On Local Rewards and Scaling Distributed
Reinforcement Learning

J. Andrew Bagnell Andrew Y. Ng
Robotics Institute Computer Science Department
Carnegie Mellon University Stanford University
Pittsburgh, PA 15213 Stanford, CA 94305
dbagnel | @i . crmu. edu ang@s. stanford. edu
Abstract

We consider the scaling of the number of examples necessaghieve
good performance in distributed, cooperative, multi-ageimforcement
learning, as a function of the the number of agent$Ve prove a worst-
case lower bound showing that algorithms that rely solelaghobal
reward signal to learn policies confront a fundamentalttiniihey re-
quire a number of real-world examples that scales roughéglily in the
number of agents. For settings of interest with a very langalver of
agents, this is impractical. We demonstrate, howeverttiese is a class
of algorithms that, by taking advantagelotal reward signals in large
distributed Markov Decision Processes, are able to ensawd gerfor-
mance with a number of samples that scale®@sgn). This makes
them applicable even in settings with a very large numbegehtsn.

1 Introduction

Recently there has been great interest in distributedamiafment learning problems where
a collection of agents with independent action choicesrgite to optimize a joint perfor-
mance metric. Imagine, for instance, a traffic engineerimglieation where each traffic
signal may independently decide when to switch colors, artbpmance is measured by
aggregating the throughput at all traffic stops. Problentk stich factorizations where the
globalreward decomposes in to a sumadal rewards are common and have been studied
in the RL literature[10]

The most straightforward and common approach to solvinggtipeoblems is to apply one
of the many well-studied single agent algorithms to the glabward signal. Effectively,
this treats the multi-agent problem as a single agent pnoklih a very large action space.
Peshkin et al[9] establish that policy gradient learning factorizes intbeipendent policy
gradient learning problems for each agent using the glaweurd signal. Chang et 48]
use global reward signals to estimate effective local rd&dor each agent. Guestrin et
al. [5] consider coordinating agent actions using the global rdwate argue from an
information theoretic perspective that such algorithmesfandamentally limited in their
scalability. In particular, we show in Section 3 that as acfion of the number of agents
n, such algorithms will need to sk€l(n) trajectories in the worst case to achieve good
performance.

We suggest an alternate line of inquiry, pursued as well bgrotesearchers (including

!Big-(2 notation omits logarithmic terms, similar to how iggnotation drops constant values.

notably[10]), of developing algorithms that capitalize on the avaliabbf local reward
signals to improve performance. Our results show that suedl information can dramat-
ically reduce the number of examples necessary for leatirig(log n). One approach
that the results suggest to solving such distributed probis to estimate model parameters
from all local information available, and then to solve thsulting model offline. Although
this clearly still carries a higkomputationaburden, it is much preferable to requiring a
large amount of real-world experience. Further, usefutaxmate multiple agent Markov
Decision Process (MDP) solvers that take advantage of legedrd structure have been
developed|[4]

2 Preliminaries

We consider distributed reinforcement learning problemsdeled as MDPs, in which
there aren (cooperative) agents, each of which can directly influendg a small number
of its neighbors. More formally, let there beagents, each with a finite state spatef
size|S| states and a finite action spadeof size|A|. The joint state space of all the agents
is thereforeS™, and the joint action spacé™. If s; € S™ is the joint state of the agents at

time ¢, we will uses; () to denote the state of agentSimilarly, Ietat denote the action of
agent.

For each agent € {1,...,n}, we letneigh() C {1,...,n} denote the subset of
agents that’s state directly influences. For notational convenience,assume that if
i € neigh(j), thenj € neigh(i), and thati € neigh(s). Thus, the agents can be viewed
as living on the vertices of a graph, where agents have atdiraence on each other’s
state only if they are connected by an edge. This is similénéayraphical games formal-
ism of [7], and is also similar to the Dynamic Bayes Net (DBN)-MDP folisras of[6]
and[2]. (Figure 1 depicts a DBN and an agent influence graph.) DBN&tisms allow
the more refined notion of directionality in the influencevizetn neighbors.

