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Abstract

We consider the problem of modeling a helicopter’s dynarba&sed on
state-action trajectories collected from it. The conttitmu of this pa-
per is two-fold. First, we consider the linear models sucteamed by
CIFER (the industry standard in helicopter identification), ahdwg that
the linear parameterization makes certain properties ofuhcal sys-
tems, such as inertia, fundamentally difficult to capturea pkbpose an
alternative, acceleration based, parameterization text dot suffer from
this deficiency, and that can be learned as efficiently frota.ddecond, a
Markov decision process model of a helicopter’s dynamicsldiexplic-
itly model only the one-step transitions, but we are oftderigsted in a
model’s predictive performance over longer timescaleshispaper, we
present an efficient algorithm for (approximately) minimg the pre-
diction error over long time scales. We present empiricaliits on two
different helicopters. Although this work was motivatedthg problem
of modeling helicopters, the ideas presented here are@enad can be
applied to modeling large classes of vehicular dynamics.

1 Introduction

In the last few years, considerable progress has been mdidelimg good controllers for
helicopters. [7, 9, 2, 4, 3, 8] In designing helicopter colérs, one typically begins by
constructing a model for the helicopter’s dynamics, ana tirges that model to design a
controller. In our experience, after constructing a sinarlémodel) of our helicopters, pol-
icy search [7] almost always learns to fly (hover) very welsimulation, but may perform
less well on the real-life helicopter. These differencesvieen simulation and real-life
performance can therefore be directly attributed to ermothe simulator (model) of the
helicopter, and building accurate helicopter models remai key technical challenge in
autonomous flight. Modeling dynamical systems (also retéto as system identification)
is one of the most basic and important problems in controth\af emphasis on helicopter
aerodynamics, in this paper we consider the problem of ilegrgood dynamical models
of vehicles.

Helicopter aerodynamics are, to date, somewhat poorlyrstated, and (unlike most fixed-
wing aircraft) no textbook models will accurately predive tdynamics of a helicopter from
only its dimensions and specifications. [5, 10] Thus, attlpag of the dynamics must be
learned from datacIFER®R) (Comprehensive Identification from Frequency Responses) i
the industry standard for learning helicopter (and othtarmyaft) models from data. [11, 6]



CIFERUses frequency response methods to identify a linear model.

The models obtained fromIFER fail to capture some important aspects of the helicopter
dynamics, such as the effects of inertia. Consider a settindpich the helicopter is flying
forward, and suddenly turns sideways. Due to inertia, thiedyer will continue to travel
in the same direction as before, so that it has “sideslip,amireg that its orientation is
not aligned with its direction of motion. This is a non-limeffect that depends both on
velocity and angular rates. The linearrER model is unable to capture this. In fact, the
models used in [2, 8, 6] all suffer from this problem. The cofahe problem is that
the naive body-coordinate representation used in all thedings makes it fundamentally
difficult for the learning algorithm to capture certain pesges of dynamical systems such
as inertia and gravity. As such, one places a significanthyiee burden than is necessary
on the learning algorithm.

In Section 4, we propose an alternative parameterizatiomfweling dynamical systems
that does not suffer from this deficiency. Our approach caridveed as a hybrid of physi-

cal knowledge and learning. Although helicopter dynamtesret fully understood, there

are also many properties—such as the direction and magrofuateeleration due to grav-

ity; the effects of inertia; symmetry properties of the dyrieal system; and so on—which
apply toall dynamical systems, and which are well-understood. All &f ¢lan therefore be

encoded as prior knowledge, and there is little need to ddrfeat our learning algorithms

learn them. It is not immediately obvious how such prior kienlge can be encoded into
a complex learning algorithm, but we will describe an aacegien based parameterization
in which this can be done.

Given any model class, we can choose the parameter learritegan used to learn a
model within the classcIFER finds the parameters that minimize a frequency domain er-
ror criterion. Alternatively, we can minimize the squarateestep prediction error in the
time domain. Forward simulation on a held-out test set imadsrd way to assess model
quality, and we use it to compare the linear models learnadjusFER to the same linear
models learned by optimizing the one-step prediction earsuggested in [1], one can
also learn parameters so as to optimize a “lagged critetloat’directly measures simula-
tion accuracy—i.e., predictive accuracy of the model ovaglome scales. However, the
EM algorithm given in [1] is expensive when applied in a contius state-space setting. In
this paper, we present an efficient algorithm that approteéipaptimizes the lagged cri-
terion. Our experiments show that the resulting model abastly outperforms the linear
models trained usingIFER or using the one-step error criterion. Combining this wité t
acceleration based parameterization results in our bésbpter model.

