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Abstract

We proposea new approachto the problem of searchinga spaceof
stochasticontrollersfor aMarkov decisionprocesgMDP) or apartially
obsenableMarkov decisionproces{POMDP).Following several other
authors,our approachis basedon searchingn parameterizedamilies
of policies(for example,via gradientdescent}o optimizesolutionqual-
ity. However, ratherthantrying to estimatethe valuesand derivatives
of a policy directly, we do so indirectly using estimatedor the proba-
bility densitiesthat the policy induceson statesat the different points
in time. This enablesour algorithmsto exploit the mary techniquedor
efficient and robust approximatedensity propagationn stochasticsys-
tems.We shov how our techniquesanbe appliedbothto deterministic
propagatiorschemegwherethe MDP’s dynamicsaregivenexplicitly in
compactform,) andto stochastigoropagatiorschemegwherewe have
acces®nly to ageneratre model,or simulator of theMDP). We present
empiricalresultsfor both of thesevariantson complex problems.

1 Introduction

In recentyears,therehasbeengrowing interestin algorithmsfor approximateplanning
in (exponentiallyor even infinitely) large Markov decisionprocessefMDPSs) and par

tially obsenable MDPs (POMDPS). For suchlarge domains,the value and Q-functions
aresometimesomplicatedanddifficult to approximateeventhoughtheremaybesimple,
compactlyrepresentablpolicieswhich performverywell. Thisobsenationhasledto par

ticular interestin direct policy seach methodge.g.,[9, 8, 1]), which attemptto choosea
goodpolicy from somerestrictedclassIl of policies.In oursetting,II = {mg : @ € R™} is

a classof policiessmoothlyparameterizetty @ € R™. If thevalueof 7y is differentiable
in 8, thengradientascentmethodsmay be usedto find a locally optimal 7¢. However,

estimatingvaluesof g (andthe associatedradient)is oftenfar from trivial. Onesimple
methodfor estimatingrg’s valueinvolvesexecutingoneor moreMonte Carlotrajectories
usingme, andthentaking the averageempiricalreturn; clevereralgorithmsexecutingsin-

gletrajectoriesalsoallow gradientestimate$9, 1]. Thesemethodshave becomeastandard
approacho policy searchandsometimesvork fairly well.

In this paper we proposea somevhatdifferentapproacho this value/gradienestimation
problem.Ratherthanestimatingthesequantitiesdirectly, we estimatethe probabilityden-
sity overthe statesf the systeminducedby 7y atdifferentpointsin time. Thesetimeslice



densitiescompletelydeterminethe valueof the policy mg. While densityestimationis not
aneasyproblem we canutilize existingapproache® densitypropagatiori3, 5], whichal-
low usergo specifyprior knowledgeaboutthe densitiesandwhich have alsobeenshown,
boththeoreticallyandempirically, to provide robustestimategor time slice densities.We
shav how directpolicy searchcanbeimplementedisingthis approachin two very differ-
entsettingsof theplanningproblem:In thefirst, we have accesso anexplicit modelof the
systemdynamicsallowing usto provide anexplicit algebraicoperatoithatimplementshe
approximatedensitypropagatiorprocessin the secondwe have acces®nly to agenera-
tive modelof thedynamics(which allows usonly to samplefrom, but doesnot provide an
explicit representatiomf, next-statedistributions). We shav how both of our techniques
canbecombinedwith gradientascenin orderto performpolicy searchasomevhatsubtle
argumentin the caseof the sampling-basedpproachWe alsopresenempiricalresultsfor
bothvariantsin comple< domains.

2 Problem description

A Markov DecisionProcess(MDP) is a tuple (S, so, A, R, P) where! S is a (possibly
infinite) setof states;sy € S is a startstate; A is a finite setof actions; R is a reward
functionR : S — [0, Rpez); P is atransitionmodelP : S x A — Ag, suchthat
P(s'| s,a) givesthe probability of landingin states’ upontakingactiona in states.

A stochasti@olicy isamapn : S — A4, wherer(a | s) is theprobabilityof takingaction
a in states. Therearemary waysof definingapolicy 7’s “quality” or value For ahorizon
T anddiscountfactor-y, thefinite horizondiscountedraluefunctionVry , [x] is definedby
Volm(s) = R(5); Vigr o [m)(s) = R(s) + 7Y, w(a | 5) X, P(s' | 8,0) Vs, [m](s").
For aninfinite statespace(hereandbelow), the summatioris replacedby anintegral. We
cannow defineseveral optimality criteria. The finite horizon total reward with horizon
T is Vr[n] = Vra[r](so). Theinfinite horizon discountedreward with discounty <
1is V,[r] = lim70 Vry[7](s0). Theinfinite horizon average reward is Viy4[n] =
limr_ o0 %VT,1[7T](80), wherewe assumehatthelimit exists.

