging in
a joint framework and lets the POS and phrase categories influence the feature representations. A
parser which also uses recursive neural networks was presented by Menchetti et al. [MCFP05]
who used recursive neural networks to rank possible phrase attachments in an incremental parser.
They also ranked trees created by the Collins parser [Col03] and provide some analysis of the tree
representations. In our approach we jointly learn phrase feature embeddings, parsing decisions as
well as categories for each phrase and do not rely on another symbolic parsing algorithm.

There have been attempts at using neural networks to describe phrases. For instance, Elman [Elm91]
used recurrent neural networks to create representations of sentences from a simple toy grammar and
to analyze the linguistic expressiveness of the resulting representations. Words were represented as
one-on vectors1 which was feasible since the grammar only included a handful of words.

2 Parsing with Context-Sensitive Recursive Neural Networks

We propose a general learning architecture which aims to find structure in inputs of variable length.
With the input being a sequence of words,2 our goals are as follows: First, the model assigns to each
word a continuous representation in an n-dimensional embedding space. These representations
should capture syntactic and semantic information. They could be initialized randomly or pre-
trained on unlabeled corpora to capture certain context statistics. Second, we want to use a neural
network to induce a score for each pair of neighboring words which measures how likely these two
words are to be combined into a phrase. The only input to this network will be the representations of
the two words. As a side product of computing the syntactic score, the network will also collapse the
two-words into an n-dimensional representation of the resulting phrase. This new phrase embedding
then replaces the words in the sequence and will possibly become a child of another phrase spanning
more words. This process continues until the whole input sentence is mapped to the embedding
space.

1One-on vectors have a length equal to the vocabulary size. They contain all zeros except at the word’s
index where they are one.

2Note that, while we focus on syntactic parsing of natural language, recursive neural networks are applicable
to structure prediction in other modalities.
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y1 = tanh(W[x3;x4] + b)

y1 = tanh(W[x1;y2] + b)

y2 = tanh(W[x2;y1] + b)

Figure 1: An example tree with a simple Recursive Neural Network: The same weight matrix is
replicated and used to compute all non-leaf node representations. Leaf nodes are n-dimensional
vector representations of words.

We first describe recursive neural networks and how they were used in previous approaches. We
explain how they can be modified to jointly learn representations and predict structure. We then
define the optimization objective and draw connections to structure prediction. Lastly, we show
possible extensions for joint learning of the parser and category classifiers for phrases in the tree.

2.1 Recursive Neural Networks

Unlike standard neural networks, recursive neural networks (RNNs) are able to process structured
inputs by repeatedly applying the same neural network at each node of a directed acyclic graph
(DAG). In the past they have only been used in settings where another (often symbolic) component
was first used to create directed acyclic graphs. These DAGs were subsequently given as input to the
RNN. In such a setting, each non-leaf node of the DAG is associated with the same neural network.
Fig.1 shows an example of a DAG which is a binary tree. In other words, all network replications
share the same weights. The inputs to all these replicated feedforward networks are either given by
using the children’s labels to look up the associated representation or by their previously computed
representation.

While in principle n-ary DAGS can be used as input to the RNN, we now focus on binary trees for
ease of exposition.3 Fig. 1 shows an instance of a RNN applied to a given binary tree. Assume we
have an input of vectors (x1, . . . , xn) each of which has the same dimensionality xi ∈ Rn. In the
original formulation these were one-on vectors [GK96]. Assume we are also given a binary tree in
the form of branching triplets (p → c1c2). Each such triplet denotes that a parent node p has two
children and each ck can be either an input xi or a non-terminal node in the tree. For the example
in Fig.1, we would get the triples ((y1 → x3x4), (y2 → x2y1), (y1 → x1y2)). Note that in order
to replicate the neural network and compute node representations in a bottom up fashion, the parent
must have the same dimensionality as each of its children. Given this tree structure, we can now
compute activations for each node from the bottom up by

p = tanh(W [c1; c2] + b), (1)

where c1, c2, p ∈ Rn×1, the term [c1; c2] denotes the concatenation of the two child column vectors
resulting in a R2n×1 vector and hence W ∈ Rn×2n. At the top one can then stack some classification
or regression layer.

2.2 Recursive Neural Networks for Structure Prediction

We now extend RNNs to construct the tree in a bottom-up fashion. We first compute the input to
the parser in a similar way as [CW08]. Assume we are given a list of words. The input vectors
(x1, . . . , xn) come from a look-up table of dimensionality L ∈ Rn×|V |, were |V | is the size of the
vocabulary. Each word in the input sequence has an associated index k into this table. Mathemati-
cally, the look-up can be seen as a simple projection layer where we use a binary vector b which is

3Focusing on binary trees will also allow us to develop efficient (cubic) dynamic programming algorithms
for training and testing.
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zero in all positions except at the kth index,

xi = Lbk ∈ Rn, (2)

All these word vectors are separate and in the order of their corresponding words.