More formally, each agent is associated with a CPT (conditional probability table)

Pi(s() s oy wheres(" ") denotes the state of ageirs neighbors at time
t. Given the joint actioraz of the agents the joint state evolves according to

D(St41]5¢, ar) HP 5t+1 (neigh(i))a af))- 1)

For simplicity, we have assumed that agéststate is directly influenced by the states of
neigh(z) but not their actions; the generalization offers no diffi@d. The initial state;
is distributed according to some initial-state distribatD.

A policy is a mapr : S™ — A™. Writing 7 out explicitly as a vector-valued function, we
havern(s) = (m1(s),...,m(s)), wherer;(s) : S™ — A s the local policy of agent For
some applications, we may wish to consider only policiesliiciv agent chooses its local
action as a function of only its local stat€) (and possibly its neighbors); in this case,
can be restricted to depend only gfv.

Each agent haslacal reward function R;(s”, (")), which takes values in the unit inter-
val [0, 1]. The total payoff in the MDP at each stepR$s, a) = (1/n) >, R(s®,a®).
We call thisR(s, a) theglobal reward function, since it reflects the total reward received
by the joint set of agents. We will consider the finite-horizetting, in which the MDP
terminates aftef” steps. Thus, the utility of a policy in an MDP M is

U(m) = Un(m) = Es;op [V (ZZR 5t 7%
t 1 =1
In the reinforcement learning setting, the dynamics (CRifis) rewards of the problem are
unknown, and a learning algorithm has to take actions in tlll°PMind use the resulting
observations of state transitions and rewards to learn d golicy. Each “trial” taken by a
reinforcement learning algorithm shall consist &f @tep sequence in the MDP.

Figure 1:(Left) A DBN description of a multi-agent MDP. Each row of (round) eedn the DBN
corresponds to one agent. (Right) A graphical depiction of the influeffeets in a multi-agent
MDP. A connection between nodes in the graph implies arrows connecémpttes in the DBN.

Our goal is to characterize the scaling of the sample coritgléo various reinforcement
learning approaches (i.e., how many trials they requirerdeinto learn a near-optimal
policy) for large numbers of agenits Thus, in our bounds below, no serious attempt has
been made to make our bounds tight in variables othersthan

3 Global rewards hardness result

Below we show that if an RL algorithm uses only the global nelvsignal, then there
exists a very simple MDP—one with horizdfi,= 1, only one state/trivial dynamics, and
two actions per agent—on which the learning algorithm witjuiee Q2(n) trials to learn
a good policy. Thus, such algorithms do not scale well todargmbers of agents. For
example, consider learning in the traffic signal problencdbed in the introduction with
n = 100, 000 traffic lights. Such an algorithm may then require on the pafe 00, 000
days of experience (trials) to learn. In contrast, in Secfiove show that if a reinforcement
learning algorithm is given access to the local rewardsarit lse possible to learn in such
problems with an exponentially smalléxlog n) sample complexity.

Theorem 3.1 Letany0 < e < 0.05 be fixed. Let any reinforcement learning algoritidm
be given that only uses tlgdobal rewardsignal R(s), and does not use the local rewards
Ri(s) to learn (other than through their sum). Then there existdviDP with time
horizonT' = 1, so that:

1. The MDP is very “simple” in that it has only one stat&{ = 1, |S™| = 1); trivial
state transition probabilities (sinc€ = 1); two actions per agent 4| = 2); and
deterministic binary (0/1)-valued local reward functions

2. In order for £ to output a policy# that is near-optimal satisfyirfglU (#) >
max, U(m) — €,it is necessary that the number of triatlsbe at least

0.32n +log(1/4)
Tlogntn A

Proof. For simplicity, we first assume th4tis a deterministic learning algorithm, so that
in each of them trials, its choice of action is some deterministic functafrthe outcomes
of the earlier trials. Thus, in each of the trials, £ chooses a vector of actioase A,
and receives the global reward sigi(s,a) = 1 Y7 | R(s,a). In our MDP, each
local rewardR(s*), a(V) will take values only 0 and 1. Thug(s, a) can take onlys + 1
different values (namely;, %7 ...,). SinceT’ = 1, the algorithm receives only one such
reward value in each trial.