Fix anoptimality criterion V. Our goalis to find a policy thathasa high value. As dis-
cussedwe assumave have arestrictedsetlIlI of policies,andwishto selectagoodr € II.
We assuméhatIl = {mg | 8 € R™} is a setof policiesparameterizety # € R™, and
thatmg (a | s) is continuouslydifferentiablein 8 for eachs, a. As avery simpleexample,
we may have a one-dimensionadtate two-actionMDP with “sigmoidal” 7g, suchthatthe
probability of choosingactionag atstatez is mg(ag | ) = 1/(1 + exp(—601 — 027)).

Notethatthis framework alsoencompassesasesvhereour family I consistsof policies
thatdependonly on certainaspect®f the state.In particular in POMDPs,we canrestrict
attentionto policiesthatdependonly on the obsenables. This restrictionresultsin a sub-
classof stochastianemory-freepolicies. By introducingartificial “memory bits” into the
processstate we canalsodefinestochastidimited-memorypolicies.[6]

Each@ hasavalueV[0] = V[rg], asspecifiedabove. To find the bestpolicy in II, we can
searchfor the @ thatmaximizesV'[6]. If we cancomputeor approximatel/[6], thereare
mary algorithmsthat canbe usedto find a local maximum. Some,suchasNelderMead
simplex seach (notto be confusedvith the simplex algorithmfor linearprograms)require
only the ability to evaluatethe function beingoptimizedat ary point. If we cancompute
or estimatel/[6]'s gradientwith respecto @, we canalsousea variety of (deterministicor
stochasticgradientascentmethods.

"We write rewardsas R(s) ratherthan R(s, a), and assumea single startstateratherthan an
initial-statedistribution, only to simplify exposition; theseand several other minor extensionsare
trivial.



3 Densities and value functions

Most optimization algorithmsrequire somemethodfor computingV’[6] for ary € (and
sometimeslsoits gradient).In mary real-life MDPs, hawever, doing so exactly is com-
pletelyinfeasible dueto thelarge or eveninfinite numberof states Here,we will consider
anapproacho estimatingthesequantities basedon a density-basedeformulationof the
valuefunction expression.A policy = inducesa probability distribution over the statesat

eachtime t. Letting #(©) betheinitial distribution (giving probability 1 to so), we define
thetimeslicedistributionsvia therecurrence:

¢(t+1)(s') _ Zd)(t) (s) Zﬂ(a | s)P(s'| s,a) 1)

It is easyto verify thatthe standardhotionsof value definedearlier can reformulatedin
termsof ¢*); e.9., Vi, [7](s0) = X 1—y 7 (¢® - R), where- is the dot-productbperation
(equivalently, the expectationof R with respectto ¢(*)). Somavhat more subtly, for the

caseof infinite horizonaveragereward, we have thatV,,,[7] = ¢(>) - R, wheres(>) is
thelimiting distribution of (1), if oneexists.

This reformulationgivesus an alternatve approacho evaluatingthe valueof a policy mg:
we first computethe time slice densitiesp® (or ¢{>)), andthenusethemto computethe
value. Unfortunately that modification, by itself, doesnot resol\e the difficulty. Repre-
sentingandcomputingprobability densitiesover large or infinite spacess often no easier
thanrepresentingand computingvaluefunctions. However, severalresults[3, 5] indicate
that representingand computinghigh-quality approximatedensitiesmay often be quite
feasible. The generalapproachis an approximatedensity propagationalgorithm, using
time-slicedistributionsin somerestrictedfamily =. For example,in continuousspacesz
might bethe setof multivariateGaussians.

The approximatepropagatioralgorithm modifiesequation(1) to maintainthe time-slice
densitiesin =. More precisely for a policy g, we canview (1) asdefiningan operator
(0] that takes one distribution in Ag andreturnsanother For our currentpolicy 7g,,

we canrewrite (1) as: ¢(tt1) = ®[0,](¢). In mostcasesZ will not be closedunder
®; approximatedensitypropagatioralgorithmsusesomealternatie operator®, with the
propertieshat,for ¢ € Z: (a) $(¢) is alsoin Z, and(b) $(¢) is (hopefully)closeto ().
We use®[6] to denotethe approximationto ®[6], and () to denote(d[0])) (). If

& is selectedcarefully, it is often the casethat ¢(*) is closeto ¢(). Indeed,a standard
contractionanalysisfor stochastigprocessesanbe usedto show:

Proposition 1 Assumehat for all ¢, ||®(¢()) — $(¢®)|; < e. Thenthere existssome
constant\ sud thatfor all ¢, || — ¢®||; < e/A.