2.2.1 Model 1: Greedy RNN

Given two such vectors, the goal of the network is twofold. First, it computes a new representation
of the phrase which would combine the vectors of the two children into a new vector (such as p in
Eq.1). Second, it scores how likely this is a correct phrase.

The algorithm takes the first pair of neighboring vectors, defines them as potential children of a
phrase which spans both of these nodes: (c1, c2) := (x1, x2), concatenates them and gives them as
input to a neural network. This network can have multiple layers, as long as the top layer has the
same dimensionality as each child/input vector. For simplicity of exposition, we restrict the network
to one layer and use Eq.1 to compute the parent. Using the representation of this top layer, we can
compute a score using a simple inner product with a row vector W score ∈ R1×n:

s1,2 = W scorep. (3)

This score measures how well the two words are combined into a phrase. Using a set of training trees,
we train the network so that correct parsing decisions (collapses into a phrase) will receive higher
scores and incorrect decisions will receive lower scores (see Sec. 3 for our supervised learning
algorithm).

After computing the score for the first pair, the network is shifted by one position and takes as input
vectors (c1, c2) = (x2, x3) and again computes a potential parent node and a score. This process
repeats until it hits the last pair of words in the sentence: (c1, c2) = (xn−1, xn). Next, it selects the
pair which received the highest score. The scoring layer’s output number is then removed and the top
layer p(n) will represent this potential phrase and replace both children. For instance, consider the
sequence (x1, x2, x3, x4) and assume the top score was obtained by the pair (x3, x4). After the first
pass, the new sequence then consists of (x1, x2, p(3,4)). The process repeats and treats the new vector
p(3,4) like any other input vector. For instance, subsequent states could be either: (x1, p(2,(3,4))) or
(p(1,2), p(3,4)). Both states would then finish with a deterministic choice of collapsing the remaining
two states into one parent to obtain (p(1,(2,(3,4)))) (which coincides with the example tree in Fig.1)
or (p((1,2),(3,4))) respectively. Hence, the same network is recursively applied until all vectors are
collapsed. The tree is then recovered by unfolding the collapsing decisions.

In our experiments, we will denote this greedy, bottom-up model as Model 1. Due to its greediness,
this algorithm might not attain the optimal tree structure. In the following sections we will introduce
extensions to this baseline.

2.2.2 Model 2: Greedy, Context-sensitive RNN

Parsing decisions are often context dependent. Hence, we can extend the basic RNN structure
prediction model above by allowing the representations of context words to modify the parsing
decision. The only difference to the above equations is in the first layer where we add as input the
distributed representations of the t words to the left and t words to the right of the current constituent
as context. The corresponding equations and an instance with t = 1 and two hidden layers is shown
in Fig. 2.

2.2.3 Model 3: Greedy, Context-sensitive RNN and Category Classifier

One of the main advantages of our approach is that each phrase has associated with it a distributed
feature representation. We can leverage on this representation by adding to each CRNN parent node
(after removing the scoring layer) a simple softmax layer to predict class labels such as syntactic cat-
egories or named entity classes. Similarly to the contextualized collapsing decision, this extra layer
may incorporate context. When minimizing the cross-entropy error of this softmax layer, the error
will backpropagate and influence both the CRNN parameters as well as the word representations.
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Figure 2: One context-sensitive recursive neural network which is replicated for each pair of possible
input vectors. Dashed lines indicate context units of surrounding words. This network is different
to the original RNN formulation in that it allows multiple layers at each node, predicts a score for
being a correct phrasal constituent and uses context words.

2.2.4 Model 4: Global, Context-sensitive RNN and Category Classifier

Instead of greedily collapsing the best pairs, we can formulate a global, regularized risk objective in a
max-margin framework [RBZ07, TKC+04]. For each sentence, we can use dynamic programming
parsing algorithms to efficiently find the globally optimal tree. Let the training data consist of
(sentence, tree) pairs: (xi, yi). We denote the set of all possible trees that can be constructed from
an input sentence as A(xi). We want to maximize the following objective:

J =
∑
i

s(xi, yi)− max
y∈A(xi)

(s(xi, y) + ∆(y, yi)) , (5)

where the structure loss ∆ penalizes trees more when they deviate from the correct tree. We compute
the total score of each tree as the sum of scores of each collapsing decision:

s(xi, yi) =
∑

d∈T (yi)

sd(c1, c2). (6)

A span is a pair of indices which indicate the left and right most leaf nodes under a node in the
tree. Let T (yi) denote the set of spans coming from all non-terminal nodes of the tree. Similar to
[TKC+04] we choose as our loss function a penalization of incorrect spans and add a penalization
term λ to each incorrect decision:

∆(y, yi) =
∑

d∈T (y)

λ1{d /∈ T (yi)}. (7)

3 Learning

We first describe the standard backprop algorithm and its modification for RNNs. We then describe
the global optimization for our structure prediction problem.