Letry,...,r, be them global reward signals received l#/in the m trials. Sincecl is
deterministic, its output policyt will be chosen as some deterministic function of these

2For randomized algorithms we consider instead the expectatiéh(@f under the algorithm’s
randomization.

rewardsry, ..., r,. Butthe vecto(ry, ..., r,,) can take on onlyn+1)™ different values
(since eachr; can take only: + 1 different values), and thusitself can also take only at
most(n + 1)™ different values. Lefl,, denote this set of possible values far(|II,,,| <
(n+1)m).

Call each local agent’s two actions, a>. We will generate an MDP with randomly chosen
parameters. Specifically, each local rew&ds?), a(?) function is randomly chosen with
equal probability to either give reward 1 for actien and reward O for action,; or vice
versa. Thus, each local agent has one “right” action thatsgieward 1, but the algorithm
has to learn which of the two actions this is. Further, by &g the right actions, the
optimal policyz* attainsU (7*) = 1.

Fix any policyr. ThenUy(r) = £ 3" | R(s®, 7(s(")) is the mean of: independent
Bernoulli(0.5) random variables (since the rewards arsehoandomly), and has expected
value 0.5. Thus, by the Hoeffding inequalify(Uy; (7) > 1—2¢) < exp(—2(0.5—2¢)%n).
Thus, taking a union bound over all policiesc 11,,, we have

PEr ey stUy(r) >1—2¢) < |M|exp(—2(0.5 — 2¢)*n))

< (n4+1)™exp(—2(0.5 — 2¢)%n) 3)
Here, the probability is over the random MDP. But sinceL outputs a policy ifll,,, the
chance ofL outputting a policyr with Uy, (7) > 1 — 2¢ is bounded by the chance that
there exists such a policy if,;. Thus,
P(Un(7) > 1 —2¢) < (n+1)™exp(—2(0.5 — 2¢)?n). (4)
By setting the right hand side tg'4 and solving form, we see that so long as
2(0.5 — 2¢)°n + log(1/4) _ 0.32n + log(1/4) 5
log(n + 1) - log(n+1) 7 ®)
we have thatP (U, (7)) > 1 — 2¢) < 1/4. (The second equality above follows by taking
€ < 0.05, ensuring that no policy will be withifi.1 of optimal.) Thus, under this condition,
by the standard probabilistic method argumiidf there must be at least one such MDP
under whichc fails to find ane-optimal policy.
For randomized algorithmg, we can define for each string of input random numbers
to the algorithmw a deterministic algorithnC¥. Givenm samples above, the expected
performance of algorithn“ over the distribution of MDPs
E,on[L¥] < Pr(Um(£Y)>1—2€e)1 4 (1 = Pr(Un(£Y) > 1 —2¢))(1 — 2¢)
1

3
-+ —(1—2¢ 1-—
< 4+4(€) < €

Since

By Ep() [Unm (£7)] = Epw) Epan [Un (£7)] < Ep)[1 — €]
it follows again from the probabilistic method there mustabdeast one MDP for which
the £ has expected performance less thane. |

4 Learning with local rewards

Assuming the existence of a good exploration policy, we nleansa positive result that if
our learning algorithm has access to the local rewards, ithisrpossible to learn a near-
optimal policy after a number of trials that grows ombgarithmically in the number of
agentsn. In this section, we will assume that the neighborhood stinec(encoded by
neigh(4)) is known, but that the CPT parameters of the dynamics ancethard functions
are unknown. We also assume that the size of the largestbwighod is bounded by
max; |neigh(i)| = B.

