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Abstract

Convolutional neural networks (CNNs) have been succdgspplied to many
tasks such as digit and object recognition. Using convohai (tied) weights
significantly reduces the number of parameters that have tedrned, and also
allows translational invariance to be hard-coded into ttohigecture. In this pa-
per, we consider the problem of learning invariances, rethen relying on hard-
coding. We proposéled convolution neural networks (Tiled CNNs), which use
a regular “tiled” pattern of tied weights that does not requhat adjacent hidden
units share identical weights, but instead requires ordy kiidden units: steps
away from each other to have tied weights. By pooling oveglneoring units,
this architecture is able to learn complex invarianceshi{sagscale and rotational
invariance) beyond translational invariance. Furthexlgo enjoys much of CNNs'’
advantage of having a relatively small number of learnedp@ters (such as ease
of learning and greater scalability). We provide an effitiearning algorithm for
Tiled CNNs based on Topographic ICA, and show that learnargglex invariant
features allows us to achieve highly competitive resultsbimth the NORB and
CIFAR-10 datasets.

1 Introduction

Convolutional neural networks (CNNs) [1] have been sudodigsapplied to many recognition
tasks. These tasks include digit recognition (MNIST ddtg®p, object recognition (NORB
dataset [3]), and natural language processing [4]. CNNs tednslated versions of the same ba-
sis function, and “pool” over them to build translationalaniant features. By sharing the same
basis function across different image locations (weigirigf), CNNs have significantly fewer learn-
able parameters which makes it possible to train them witlefexamples than if entirely different
basis functions were learned at different locations (uhtieights). Furthermore, CNNs naturally
enjoy translational invariance, since this is hard-coded the network architecture. However, one
disadvantage of this hard-coding approach is that the pgalichitecture capturesly translational
invariance; the network does not, for example, pool acrosts that are rotations of each other or
capture more complex invariances, such as out-of-plaratioots.

Is it better to hard-code translational invariance — sife is a useful form of prior knowledge —
or let the network learn its own invariances from unlabeleta@ In this paper, we show that the
latter is superior and describe an algorithm that can dowspesforming convolutional methods. In
particular, we preserttled convolutional networks (Tiled CNNs), which use a novel virtitying
scheme (“tiling”) that simultaneously enjoys the benefitsafnificantly reducing the number of
learnable parameters while giving the algorithm flexipitid learn other invariances. Our method is
based on only constraining weights/basis functibrsteps away from each other to be equal (with
the special case d&f = 1 corresponding to convolutional networks).

In order to learn these invariances from unlabeled data,m@®y unsupervised pretraining, which
has been shown to help performance [5, 6, 7]. In particularuge a modification of Topographic
ICA (TICA) [8], which learns to organize features in a topaghical map by pooling together groups
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Figure 1: Left: Convolutional Neural Networks with locakeptive fields and tied weights. Right:
Partially untied local receptive field networks — Tiled CNNnits with the same color belong to the
same map; within each map, units with the same fill texture hied weights. (Network diagrams
in the paper are shown in 1D for clarity.)

of related features. By pooling together local groups ofifess, it produces representations that are
robust to local transformations [9]. We show in this papewHdCA can be efficiently used to
pretrain Tiled CNNs through the use of local orthogonality.

The resulting Tiled CNNs pretrained with TICA are indeedeatd learn invariant representations,
with pooling units that are robust to both scaling and rotatiWe find that this improves classifica-
tion performance, enabling Tiled CNNs to be competitivehvwiteviously published results on the
NORB [3] and CIFAR-10 [10] datasets.

2 Tiled CNNs

CNNs [1, 11] are based on two key concepts: local receptiVestieand weight-tying. Using local
receptive fields means that each unit in the network onlyK&i@t a small, localized region of the
input image. This is more computationally efficient thanihgvfull receptive fields, and allows
CNNs to scale up well. Weight-tying additionally enforchatteach first-layer (simple) unit shares
the same weights (see Figure 1-Left). This reduces the nuofdearnable parameters, and (by
pooling over neighboring units) further hard-codes tratishal invariance into the model.