2 Helicopter state, input and dynamics

The helicopter state comprises its positionz{ y, z), orientation (roll¢, pitch 6, yaw
w), velocity (&, y, 2) and angular velocityd, 6,w). The helicopter is controlled via a 4-
dimensional action space:

1. u; andus: The longitudinal (front-back) and latitudinal (left-h9) cyclic pitch
controls cause the helicopter to pitch forward/backwardideways, and can
thereby also affect acceleration in the longitudinal anitiidinal directions.

2. ug: The tail rotor collective pitch control affects tail rottirrust, and can be used
to yaw (turn) the helicopter.

3. u4: The main rotor collective pitch control affects the pitalgée of the main
rotor’s blades, by rotating the blades around an axis threg along the length of
the blade. As the main rotor blades sweep through the airgghdting amount of
upward thrust (generally) increases with this pitch antjlas this control affects
the main rotor’s thrust.



Following standard practice in system identification ([B, €he original 12-dimensional
helicopter state is reduced to an 8-dimensional state septed in body (or robot-centric)
coordinatess® = (¢, 0, 4,7, 2, b, é,u‘;). Where there is risk of confusion, we will use su-
perscripts andb to distinguish between spatial (world) coordinates andybmabrdinates.
The body coordinate representation specifies the helicetdge using a coordinate frame
in which thez, y, andz axes are forwards, sideways, and down relative to the duoréen
entation of the helicopter, instead of north, east and ddvns, 4’ is the forward velocity,
whereast® is the velocity in the northern directionp @ndd are always expressed in world
coordinates, because roll and pitch relative to the bodydinate frame is always zero.)
By using a body coordinate representation, we encode intmodel certain “symmetries”
of helicopter flight, such as that the helicopter’s dynanaiesthe same regardless of its ab-
solute position(z, y, z) and headingw (assuming the absence of obstacles). Even in the
reduced coordinate representation, only a subset of tte\stdables needs to be modeled
explicitly using learning. Given a model that predicts ofilg angular velocitiesp, 6, w),

we can numerically integrate to obtain the orientatignd, w).

We can integrate the reduced body coordinate states tonotht@icomplete world coor-
dinate states. Integrating body-coordinate angular vtéscto obtain world-coordinate
angles is nonlinear, thus the model resulting from this @ssds necessarily nonlinear.

3 Linear model
The linear model we learn withiFER has the following form:

Bir =3 = (Codt + Cr(w)+ Dr) At ity — b = (Col — 901) A,
0bir — 00 = (Cobl + Ca(un)e + D2) AL, by — b = (Cyil + 960 + Do) At,
Wby — @ = (Codl + Cs(us)e + Ds) At, 20y, — 2 = (sz'f 4 g+ Ca(ua)e + D4) At,

brp1 — b = PLAL, Or41 — 0 = O7 AL

Hereg = 9.81m/s? is the acceleration due to gravity adst is the time discretiza-
tion, which is0.1 seconds in our experiments. The free parameters in the nzodel
Cy, Cy,C, Cy, Cy, C,,, which model damping, anfdy, C1, D1, Ca, D2, C3, D3, Cy, Dy,
which model the influence of the inputs on the stdt@his parameterization was chosen
using the “coherence” feature selection algorithncfER. CIFER takes as input the state-
action sequencé(i?, g2, 22, ¢, 6,00, ¢y, 04, us) }+ and learns the free parameters using a
frequency domain cost function. See [11] for details.

Frequency response methods (as usedifER) are not the only way to estimate the free
parameters. Instead, we can minimize the average squagditiion error of next state
given current state and action. Doing so only requires fimegression. In our experi-
ments (see Section 6) we compare the simulation accuracyseveral time-steps of the
differently learned linear models. We also compare to lisarby directly optimizing the
simulation accuracy over several time-steps. The latterageh is presented in Section 5.

4 Acceleration prediction model

Due to inertia, if a forward-flying helicopter turns, it whiave sideslip (i.e., the helicopter
will not be aligned with its direction of motion). The linearodel is unable to capture the
sideslip effect, since this effect depends non-linearly@ocity and angular rates. In fact,
the models used in [2, 8, 6] all suffer from this problem. Mgenerally, these models
do not capture conservation of momentum well. Although fcduiengineering of (many)
additional non-linear features might fix individual effesuch as, e.qg., sideslip, itis unclear
how to capture inertia compactly in the naive body-coortimepresentation.

1Dy captures the sideways acceleration caused by the tail rotor’s thrust.