Definition. A policy mexplore IS a(p, v)-exploration policy if, given any, any configuration
of statess(neigh(i)) ¢ glneigh(i)l and any action(” e A, on a trial of lengtHl” the policy
Texplore NAS at least a probability - p” of executing actiom(”) while i and its neighbors
are in states(neigh(i))

Proposition 4.1: Suppose the MDP’s initial state distribution is random, kattthe state

) of each agent is chosen independently from some distribution Further, assume
that D, assigns probability at least > 0 to each possible state valuec S. Then
the “random” policy = (that on each time-step chooses each agent’s action urlifcatn
random overA) is a (p, l—j”)-exploration policy.

Proof. For any agent, the initial state of("*e"(?)) has has at least@’ chance of being
any particular vector of values, and the random action pdias al /| A| chance of taking
any particular action from this state. |

In general, it is a fairly strong assumption to assume thahaxe an exploration policy.
However, this assumption serves to decouple the problempbbeation from the “sample
complexity” question of how much data we need from the MDRHjxally, it guarantees
that we visit each local configuration sufficiently often tvh a reasonable amount of data
to estimate each CPY.

In the envisioned procedure, we will execute an explorapoticy for m trials, and
then use the resulting data we collect to obtain the maxirfikatihood estimates for the

CPT entries and the rewards. We call the resulting estinﬁtégﬂsgneigh(i)), a{"y and

R(s® a(") .4 The following simple lemma shows that, with a number of fridilat grows
only logarithmically inn, this procedure will give us good estimates for all CPTs axcdll
rewards.

Lemma4.2: Letanye, > 0,6 > 0 be fixed. Supposgeigh(i)| < B for all 4, and let
a (p, v)-exploration policy be executed fot trials. Then in order to guarantee that, with
probability at leastl — §, the CPT and reward estimates afgaccurate:

~r (3 neigh(s i neigh(s % . % neigh(s %
O o) 2) < o fora, ol s, of)

[R(s",at)| = R(s",al")| <& foralli,s®, o, (6)
it suffices that the number of trials be

11
m = O((logn) - poly (. 5.1, 41,1/ (vp"), B T)).

Proof (Sketch). Given c examples to estimate a particular CPT entry (or a rewara tabl
entry), the probability that this estimate differs from thee value by more tha#, can be
controlled by the Hoeffding bound:

neigh (2 7 i neigh (% 7
P([p(s{) s) afy — p(si) s 0l > ¢5) < 2exp(—2€3e).

Each CPT has at mosti||S|5*! entries and there are such tables. There are also
n|S||A| possible local reward values. Taking a union bound over frsstting our prob-
ability of incorrectly estimating any CPTs or rewards d®, and solving forc gives

c> E% 1og(w). For each agentwe see each local configurations of states and
0
actions(s™eib()) (1)) with probability> p”v. Form trajectories the expected number

3Further, it is possible to show a stronger version of our result thantétatibelow, showing that
a random action policy can always be used as our exploration policytanabsample complexity
bound with the same logarithmic dependencenqibut significantly worse dependencies Brand
B). This result uses ideas from the random trajectory methd@]ofvith the key observation that
local configurations that are not visited reasonably frequently by tigora exploration policy will
not be visited frequently bany policy, and thus inaccuracies in our estimates of their CPT entries
will not significantly affect the result.

“We letp(s.”, | D) () be the uniform distribution |f(s(“e‘gh(’)) a{”) was never ob-
served in the training data, and similarly &ts”, o) = 0if R(s",a") was never observed.

) (neigh(i)) (i)
of samples we see for each CPT entry is at legstv. Call S,(,f) the number of
samples we've seen of a configuratiehc's"(*) 4(9)) in m trajectories. Note then that:

P(Sg<xleig1.<i>>7a<i>) <0< P(S(’("e‘gh(D) a0y [S(SO'S'E-“ 0, ‘))] <c— mpBy)_
and another application of Hoeffding’s bound ensures that:

P(Sy(i(neigl1(i))7a(i)) B E[S?(rf(neigh(i))’a(i)) (c B mpBy)Q)_

-2
<c—mpPr) <
< e—mpPv) < exp(

Applying again the union bound to ensure that the probghififailure here is< /2 and
solving form gives the result. d
Definition. Define theradius of influencer(t) aftert steps to be the maximum number of
nodes that are withihsteps in the neighborhood graph of any single node.