Even though weight-tying allows one to hard-code transteti invariance, it also prevents the pool-
ing units from capturing more complex invariances, suchcasesand rotation invariance. This is
because the second layer units are constrained to pool @resldtions of identical bases. In this
paper, rather than tyingll of the weights in the network together, we instead develogthod that
leaves nearby bases untied, but far-apart bases tied. dthisécond-layer units pool over simple
units that have different basis functions, and hence leano@ complex range of invariances.

We call this local untying of weights “tiling.” Tiled CNNs arparametrized by a tile size we
constrain only units that ark steps away from each other to be tied. By varyingve obtain a
spectrum of models which trade off between being able tsleamplex invariances, and having
few learnable parameters. At one end of the spectrum we hasitional CNNs g = 1), and at the
other, we have fully untied simple units.

Next, we will allow our model to use multiple “maps,” so as &atn highly overcomplete repre-
sentations. A map is a set of pooling units and simple unéscbllectively cover the entire image
(see Figure 1-Right). When varying the tiling size, we chatigeedegree of weight tying within
each map; for example, if = 1, the simple units within each map will have the same weiglnts.
our model, simple units in different maps are never tied. Byiihg units in different maps learn
different features, our model can learn a rich and diversefsieatures. Tiled CNNs with multiple
maps enjoy the twin benefits of (i) being able to representmerinvariances, by pooling over
(partially) untied weights, and (ii) having a relatively aimumber of learnable parameters.
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Figure 2: Left: TICA network architecture. Right: TICA firlyer filters (2D topography, 25 rows
of W).

Unfortunately, existing methods for pretraining CNNs [12] are not suitable for untied weights;
for example, the CDBN algorithm [11] breaks down without theight-tying constraints. In the
following sections, we discuss a pretraining method foediCNNs based on the TICA algorithm.

3 Unsupervised feature learning via TICA

TICA is an unsupervised learning algorithm that learnsuesg from unlabeled image patches.
A TICA network [9] can be described as a two-layered netwdiigyre 2-Left), with square and
square-root nonlinearities in the first and second layespeaetively. The weight$) in the first
layer are learned, while the weights in the second layer are fixed and hard-coded to represent
the neighborhood/topographical structure of the neurnrike first layer. Specifically, each second
layer hidden unip, pools over a small neighborhood of adjacent first layer unitdVe call theh;
andp; simple and pooling units, respectively.

More precisely, given an input pattern*), the activation of each second layer unit is

pi(zM; W, V) = \/ZZ; Ve, ijxgt))% TICA learns the parametefd through finding
sparse feature representations in the second layer, bingolv

minimize S S pi(2®; W, V), subject to WWT =1 (1)

where the input patterngc(¥}7_, are whitened. Here, IV € R™*" andV € R™*™, wheren

is the size of the input andk is the number of hidden units in a layér. is a fixed matrix {;; =

1 or 0) that encodes the 2D topography of the hidden unitsSpecifically, theh; units lie on a

2D grid, with eactp; connected to a contiguous 3x3 (or other size) block afinits? The case of
eachp; being connected to exactly ohgcorresponds to standard ICA. The orthogonality constraint
WWT = | provides competitiveness and ensures that the learnadtésadre diverse.

One important property of TICA is that it can learn invariae@ven when trained only on unlabeled
data, as demonstrated in [8, 9]. This is due both to the pg@alinhitecture, which gives rise to pool-

ing units that are robust to local transformations of theputs, and the learning algorithm, which

promotes selectivity by optimizing for sparsity. This cdmdtion of robustness and selectivity is
central to feature invariance, which is in turn essentiaftézognition tasks [13].

If we choose square and square-root activations for thelsiand pooling units in the Tiled CNN,
we can view the Tiled CNN as a special case of a TICA networl, thie topography of the pooling
units specifying the matri¥.2 Crucially, Tiled CNNs incorporate local receptive fieldsyieh play
an important role in speeding up TICA. We discuss this next.