In somecases) might be arbitrarily small,in which casethe propositionis meaningless.
However, therearemary systemswvhere is reasonabléandindependentf ¢) [3]. Fur-

thermore empiricalresultsalsoshav thatapproximatedensitypropagatiorcanoftentrack
the exacttime slice distributionsquite accurately

Approximatetrackingcannow be appliedto our planningtask. Givenanoptimality crite-
rion V expresseavith ¢(*s, we defineanapproximatiori/ to it by replacingeachg(®) with
oD, e.9., Vi, [7](s0) = 1y 7'é® - R. Accuray guaranteesn approximateracking
inducecomparableguarantee®n the value approximation;from this, guaranteesn the
performancef a policy 7, foundby optimizing V arealsopossible:

Proposition 2 Assuméhat, for all ¢, wehavethat ||¢(9) — ¢()||; < . Thenfor each fixed
T,v: [Vry[r](s0) = Vo [7](s0)| = O(6).



Proposition 3 Let 8* = argmaxe V[0] and @ = argmaxg V[0]. If maxe |[V[0] —
V(0] <€ thenV[0] — V[0] < 2e.

4 Differentiating approximate densities

In this sectionwe discusstwo very differenttechniquedor maintainingan approximate
densityngS(t) usingan approximatepropagatiomperator(i), andshov whenandhow they
canbecombinedwith gradientascento performpolicy searchln generalwe will assume
that = is a family of distributionsparameterizethy £ € R¢. For example,if Z is the set
of d-dimensionaimultivariateGaussiansvith diagonalcovariancematrices£ would bea
2d-dimensionakector, specifyingthe meanvectorandthe covariancematrix’s diagonal.

Now, considerthe task of doing gradientascentover the spaceof policies, using some
optimality criterionV, say V., [6]. Differentiatingit relative to 8, we get VoV ,[0] =
ZtT:O yt% - R. To avoid introducingnew notation,we also useqS(t) to denotethe as-
sociatedvectorof parameterg € R¢. Theseparametersirea functionof 8. Hence,the
internalgradienttermis representetly an/ x m Jacobiammatrix, with entriesrepresenting
the derivative of a parameteg; relative to a paramete#;. This gradientcanbe computed
usingasimplerecurrencebasedn the chainrule for derivatives:
0P 0P ()

At+1) . N .
T O0) = g MIO) = G5 00,9) + T2 00,

do

) —a=(6). (2

Thefirst summandan x m Jacobian)s thederivative of thetransitionoperator® relative

to the policy parameter®). The secondis a productof two terms: the deriative of &
relative to the distribution parametersandtheresultof the previousstepin therecurrence.

4.1 Deterministic density propagation

Considertransitionoperator® (for simplicity, we omit thedependencen ). Theideain
thisapproachstotry to get®(¢) to beascloseaspossibleo ®(¢), subjecto theconstraint

that@(d?) € =. Specifically we definea projectionoperator I' thattakesa distribution ¢
notin Z, andreturnsa distribution in £ which is closest(in somesense)}o . We then
defined(4) = I'(®(¢)). In orderto ensurethat gradientdescentappliesin this setting,
we needonly ensurethatT" and ® are differentiablefunctions. Clearly, thereare mary
instantiationf thisideafor which this assumptiorholds. We provide two examples.

Considera continuous-stat@rocesswith nonlineardynamics,where ® is a mixture of
conditionallinear Gaussians.We can define = to be the setof multivariate Gaussians.
The operatorT' takes a distribution (a mixture of gaussians)) and computesits mean
and covariancematrix. This canbe easily computedfrom 1’'s parameteraising simple
differentiablealgebraicoperations.