Viewed differently,-(¢) upper bounds the number of nodes inthh timeslice of the DBN
(as in Figure 1) which are decendants of any single node id-ttetimeslice. In a DBN
as shown in Figure 1, we hav¢t) = O(¢). If the neighborhood graph is a 2-d lattice in
which each node has at most 4 neighbors, theih = O(t?). More generally, we might
expect to have (t) = O(t?) for “most” planar neigborhood graphs. Note that, even in the
worst case, by our assumption of each node ha¥dngeighbors, we still have the bound
r(t) < Bt, which is a bound independent of the number of agents

Theorem 4.3: Let anye > 0,0 > 0 be fixed. Supposeeigh(i)| < B for all 4, and let a
(p, v)-exploration policy be executed for trials in the MDP M. Let M be the maximum
likelihood MDP, estimated from data from thesetrials. LetII be a policy class, and let

. U.
#t = argmax ()

be the best policy in the class, as evaluatedidn Then to ensure that, with probability
1 — 6, we have thafr is near-optimal withinI, i.e., that

U]\/[()>maXU]w() €,

it suffices that the number of trials be:
m = O((logn) - poly(1/e,1/6,|S],|4|, 1/(VpB))7 B,T,r(T)).

Proof. Our approach is essentially constructive: we show thatrigmemlicy, finite-horizon
value-iteration using approximate CPTs and rewards inaitkbps will correctly estimate
the true value function for that policy withiy2. For simplicity, we assume that the initial
state distribution is known (and thus the sameVinand M); the generalization offers no
difficulties. By lemma (4.2) withn samples we can know both CPTs and rewards with the
probability required within any required.
Note also that for any MDP with the given DBN or neighborhooaiai structure (including
both M/ and /) the value function for every policy and at each time-step has a property
of bounded variation
r(T)T

n
This follows since a change in state can effect at m@gg) agents’ states, so the resulting
change in utility must be bounded byT")T'/n.
To compute a bound on the error in our estimate of overalityitite compute a bound
on the error induced by a one-step Bellman bacHB:f/ BVHOO This quantity can
be bounded in turn by considering the sequence of partiatyect backup operators

By, ..., B, whereB; is defined as the Bellman operator for polieyising the exact tran-
S|t|ons and rewards for agents2, .. ., i, and the estimated transitions rewards/transitions

If/t(s(l),...s("))—%(s(”, G S() (i+1)7.”’s(n)‘§

changed’

Figure 2:(Left) Scaling of performance as a function of the number of traject@@en for a global
reward and local reward algorithms. (Right) Scaling of the numbermpses necessary to achieve
near optimal reward as a function of the number of agents.

foragents + 1, ..., n. From this definition it is immediate that the total error gai&alent
to the telescoping sum:
||[BV = BV||oo = [|BoV = BiV + BiV — ... + B, 1V — B, V]| @

That sum is upper-bounded by the sum of term-by-term efdts, || B;V — Bi 11V || -
We can show that each of the terms in the sum is less ¢haT')(T + 1)/n since the
Bellman operatorsi%if/ — BHJ/ differ in the immediate reward contribution of agent
i+ 1 by < ¢y and differ in computing the expected value of the future eddy

EH;-':—ll p(5{+1 |s¢,m) H_;'l:z‘+2 p(81+1 [s¢,m) [Zr:l Ap(S;ii ‘Sh ﬂ-)‘/t""l (S)]’

with Ap(siTi|s;,m) < e the difference in the CPTs betwedd and B;.,. By the
bounded variation argument this total is then less thaiT)7'|S|/n. It follows then
S IBiV — Biz1Vl|oo < €0 r(T) (T + 1)|S]. We now appeal to finite-horizon bounds
on the error induced by Bellman backudd] to show that thé|V — V|| < T||BV —
BV || < T(T +1) ¢ 7(T)|S|. Taking the expectation df with respect to the initial
state distributionD and settingn according to Lemma (4.2) withy = W
completes the proof. a

5 Demonstration

We first present an experimental domain that hews closehetthieory in Section (3) above
to demonstrate the importance of local rewards. In our smppbblem there are = 400
independent agents who each choose an acti¢f,ih}. Each agent has a “correct” action
that earns it rewar&®; = 1 with probability0.8, and reward with probability0.2. Equally,

if the agents chooses the wrong action, it earns revigare: 1 with probability 0.2.