Whitening means that they have been linearly transformed to have zem anel identity covariance.

2For illustration, however, the figures in this paper depigth; andp; in 1D and show a 1D topography.

3The locality constraint, in addition to being biologically motivated by the recepfiigld organization
patterns in V1, is also a natural approximation to the original TICA algoritertha original learned receptive



4 Local receptive fields in TICA

Tiled CNNs typically perform much better at object recogmitwhen the learned representation
consists of multiple feature maps (Figure 1-Right). Thigesponds to training TICA with aover-
complete representationg > n). When learning overcomplete representations [14], thieogi-
nality constraint cannot be satisfied exactly, and we imbtigeto satisfy an approximate orthogonal-
ity constraint [15]. Unfortunately, these approximatehogonality constraints are computationally
expensive and have hyperparameters which need to be exdbrsined. Much of this tuning can be
avoided by using score matching [16], but this is computedtily even more expensive, and while
orthogonalization can be avoided altogether with topdgi@pparse coding, those models are also
expensive as they require further work either for infereatprediction time [9, 14] or for learning

a decoder unit at training time [17].

We can avoid approximate orthogonalization by using loeakptive fields, which are inherently
built into Tiled CNNs. With these, the weight matriX for each simple unit is constrained to be
0 outside a small local region. This locality constraintcamatically ensures that the weights of
any two simple units with non-overlapping receptive fields arthogonal, without the need for an
explicit orthogonality constraint. Empirically, we findghorthogonalizing partially overlapping
receptive fields is not necessary for learning distincpiinfative features either.

However, orthogonalization is still needed to decorrelatiés that occupy the same position in their
respective maps, for they look at the same region on the imageeunately, thidocal orthogonal-
ization is cheap: for example, if there drmaps and if each receptive field is restricted to look at an
input patch that containspixels, we would only need to orthogonalize the rows éftey-s matrix

to ensure that thefeatures over thesepixels are orthogonal. Specifically, so longlas s, we can
demand that thegeunits that share an input patch be orthogonal. Using thi©iotktwe can learn
networks that are overcomplete by a factor of abo(ite., by learning = s maps), while having to
orthogonalize only matrices that ardy-s. This is significantly lower in cost than standard TICA.
For maps, our computational costd/s?n), compared to standard TICA3(I?n?).

In general, we will havé x k x s learnable parameters for an input of sizeWe note that setting
k to its maximum value of. — s + 1 gives exactly the untied local TICA model outlined in the
previous sectiof.

5 Pretraining Tiled CNNs with local TICA

Algorithm 1 Unsupervised pretraining of Tiled CNNs with TICA (line sely

Input: {zM},, W, V, k, s Il k is the tile sizes is the receptive field size
Output: W
repeat

2
old T m m s n (2 B[Zthl =1 \/ZL”':] Vm(Z;":l ijr§t)) }
VR DA D \/Zkzl Vzk(zj:1 Wiz, ) » 9 oW
[ — +oo, a1
while fm<¥ > f°'4 do
WTLS'UJ — W _ ag
W — localize(W™ ) s)
WneY — tie_weights(W™" k)
Wne — orthogonalize local_RF(W™")

Fre = S Sy S Vi (S, wiea?)?
a «— 0.ba
end while
W — WTLE’lU
until convergence

Our pretraining algorithm, which is based on gradient desoa the TICA objective function (1), is
shown in Algorithm 1. The innermost loop is a simple implemagion of backtracking linesearch.

fields tend to be very localized, even without any explicit locality constraiot. eéxample, when trained on
natural images, TICA' first layer weights usually resemble localizeloGélters (Figure 2-Right).
“For a 2D input image of sizexn and local RF of sizexs, the maximum value of is (n — s + 1)2.



In orthogonalize_local .RF (W), we only orthogonalize the weights that have completely-ove
lapping receptive fields. Imiec_weights, we enforce weight-tying by averaging each set of tied
weights.