From physics, we have the following update equation foraigjan body-coordinates:
(i3 2)par = R ((6,0,002) # (@3, 208 + (i 3, £)A0) 1
Here,R ((d), 9, w)fg) is the rotation matrix that transforms from the body-cooade frame

at timet to the body-coordinate frame at time- 1 (and is determined by the angular veloc-
ity (giS, 9,&))? at timet); and (%, i, #)? denotes the acceleration vector in body-coordinates
at timet. Forces and torques (and thus accelerations) are ofterlyadenple function of
inputs and state. This suggests that a model which learnstticp the accelerations, and
then uses Eqgn. (1) to obtain velocity over time, may perforel. wSuch a model would
naturally capture inertia, by using the velocity update QhE1). In contrast, the models
of Section 3 try to predict changes in body-coordinate vigtloBut the change in body-
coordinate velocity does not correspond directly to physical accelerations, because the
body-coordinate velocity at times¢ and ¢ + 1 are expressed in different coordinate frames.
Thus,i?, , —4? is not the forward acceleration—becatige, and: are expressed in dif-
ferent coordinate frames. To capture inertia, these maletsfore need to predict not only
the physical accelerations, but also the non-linear infltaaf the angular rates through the
rotation matrix. This makes for a difficult learning probleamd puts an unnecessary bur-
den on the learning algorithm. Our discussion above hasséaton linear velocity, but a
similar argument also holds for angular velocity.

The previous discussion suggests that we leapredict physical accelerations and then
integrate the accelerations to obtain the state trajexstofio do this, we propose:

O = Cyi + Cr(wr); + D1, i = Cpib + (g2)%,
0 = Coby + Ca(uz)y + Da, i1 = Cyit + (gy)} + Do,

0 = Colr + Cs(ug)e + D3, 2 = Co2/ +(g:); + Ca(ua)e + Da.
Here(g.)?, (g,)%, (9.)? are the components of the gravity acceleration vector ih eéthe
body-coordinate axes at timteandC', D. are the free parameters to be learned from data.
The model predicts accelerations in the body-coordinataéd; and is therefore able to take
advantage of the same invariants as discussed earlierasuotariance of the dynamics to
the helicopter'sz, y, z) position and heading.(). Further, it additionally captures the fact
that the dynamics are invariant to roff)(and pitch @) once the (known) effects of gravity
are subtracted out.

Frequency domain technigques cannot be used to learn theemtaen model above, be-
cause it is non-linear. Nevertheless, the parameters cdeabeed as easily as for the
linear model in the time domain: Linear regression can b tséind the parameters that
minimize the squared error of the one-step prediction irkecation?

5 Thelagged error criterion

To evaluate the performance of a dynamical model, it is stethdractice to run a simula-
tion using the model for a certain duration, and then comff@simulated trajectory with

the real state trajectory. To do well on this evaluatioreciitn, it is therefore important for

the dynamical model to give not only accurate one-step ptiedis, but also predictions

that are accurate at longer time-scales. Motivated by fthisuggested learning the model
parameters by optimizing the following “lagged criterion”

T—H —~H o 2

=1 Dh=1 18t+nt — St+nll3- (2)
Here, H is the time horizon of the simulation, and, ;, is the estimate (from simulation)
of the state at timeé + h given the state at time

2Note that, as discussed previously, the one-step difference of badglicate velocities is not
the acceleration. To obtain actual accelerations, the velocity atttimé must be rotated into the
body-frame at before taking the difference.



Unfortunately the EM-algorithm given in [1] is prohibitileexpensive in our continuous
state-action space setting. We therefore present a simpléaat algorithm for (approx-
imately) minimizing the lagged criterion. We begin by calesing a linear model with
update equation:

St41 — st = Asy + Buy, 3)

where A, B are the parameters of the model. Minimizing the one-stedigtien error
would correspond to finding the parameters that minimizesitpeected squared difference
between the left and right sides of Eqn. (3).

By summing the update equations for two consecutive timgsstee get that, for simula-
tion to be exact over two time steps, the following needs 1d:ho

Styo — St = As; + Buy + A§t+1\t + Bug4g. (4)
Minimizing the expected squared difference between thealed right sides of Eqn. (4)
would correspond to minimizing the two-step predictioroerrMore generally, by sum-
ming up the update equations fhrconsecutive timesteps and then minimizing the left
and right sides’ expected squared difference, we can meintiie/-step prediction error.
Thus, it may seem that we can directly solve for the parammetet minimize the lagged
criterion of Egn. (2) by running least squares on the appatgpset of linear combinations
of state update equations.