We compare two methods on this problem. Our filsbal algorithm uses only the global
rewardsR and uses this to build a model of the local rewards, and firsdlyes the re-
sulting estimated MDP exactly. The local reward functiors laarnt by a least-squares
procedure with basis functions for each agent. The secayatitdm also learns a local
reward function, but does so taking advantage of the loeghmds it observes as opposed
to only the global signal. Figure (2) demonstrates the adps of learning using a global
reward signaP. On the right in Figure (2), we compute the time required tde\&hi of
optimal reward for each algorithm, as a function of the nundi@gents.

In our next example, we consider a simple variant of the ragént SSADMIN® prob-

5A gradient-based model-free approach using the global reward|sigrsalso tried, but its
performance was significantly poorer than that of the two algorithms tehic Figure (2, left).

8In SysADMIN there is a network of computers that fail randomly. A computer is moréylike
fail if a neighboring computer (arranged in a ring topology) fails. Thal goto reboot machines in
such a fashion so a maximize the number of running computers.

lem[4]. Again, we consider two algorithms: a globakRFORCE[9] learner, and a B
INFORCE algorithm run using only local rewards, even through theldReINFORCEal-
gorithm run in this way is not guaranteed to converge to tbbajly optimal (cooperative)
solution. We note that the local algorithm learns much maiieldy than using the global
reward. (Figure 3) The learning speed we observed for tHeadjdgorithm correlates well
with the observations if5] that the number of samples needed scales roughly linearly in
the number of agents. The local algorithm continued to reqessentially the same number
of examples for all sizes used (up to over 100 agents) in qoeraxents.

\
el i e e
i T S e

PR

o5 jy osf
P
0.45, ry 0.45

0 50 100 15 200 25 30 30 40 450 500 0 50 100 15 200 25 300 30 40 450 500

Figure 3:ReEINFORCEapplied to the multi-agent&ADMIN problem.Localrefers to REINFORCE
applied using only neighborhood (local) rewards whilgbalrefers to standard RNFORCE(applied
to the global reward signal). (Left) shows averaged reward pednce as a function of number of
iterations for 10 agents. (Right) depicts the performance for 20 agents.

References

[1] N. Alon and J. Spencefhe Probabilistic MethodWiley, 2000.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Straicassumptions and
computational leveragelournal of Artificial Intelligence Researcth999.

[3] Y.Chang, T. Ho, and L. Kaelbling. All learning is local: Multi-agent leagin global reward
games. IMAdvances in NIPS 1£2004.

[4] C. Guestrin, D. Koller, and R. Parr. Multi-agent planning with factoredR8D InNIPS-14
2002.

[5] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated reinforceteaming. INICML, 2002.
[6] M. Kearns and D. Koller. Efficient reinforcement learning in factomatps. InlJCAI 16, 1999.
[71 M. Kearns, M. Littman, and S. Singh. Graphical models for game théofyAl, 2001.

[8] M. Kearns, Y. Mansour, and A. Ng. Approximate planning in large PGMD¥ia reusable
trajectories.(extended version of paper in NIPS 12999.

[9] L. Peshkin, K-E. Kim, N. Meleau, and L. Kaelbling. Learning to cooperaa policy search.
In UAI 16, 2000.

[10] J. Schneider, W. Wong, A. Moore, and M. Riedmiller. Distributed valueefions. InICML,
1999.

[11] R. Williams and L. Baird. Tight performance bounds on greedy policaset on imperfect
value functions. Technical report, Northeastern University, 1993.