3.1 Error Back-propagation Through Structure

In order to maximize the objective in Eq.5, we compute the derivative by using backpropagation
through structure (BTS) [GK96]. Note that below we will use f as a sigmoid-like function instead
of the specific case of tanh. General backpropagation applies to RNNs such as that in Eq.4 through
the normal use of δ’s. The hidden layer backprop derivatives for tree i are:

∂

∂W
Ji =

∑
d∈T (y)

[c1; c2]
(d)[δ(d+1)]T1:n + CW, δ(d) =

(
WT δ(d+1)

)
◦ f ′([c1; c2]

(d)), (8)

where C is a weight regularization constant and we denote by [·]1:n, the first n elements of a vector.
In the case of this δ, we consider the left child, for the right child we use indices n+ 1 : 2n.

3.2 Subgradient Methods

Our objective J of Eq.5 is not differentiable due to the hinge loss. Therefore, we will generalize
gradient ascent via the subgradient method [RBZ07] which computes a gradient-like direction called
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Method F1

Model 1 (Greedy RNN) 76.55
Model 2 (Greedy, context-sensitive RNN) 83.36
Model 3 (Greedy, context-sensitive RNN + category classifier) 87.05
Model 4 (Global, context-sensitive RNN + category classifier) 92.06

Left Corner PCFG, [MC97] 90.64
Current Implementation of the Stanford Parser, [KM03] 93.98

Table 1: Unlabeled Bracketing F-measure computed by evalb on section 22 of the WSJ dataset.
Maximum sentence length is 15.

the subgradient. For any of our parameters such as W , the gradient becomes:

∂J

∂W
=

∑
i

∂s(xi, yi)

∂W
− ∂s(xi, ymax)

∂W
(9)

Finding the highest scoring tree (including the penalization) can be achieved with the dynamic pro-
gramming algorithm CKY. Even though our grammar is not context free and only consists of the
rule X → XX , we can use CKY-chart parsing to find the highest scoring tree. We attach the left and
right context to each cell in the chart and whenever two charts are combined, the new cell inherits
the contexts outside of their children cells and ignores the contexts between them. In other words,
the context consists of the embedded representation of the words next to each cell’s span. When two
cells are combined the left cell will contribute its left context and the right cell its right context.

4 Experiments

In these preliminary experiments we show the type of semantic and syntactic information the phrase
representations capture and how they can be used as input for making parsing decisions.

4.1 Parsing and Tagging

We pre-train the lookup table using the method of [CW08] on the English Gigaword corpus, section
AFP which contains 611,506,174 words. Our vocabulary consists of all words that occurred more
than twice in this corpus, keeping capitalization intact. This resulted in a vocabulary size of 15,942
words. All remaining words are mapped to an unknown word category. We also change all digits
inside words to a generic number token ‘2’.

Our word and phrase representations are 100-dimensional. We train all models on the Wall Street
Journal section of the Penn Tree Bank using the standard splits. Since we are still improving and
developing the algorithm, we only present results on the development test section 22. To expedite
development we restrict training and testing to sentences of maximum length 15.

Table 1 shows unlabeled bracketing F-measure for the different parsing models introduced above
as well as two other systems. F-measure is the harmonic mean of precision and recall computed
based on the spans of all nodes in the tree (see [MS99] for details). Unlike most previous systems,
our parser does not provide a parent with information about the syntactic categories of its children.
During training of the syntactic scoring network we only use their distributed representations. This
shows that our learned, continuous representations capture enough syntactic information to make
good parsing decisions.

While our parser does not yet perform as well as the current version of the Stanford parser, it per-
forms respectably (1.92% difference in unlabeled F1 to the widely used Stanford parser) without
any feature engineering or explicit usage of POS tags which are usually the main input for mak-
ing parsing decisions.4 It already outperforms previous PCFG based systems [MC97] where less
dataset-specific features were implemented. Unlike many current parsers, our system is not tailored

4Note however, that the POS classifier uses the phrase representations and backpropagates its errors, modi-
fying the parser’s parameters.
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Word Initial Collobert&Weston embedding After RNN training

the a, its, an, this, his, their, UNK an, The, no, some, A, these, another
and ,, or, but, as, –, ., that, for, in or, but, And, But, &, least
in at, on, from, for, over, after, and, as In, from, into, since, for, For, like, with,
that which, but, ,, and, –, as, for, or, about, if what, who, if, this, some, which, If
said added, says, –, while, but, reported, on says, fell, added, did, rose, sold, reported
he she, it, they, which, also, now, who, we they, I, we, you, It, she, it, He, We, They
share high, higher, business, market, current, stock,

lower, increase, price, financial
increase, bank, income, industry, issue, state,
sale, growth, unit, president

when after, while, before, if, but, where, as where, how, which, during, including

Table 2: Visualization of word embeddings after RNN training: Word embeddings are more likely
to group according to their part-of-speech categories, even if sentence initial capitalization differs.

to the intricacies of the WSJ dataset. Furthermore, it provides more than the syntactic structure since
each phrase representation also includes semantic features as we will see in the next section.