The difficulty with this procedure is that the intermediatatss in the simulation—for
examples, |, in Eqn. (4)—are also an implicit function of the parametérand B. This

is because, |, represents the result of a one-step simulation fegrasing our model.
Taking into account the dependence of the intermediatesstat the parameters makes the
right side of Eqn. (4) non-linear in the parameters, and the®ptimization is non-convex.
If, however, we make an approximation and neglect this ddgece, then optimizing the
objective can be done simply by solving a linear least squareblem.

This gives us the following algorithm. We will alternate Wween a simulation step that
finds the necessary predicted intermediate states, andtastpaares step that solves for the
new parameters.

LEARN-LAGGED-LINEAR:

1. Use least squares to minimize the one-step squared prediction Eedon to obtain an
initial model A, B©®_ Set; = 1.

2. Forallt=1,...,T,h=1,..., H, simulate in the current model to compuig , ;.
3. Solve the following least squares problem:

(A,B) =argmina g 3, S5, [(se4n — 50) — (020 ASeprps + Bursr)|3.
4, SetAY) = (1 - a)AD 4 a4, B*Y = (1 - a)BY + aB?
5. If [[AGH) — AD)|| 4 || BE+HD — BO|| < ¢ exit. Otherwise go back to step 2.

Our helicopter acceleration prediction model is not of tirapte form s,y — s, =

As; + Bu; described above. However, a similar derivation still agxaliThe change in
velocity over several time-steps corresponds to the surhaxiges in velocity over several
single time-steps. Thus by adding the one-step accelarptediction equations as given
in Section 4, we might expect to obtain equations corresipgnid the acceleration over
several time-steps. However, the acceleration equatiodiferent time-steps are in dif-
ferent coordinate frames. Thus we first need to rotate thatems and then add them. In
the algorithm described below, we rotate all acceleratiottsthe world coordinate frame.

The acceleration equations from Section 4 give(iisj, )? = Aposst + Bposu, and

3This step of the algorithm uses a simple line search to choose the stapsize



Figure 1: The XCell Tempest (a) and the Bergen Industrial Twin (bYluis our experiments.

(6,0,0)0 = Avorst + Brogtis, WhereA,oq, Bpos, Arot, Brot are (sparse) matrices that con-

tain the parameters to be learrfedhis gives us the EARN-LAGGED-ACCELERATION
algorithm, which is identical to EARN-LAGGED-LINEAR except that step 3 now solves
the following least squares problems:

T—-H H h—1

(A_P057 BPOS) = arg l}llg || Z Rbt*ﬂ_ﬂs (($7 y? .Z:)lt;-!—'r - (A§t+7'\t + BUt+7—)) ||§
" t=1 h=1 7=0
T—-H H h-1 o
(Arot, Brot) = arg min Z Z [ Z Rbt+r—s ((gz&, 0,0)0 s — (A8ppr)e + BuHT)) [
7 t=1 h=1 71=0

Here R"*—* denotes the rotation matrix (estimated from simulatiomgsie current
model) from the body frame at timeto the world frame.

6 Experiments

We performed experiments on two RC helicopters: an XCellgeshand a Bergen Indus-
trial Twin helicopter. (See Figure 1.) The XCell Tempest sompetition-class aerobatic
helicopter (length 54", height 19”), is powered by a 0.94esitwo-stroke engine, and has
an unloaded weight of 13 pounds. It carries two sensor uaildovatel RT2 GPS receiver
and a Microstrain 3DM-GX1 orientation sensor. The Micrastpackage contains triaxial
accelerometers, rate gyros, and magnetometers, whichsatefar inertial sensing. The
larger Bergen Industrial Twin helicopter is powered by antwylinder 46cc, two-stroke
engine, and has an unloaded weight of 18 Ibs. It carries tbeesor units: a Novatel
RT2 GPS receiver, MicroStrain 3DM-G magnetometers, anchartibl Science ISIS-IMU
(triaxial accelerometers and rate gyros).

For each helicopter, we collected data from two separatetfligrhe XCell Tempest train
and test flights were 800 and 540 seconds long, the BergesthmluTwin train and test
flights were each 110 seconds long. A highly optimized Kalrfiléer integrates the sen-
sor information and reports (at 100Hz) 12 numbers corredipgrio the helicopter’s state

(z,y,2,2,9, % ¢,0,w,6,60,0). The data is then downsampled to 10Hz before learning.
For each of the helicopters, we learned the following madels

1. Linear-One-Step: The linear model from Section 3 trained using linear regression to
minimize the one-step prediction error.