The algorithm is trained by batch projected gradient desaed usually requires little tuning of
optimization parameters. This is because TICAs tractablective function allows us to monitor
convergence easily. In contrast, other unsupervised fedtarning algorithms such as RBMs [6]
and autoencoders [18] require much more parameter tungpgogally during optimization.

6 Experiments

6.1 Speed-up

We first establish that the local receptive fields
intrinsic to Tiled CNNs allows us to imple-

ment TICA learning for overcomplete represen-
tations in a much more efficient manner. 250

Speed-up over standard TICA
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cient convolutional implementation, but purely

due to the local receptive fields. Overcomingigure 3: Speed-up of Tiled CNNs compared to
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6.2 Classification on NORB

Next, we show that TICA pretraining for Tiled CNNs performsion object recognition. We start
with the normalized-uniform set for NORB, which consists of 24300 training examples a480P
test examples drawn from 5 categories. In our case, eachmeasna preprocessed pair of 32x32
images®

In our classification experiments, we fix the size of eachllomzeptive field to 8x8, and sét such
that each pooling unijt; in the second layer pools over a block of 3x3 simple units éfitst layer,
without wraparound at the borders. The number of poolingstinieach map is exactly the same as
the number of simple units. We densely tile the input imagik awverlapping 8x8 local receptive
fields, with a step size (or “stride”) of 1. This gives 2% x 25 = 625 simple units and 625 pooling
units per map in our experiments on 32x32 images.

A summary of results is reported in Table 1.

6.2.1 Unsupervised pretraining

We first consider the case in which the features are learneelypfrom unsupervised data. In
particular, we use the NORB training set itself (without taleels) as a source of unsupervised data

SAll algorithms are implemented in MATLAB, and executed on a computer wiliiz CPU, 9Gb RAM.
While orthogonalization alone ig)* times faster in Tiled CNNs, other computations such as gradient calcula-
tions reduce its overall speed-up factor to 10x-250x.

8Each NORB example is a binocular pair of 96x96 images. To reducesgsow time, we downsampled
each 96x96 image to 32x32 pixels. Hence, each simple unit sees 128fpixe an 8x8 patch from each of the
two binocular images. The input was whitened using ZCA (Zero-PhasgGoents Analysis).



Table 1: Test set accuracy on NORB

[ Algorithm | Accuracy |
Tiled CNNs (with finetuning) (Section 6.2.2) 96.1%
Tiled CNNs (without finetuning) (Section 6.2.1) 94.5%

[ Standard TICA (10x overcomplete) [ 89.6% ]
Convolutional Neural Networks [19], [12] 94.1% , 94.4%
3D Deep Belief Networks [19] 93.5%
Support Vector Machines [20] 88.4%
Deep Boltzmann Machines [21] 92.8%

with which to learn the weight8l” of the Tiled CNN. We call this initial phase the unsupervised
pretraining phase.

After learning a feature representation from the unlabelath, we train a linear classifier on the
output of the Tiled CNN network (i.e., the activations of {h@oling units) on the labeled training
set. During this supervised training phase, only the waigfftthe linear classifier were learned,
while the lower weights of the Tiled CNN model remained fixed.

We train a range of models to investigate the role of the idle/sand the number of maps The test
set accuracy results of these models are shown in Figurdt4tlsing a randomly sampled hold-out
validation set 02430 examples (10%) taken from the training set, we selectedeodational model
with 48 maps that achieved an accuracy6f% on the test set, indicating that Tiled CNNs learned
purely on unsupervised data compare favorably to many-sfatiee-art algorithms on NORB.

6.2.2 Supervised finetuning of W

Next, we study the effects of supervised finetuning [23] arttodels produced by the unsupervised
pretraining phase. Supervised finetuning takes place afteupervised pretraining, but before the
supervised training of the classifier.