A very differentexampleis the algorithm of [3] for approximatedensity propagationn
dynamicBayesiametworks(DBNs) A DBN is a structuredrepresentationf a stochastic
processthatexploits conditionalindependencpropertief thedistributionto allow com-
pactrepresentationin a DBN, the statespaceis definedasa setof possibleassignments
x to asetof randomvariablesXy, ... , X,. Thetransitionmodel P(z' | z) is described
usinga Bayesiametwork fragmentover the nodes{ X1, ... , X, X{,... , X/ }. A node

X; representsX’z.(t) and X/ representsX’z.(tH). The nodesX; in the network are forced
to beroots(i.e., have no parents) andarenot associatedvith conditionalprobability dis-
tributions. Eachnode X/ is associateavith a conditionalprobability distribution (CPD),
which specifiesP (X | Parent§X)). Thetransitionprobability P(X' | X) is definedas



[I, P(X; | Parent$X])). DBNs supporta compactrepresentatiomf complex transition
modelsin MDPs[2]. We canextendthe DBN to encodethe behaior of an MDP with a
stochastigolicy 7 by introducinga new randomvariable A representinghe actiontaken
atthecurrenttime. Theparentof A will bethosevariablesn thestateonwhichtheaction
is allowedto depend.The CPD of A (which maybe compactlyrepresenteavith function
approximation)s the distribution over actionsdefinedby = for the differentcontexts.

In discreteDBNs, the numberof statesggrows exponentiallywith the numberof statevari-

ables,makingan explicit representationf a joint distribution impractical. The algorithm
of [3] definesE to be a setof distributions definedcompactlyas a setof maminalsover
smallerclustersof variables.In the simplestexample,= is the setof distributionswhere
X,..., X, areindependentThe parameterg definingadistributionin = arethe param-
etersof n multinomials. The projectionoperatorl’ simply mamginalizesdistributionsonto
theindividual variables andis differentiable.Oneusefulcorollary of [3] s analysisis that
the decayrate of a structured® over = canoften be much higherthanthe decayrate of

®, sothatmultiple applicationsof & cancorvergevery rapidly to a stationarydistribution;

this propertyis very usefulwhenapproximatings(>) to optimizerelative to Vavg-

4.2 Stochastic density propagation

In mary settingsthe assumptiorthatwe have directaccesgo @ is too strong. A wealer
assumptioris that we have accesgo a genemtive model— a black box from which we
cangeneratesampleswith the appropriatedistribution; i.e., for ary s, a, we cangenerate
sampless’ from P(s' | s,a). In this case,we usea differentapproximationscheme,
basedon [5]. The operator<i> is a stochasticoperator It takes the distribution gz@ and
generatesomenumberof randomstatesampless; from it. Then, for eachs; andeach
actiona, we generate samples; from thetransitiondistribution P(- | s;,a). Thissample
(ss, a;, s}) is thenassignedhweightw; = mg(a; | s;), to compensatéor thefactthatnot
all actionswould have beenselectedy m¢ with equalprobability. Theresultingsetof v
sampless; weightedby the w;s is givenasinput to a statisticaldensityestimator which

usesit to estimatea new densitygf)’. We assumehatthe densityestimationprocedurds a
differentiablefunctionof the weights,oftenareasonablassumption.

Clearly, this & canbeusedto computeﬁ)(t) for ary t, andtherebyapproximaterg’s value.
However, the gradientcomputatiorfor ® is far from trivial. In particular to computethe
derivative 8&)/&;5, we mustconsiderd’s behaior for someperturbedqﬁgt) otherthanthe

one(say qB((f)) to which it wasappliedoriginally. In this case,an entirely differentsetof
samplesvould probablyhave beengeneratedpossiblyleadingto a very differentdensity
It is hardto seehow onecould differentiatethe resultof this perturbation.We proposean
alternative solutionbasedon importancesampling Ratherthanchangethe sampleswe
modify their weightsto reflectthe changen the probability thatthey would be generated.

Specifically whenfitting &gt“), we now definea sample(s;, a;, s;)'s weightto be
7 (8)
~ S;)Te\a; | S;
wz(¢§t)70):¢1 ( A)t 9( | ) (3)
( )(s»)
0 i

We cannow computed’s derivativesat (6o, A((]t)) with respecto ary of its parametersas
requiredin (2). Let ¢ bethevectorof parameter$@, £). Usingthe chainrule, we have
09[6)(9) _ 92[6](¢) Ow
&  Ow o¢’
Thefirst termis the derivative of the estimateddensityrelative to the sampleweights(an
£ x N matrix). Theseconds the derivative of the weightsrelative to the parametewector
(anN x (m + £) Jacobian)which caneasilybe computedrom (3).
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Figurel: Driving task: (a) DBN model;(b) policy-search/optimizatioresults(with 1 s.e.)