2. Linear-cIFeR: The linear model from Section 3 trained usiogFER.

3. Linear-Lagged: The linear model from Section 3 trained minimizing the lagged criterion.

4. Acceleration-One-Step: The acceleration prediction model from Section 4 trained using
linear regression to minimize the one step prediction error.

5. Acceleration-Lagged: The acceleration prediction model from Section 4 trained mini-
mizing the lagged criterion.

“For simplicity of notation we omit the intercept parameters here, but theegasily incorporated,
e.g., by having one additional input which is always equal to one.



For Linear-Lagged andAcceleration-Lagged we used a horizo! of two seconds (20
simulation steps). The CPU times for training the differaigbrithms were: Less than one
second for linear regression (algorithms 1 and 4 in the bsiva); one hour 20 minutes
(XCell Tempest data) or 10 minutes (Bergen Industrial Twaadl for the lagged criteria
(algorithms 3 and 5 above); about 5 minutes doFER. Our algorithm optimizing the
lagged criterion appears to converge after at most 30ib&&t Since this algorithm is only
approximate, we can then use coordinate descent searciiterfimprove the lagged cri-
terion® This coordinate descent search took an additional foursnimuthe XCell Tempest
data and an additional 30 minutes for the Bergen Industriah Tata. We report results
both with and without this coordinate descent search. Gaulteshow that the algorithm
presented in Section 5 works well for fast approximate ojzition of the lagged criterion,
but that locally greedy search (coordinate descent) mayithprove it yet further.

For evaluation, the test data was split in consecutive namkapping two second windows.
(This corresponds to 20 simulation steps,. . ., s20.) The models are used to predict the
state sequence over the two second window, when startee imub states,. We report
the average squared prediction error (difference betwlersimulated and true state) at
each timestep = 1, ..., 20 throughout the two second window. The orientation error is
measured by the squared magnitude of the minimal rotatiedetkto align the simulated
orientation with the true orientation. Velocity, positiangular rate and orientation errors
are measured in m/s, m, rad/s and rad (squared) respec(8ely Figure 2.)

We see thalinear-Lagged consistently outperformg&inear-CcIFER and Linear-One-
Step. Similarly, for the acceleration prediction models, we déahat Acceleration-
Lagged consistently outperformécceleration-One-Step. These experiments support
the case for training with the lagged criterion.

The best acceleration prediction modatceleration-Lagged, is significantly more ac-
curate than any of the linear models presented in Sectiorh& élffect is mostly present
in the XCell Tempest data, which contained data collectechfmany different parts of
the state space (e.g., flying in a circle); in contrast, theg8e Industrial Twin data was
collected mostly near hovering (and thus the linearizadissumptions were somewhat less
poor there).

7 Summary

We presented an acceleration based parameterizatiorafoirg vehicular dynamics. The
model predicts accelerations, and then integrates torobtate trajectories. We also de-
scribed an efficient algorithm for approximately minimigithe lagged criterion, which

measures the predictive accuracy of the algorithm over bbtht and long time-scales.
In our experiments, learning with the acceleration paranwdtion and using the lagged
criterion gave significantly more accurate models thaniptes/approaches. Using this ap-
proach, we have recently also succeeded in learning a modedrid then autonomously
flying, a “funnel” aerobatic maneuver, in which the helicapliies in a circle, keeping the

tail pointed at the center of rotation, and the body of thécheter pitched backwards at a
steep angle (so that the body of the helicopter traces owdutiace of a funnel). (Details

will be presented in a forthcoming paper.)

Acknowledgments. We give warm thanks to Adam Coates and to helicopter pilot Bsan
for their help on this work.

SWe used coordinate descent on the criterion of Eqn. (2), but rewelighéserrors on velocity,
angular velocity, position and orientation to scale them to roughly the saree @frchagnitude.
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Figure 2: (Best viewed in color.) Average squared prediction ettmeughout two-second sim-
ulations. Blue, dottedlinear-One-Step. Green, dash-dotted.inear-cIFER. Yellow, triangle:
Linear-Lagged learned with fast, approximate algorithm from Section 5. Red, dashewar-
Lagged learned with fast, approximate algorithm from Section 5 followed by greedydinate de-
scent search. Magenta, soliicceleration-One-Step. Cyan, circle:Acceleration-Lagged learned
with fast, approximate algorithm from Section 5. BlackiXcceleration-Lagged learned with fast,
approximate algorithm from Section 5 followed by greedy coordinateesésearch. The magenta,
cyan and black lines (visually) coincide in the XCell position plots. The ble#dow, magenta and
cyan lines (visually) coincide in the Bergen angular rate and orientation flbtsred and black lines
(visually) coincide in the Bergen angular rate plot. See text for details.
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