Using softmax regression to calculate the gradients, w&gyapagated the error signal from the
output back to the learned features in order to uptiétehe weights of the simple units in the Tiled
CNN model. During the finetuning step, the weighitswere adjusted without orthogonalization.

The results of supervised finetuning on our models are showigure 4-Right. As above, we used a
validation set comprisin@0% of the training data for model selection. Models with largambers
of maps tended to overfit and hence performed poorly on thdatédn set. The best performing
fine-tuned model on the validation set was the model with 1@srendk = 2, which achieved
a test-set accuracy &6.1%. This substantially outperforms standard TICA, as well fzes best
published results on NORB to this date (see Table 1).

100
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To test the ability of our pretrained featuresg €0
to generalize across rotations and lighting cons

6.2.3 Limited training data

acy

L . . > 40 M 22 Maps
ditions given only a weak supervised signaly )
we limited the labeled training set to compriseg 20 ¥ Raw Pixels
only examples with a particular set of view- 0
ing angles and lighting conditions. Specifically, All training data Limited training
NORB contains images spanning 9 elevations, data

18 azimuths and 6 lighting conditions, and we
trained our linear classifier only on data wit

elevations{2, 4, 6}, azimuths{10, 18, 24 and r?:lgure 5: Test set accuracy on full and limited

training sets

"We used an SVM [22] as the linear classifier and determin@dby cross-validation over
{107,1073,...,10*}. Models were trained with various untied map sizes {1, 2,9, 16,25} and number
of mapsl € {4,6,10,16}. Whenk = 1, we were able to use an efficient convolutional implementation to
scale up the number of maps in the models, allowing us to train additionallsnedle [ € {22, 36, 48}.
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Figure 4: Left: NORB test set accuracy across various titessiand numbers of maps, without
finetuning. Right: NORB test set accuracy, with finetuning.

lighting conditions{1, 3, 5}. Thus, for each object instance, the linear classifier selg2d training
images, making for a total of 675 out of the possible 2430@itng examples.

Using the pretrained network in Section 6.2.1, we trainethealr classifier on these 675 labeled
examples. We obtained an accuracy of 72.2% on the full téstssieg the model withk = 2 and
22 maps. A smaller, approximately 2.5x overcomplete modgi w = 2 and 4 maps obtained an
accuracy of 64.9%. In stark contrast, raw pixel performadropped sharply from 80.2% with a full
supervised training set, to a near-chance level of 20.8%isrlitmited training set (Figure 5).

These results demonstrate that Tiled CNNs perform well gidnlimited labeled data. This is most
likely because the partial weight-tying results in a refelly small number of learnable parameters,
reducing the need for large amounts of labeled data.

6.3 Classification on CIFAR-10

Table 2: Test set accuracy on CIFAR-10

[ Algorithm [ Accuracy |
Deep Tiled CNNs (s=4, with finetuning) (Section 6.3.2) 73.1%
Tiled CNNs (s=8, without finetuning) (Section 6.3.1) 66.1%

[ Standard TICA (10x, fixed-point orthogonalization) [ 56.1% |
Raw pixels [10] 41.1%
RBM (one layer, 10000 units, finetuning) [10] 64.8%
RBM (two layers, 10000 units, finetuning both layers) [10] 60.3%
RBM (two layers, 10000 units, finetuning top layer) [10] 62.2%
mcRBM (convolutional, trained on two million tiny images) [24] 71.0%
Local Coordinate Coding (LCC) [25] 72.3%
Improved Local Coordinate Coding (Improved LCC) [25] 74.5%

The CIFAR-10 dataset contains 50000 training images an6@. @&t images drawn from 10 cate-
gories® A summary of results for is reported in Table 2.

6.3.1 Unsupervised pretraining and supervised finetuning

As before, models were trained with tile size € {1,2,25}, and number of map$ <
{4,10,16,22,32}. The convolutional modeli( = 1) was also trained witlh = 48 maps. This
48-map convolutional model performed the best on our 10%-bat validation set, and achieved a
test set accuracy @6.1%. We find that supervised finetuning of these models on CIFARduUses
overfitting, and generally reduces test-set accuracy; adpemodel on the validation set, with 32
maps andc = 1, only achieve$5.1%.