5 Experimental results

We testedour approachin two very differentdomains. The first is an average-revard
DBN-MDP problem(shovnin Figurel(a)),wherethetaskis to find a policy for changing
laneswhendriving on a moderatelybusy two-lane highway with a slow lane and a fast
lane. The modelis basedon the BAT DBN of [4], the resultof a separateffort to build a
goodmodelof driverbehaior. For simplicity, we assumahatthe car’s speeds controlled
automaticallysowe areconcerneanly with choosinghe Lateral Action—changelaneor
drive straight. Theobsenablesareshavn in thefigure: LCIr andRClIr arethe clearancéo
the next carin eachlane(close mediumor far). The agentpaysa costof 1 for eachstep
it is “blocked” by (meaningdriving closeto) the carto its front; it paysa penaltyof 0.2
perstepfor stayingin thefastlane.Policiesarespecifiecby actionprobabilitiesfor the 18
possibleobsenationcombinationsSincethis is a reasonablysmallnumberof parameters,
we usedthe simplex searchalgorithmdescribecdearlierto optimizef/[e].

Theprocessnixedquitequickly, so$(20) wasafairly goodapproximatiorto ¢(>). = used
afully factoredrepresentationf the joint distribution exceptfor a singleclusterover the
threeobsenables. Evaluationsare averagesof 300 Monte Carlo trials of 400 stepseach.
Figure 1(b) shavs the estimatecandactualaveragerewards,asthe policy parametersre
evolved over time. The algorithmimproved quickly, corverging to a very naturalpolicy
with the car generallystayingin the slow lane,and switchingto the fastlane only when
necessaryo overtale.

In our secondexperiment,we usedthe bicycle simulatorof [7]. Thereare9 actionscor-
respondingto leaning left/center/rightand applying negative/zero/positre torqueto the
handlebarthe six-dimensionaktateusedin [7] includesvariablesfor the bicycle’stilt an-
gle andorientation,andthe handlebasangle.If thebicycletilt exceedsr/15, it falls over
andentersanabsorbingstate.We usedpolicy searchoverthefollowing spacewe selected
twelve (simple, manuallychosenbut not fine-tuned)featuresof eachstate;actionswere
chosenwith asoftmax— theprobabilityof takingactiona; is exp(z-w;)/ 3=, exp(z-w;).
As the problemonly comeswith a generatie modelof the complicated nonlinear noisy
bicycle dynamics,we usedthe stochastiadensity propagatiorversionof our algorithm,
with (stochasticgradientascentEachdistributionin = wasa mixture of a singletonpoint
consistingof the absorbing-stateggndof a 6-D multivariateGaussian.



Thefirst taskin this domainwasto balancereliably on the bicycle. Using a horizon of
T = 200, discounty = 0.995, and600 s; sampleger densitypropagatiorstep,this was
quickly achieved. Next, trying to learnto ride to a goaP 10min radiusand 1000maway,
it alsosucceedeéh finding policiesthatdo soreliably. Formal evaluationis difficult, but
thisis a sufficiently hardproblemthatevenfinding a solutioncanbe considered success.
Therewasalsosomeslight parametesensitvity (andthe bestresultswere obtainedonly
with #(® picked/fitwith somecare usingin partdatafrom earlierandlesssuccessfulrials,
to be “representatie” of a fairly goodrider’s statedistribution,) but usingthis algorithm,
we wereableto obtainsolutionswith mediarriding distancesinderl.1kmto thegoal. This
is significantlybetterthanthe resultsof [7] (obtainedin the learningratherthanplanning
setting,and using a value-functionapproximationsolution), which reportedmuchlarger
riding distancego thegoalof about7km, anda single“best-ever” trial of aboutl.7km.

6 Conclusions

We have presentedwo new variantsof algorithmsfor performingdirect policy searchin
the deterministicand stochastiaddensity propagatiorsettings. Our empirical resultshave
alsoshown thesemethodswvorking well ontwo largeproblems.
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2For theseexperiments,we found learning could be accomplishedasterwith the simulators
integration delta-timeconstanttripled for training. This and “shaping” reinforcementgchosento
reward progressmadetowardsthe goal) were both used,andtraining waswith the bike “infinitely
distant”from the goal. For this andthe balancingexperiments samplingfrom the fallen/absorbing-
stateportion of the distributions é(” is obviously inefficient useof samples;so all sampleswere
dravn from thenon-absorbingtateportion(i.e. the Gaussianalsowith its tails correspondingo tilt
anglegreatethans/15 truncated)andweightedaccordinglyrelative to the absorbing-statportion.