On a 2.6GHz laptop our current matlab implementation needs 72 seconds to parse 421 sentences of
length less than 15.

Accuracy of part-of-speech (POS) tagging is 93.86% using the same train and test set as the parser.
There are 27 different non-terminal categories such as noun phrase, verb phrase, prepositional phrase
etc. The category classifier has an accuracy of 82%.

4.2 Modification to Word Embeddings
We use word embeddings that were pre-trained on unlabeled corpora [CW08]. In this section we
qualitatively investigate how these word embeddings change after training our full recursive neural
network model. Table 2 shows words from different parts-of-speech.

4.3 Phrase Feature Embeddings and Nearest Neighbor Phrases
The CRNN architecture is useful beyond its ability to parse sentences. Even incorrect parses may
yield an embedding that captures information on the constituents. In this section we give a qualitative
analysis of our learned phrase features. We first embed complete phrases from the WSJ dataset into
the syntactico-semantic feature space. In table 3 we show some sentences and list their nearest
neighbors in embedding space.

Our examples show that the learned embedding captures several interesting semantic or syntactic
similarities between sentences or phrases. For instance (A) captures changes in financial quantities
(all digits are mapped to 2). If one is interested in company statements, the group in (B) might be of
interest.

Groups around (C) and (D) are especially interesting since they show that by considering the actual
structure seemingly different lexical units end up with a similar meaning. For instance, To decline to
elaborate is close in embedding space to to not disclose. Furthermore, for the phrase a spokesman
declined to elaborate, the closest sentence is about another spokesman [who] refused to identify....

If one is interested in the task of named entity recognition and a rare city or village has never
been seen during training, the embedding of the unknown word with a comma and possibly an
abbreviation of a US state can be a very useful feature for identifying locations. This is captured in
the embeddings as seen in group (E).

Examples in (F) capture positive news about companies and sentences in (G) suggest something
bad has happened to a group of people.

5 Conclusion

We introduce a recursive neural network architecture which can be used to jointly parse sentences
and map each phrase into a common feature space. While performance is still 1.9% behind that of the
widely used Stanford parser, our parser can accurately recover unlabeled tree structures using only
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Center Phrase and Nearest Neighbors

(A) Sales grew almost 2 % to 222.2 million from 222.2 million.

1. Sales surged 22 % to 222.22 billion yen from 222.22 billion.

2. Revenue fell 2 % to 2.22 billion from 2.22 billion.

3. Sales rose more than 2 % to 22.2 million from 22.2 million.

4. Volume was 222.2 million shares, more than triple recent levels.

(B) I had calls all night long from the States , he said.

1. Our intent is to promote the best alternative, he says.

2. We have sufficient cash flow to handle that, he said.

3. Currently, average pay for machinists is 22.22 an hour, Boeing said.

4. Profit from trading for its own account dropped, the securities firm said.

(C) A DPC spokesman declined to elaborate on the group’s new plan

1. Those two offers were private and the spokesman refused to identify the bidding companies.

2. Among the firms were Merrill Lynch & Co. and Dean Witter Reynolds Inc.

3. The real key is to have the economy working and interest rates down.

4. The market upheaval apparently has n’t triggered any cash crunch yet.

(D) Hess declined to comment.

1. PaineWebber declined to comment.

2. Phoenix declined to comment.

3. Campeau declined to comment.

4. Coastal would n’t disclose the terms.

(E) Columbia, S.C

1. Greenville, Miss

2. UNK, Md

3. UNK, Miss

4. UNK, Calif

(F) Fujisawa gained 22 to 2,222

1. Mochida advanced 22 to 2,222.

2. Commerzbank gained 2 to 222.2.

3. Paris loved her at first sight.

4. Profits improved across Hess ’s businesses.

(G) We were lucky

1. It was chaotic

2. We were wrong

3. People had died

4. They still are

Table 3: Visualization of phrase embeddings: Phrases and their nearest neighbors. Distance is often
correlated with semantic and syntactic similarities of the phrases.

the distributed phrase representations. Furthermore, it provides semantic information even to pre-
viously unseen words and phrases. We provide examples of sentence embeddings that demonstrate
possible applications of the learned features such as named entity recognition, semantic entailment,
finding sentence polarity and information retrieval. Exploring these applications is part of the future
work.
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