8Each CIFAR-10 example is a 32x32 RGB image, also whitened using Z&Acé] each simple unit sees
three patches from three channels of the color image input (RGB).



6.3.2 Deep Tiled CNNs

We additionally investigate the possibility of training aep Tiled CNN in a greedy layer-wise
fashion, similar to models such as DBNs [6] and stacked awctmders [26, 18]. We constructed
this network by stacking two Tiled CNNs, each with 10 maps Aand 2. The resulting four-layer
network has the structudd’; — V; — W, — V5, where the weight$l/; are local receptive fields
of size 4x4, andV;, is of size 3x3, i.e., each unit in the third layer “looks” atxB3vindow of each
of the 10 maps in the first layer. These parameters were chnsan efficient architecture search
[27] on the hold-out validation set. The number of maps intttiel and fourth layer is also 10.

After finetuning, we found that the deep model outperformiégravious models on the validation
set, and achieved a test set accuracy3f%. This demonstrates the potential of deep Tiled CNNs
to learn more complex representations.

6.4 Effects of optimizing the pooling units

When the tile size is 1 (i.e., a fully tied model), aivea approach to learn the filter weights is to
directly train the first layer filters using small patcheg(e8x8) randomly sampled from the dataset,
with a method such as ICA. This method is computationallyevaitractive and probably easier to
implement. Here, we investigate if such benefits come atxperese of classification accuracy.

We use ICA to learn the first layer weights on CIFAR-10 with 1&fs. These weights are then used
in a Tiled CNN with a tile size of 1 and 16 maps. This method impared to pretraining the model
of the same architecture with TICA. For both methods, we daise finetuning. Interestingly, clas-
sification on the test set show that théveaapproach results in significantly reduced classificatio
accuracy: the rige approach obtainsl.54% on the test set, while pretraining with TICA achieves
58.66%. These results confirm that optimizing for sparsity of the@lp@ units results in better
features than just iiely approximating the first layer weights.

7 Discussion and Conclusion

Our results show that untying weights is beneficial for afastion performance. Specifically, we
find that selecting a tile size @& = 2 achieves the best results for both the NORB and CIFAR-10
datasets, even with deep networks. More importantly, mgtyveights allow the networks to learn
more complex invariances from unlabeled data. By visuadjf28, 29] the range of optimal stimulus
that activate each pooling unit in a Tiled CNN, we found unitat were scale and rotationally
invariant? We note that a standard CNN is unlikely to be invariant to ¢htesnsformations.

A natural choice of the tile size would be to set it to the size of the pooling regi@arwhich in this
case is 3. In this case, each pooling unit always combingslsiomits which are not tied. However,
increasing the tile size leads to a higher degree of freeddirei models, making them susceptible to
overfitting (learning unwanted non-stationary statist€she dataset). Fortunately, the Tiled CNN
only requires unlabeled data for training, which can be iolet cheaply. Our preliminary results
on networks pretrained using 250000 unlabeled images fnenTiny images dataset [30] show that
performance increases agoes from 1 to 3, flattening out &t= 4. This suggests that when there
is sufficient data to avoid overfitting, settihg= p can be a very good choice.

In this paper, we introduced Tiled CNNs as an extension of €Nt support both unsuper-
vised pretraining and weight tiling. The idea of tiling, oargal untying of filter weights, is a
parametrization of a spectrum of models which includes lholil;-convolutional and fully-untied
weight schemes as natural special cases. Furthermoresghefuocal receptive fields enable our
models to scale up well, producing massively overcomplepeasentations that perform well on
classification tasks. These principles allow Tiled CNNsdbieve competitive results on the NORB
and CIFAR-10 object recognition datasets. Importantliydiis directly applicable and can poten-
tially benefit a wide range of other feature learning models.
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