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Abstract
The computation required for Gaussian process regression with n train-
ing examples is about O(n3) during training and O(n) for each predic-
tion. This makes Gaussian process regression too slow for large datasets.
In this paper, we present a fast approximation method, based on kd-trees,
that significantly reduces both the prediction and the training times of
Gaussian process regression.

1 Introduction
We consider (regression) estimation of a function x 7→ u(x) from noisy observations. If
the data-generating process is not well understood, simple parametric learning algorithms,
for example ones from the generalized linear model (GLM) family, may be hard to apply
because of the difficulty of choosing good features. In contrast, the nonparametric Gaus-
sian process (GP) model [19] offers a flexible and powerful alternative. However, a major
drawback of GP models is that the computational cost of learning is about O(n3), and the
cost of making a single prediction is O(n), where n is the number of training examples.
This high computational complexity severely limits its scalability to large problems, and
we believe has proved a significant barrier to the wider adoption of the GP model.
In this paper, we address the scaling issue by recognizing that learning and predictions with
a GP regression (GPR) model can be implemented using the matrix-vector multiplication
(MVM) primitive z 7→ Kz . Here, K ∈ R

n,n is the kernel matrix, and z ∈ R
n is an

arbitrary vector. For the wide class of so-called isotropic kernels, MVM can be approxi-
mated efficiently by arranging the dataset in a tree-type multiresolution data structure such
as kd-trees [13], ball trees [11], or cover trees [1]. This approximation can sometimes be
made orders of magnitude faster than the direct computation, without sacrificing much in
terms of accuracy.
Further, the storage requirements for the tree is O(n), while a direct storage of the kernel
matrix would require O(n2) spare. We demonstrate the efficiency of the tree approach on
several large datasets.
In the sequel, for the sake of simplicity we will focus on kd-trees (even though it is known
that kd-trees do not scale well to high dimensional data). However, it is also completely
straightforward to apply the ideas in this paper to other tree-type data structures, for exam-
ple ball trees and cover trees, which typically scale significantly better to high dimensional
data.

2 The Gaussian Process Regression Model
Suppose that we observe some data D = {(xi, yi) | i = 1, . . . , n}, xi ∈ X , yi ∈ R,
sampled independently and identically distributed (i.i.d.) from some unknown distribution.



Our goal is to predict the response y∗ on future test points x∗ with small mean-squared
error under the data distribution. Our model consists of a latent (unobserved) function
x 7→ u so that yi = ui + εi, where ui = u(xi), and the εi are independent Gaussian noise
variables with zero mean and variance σ2 > 0. Following the Bayesian paradigm, we place
a prior distribution P (u(·)) on the function u(·) and use the posterior distribution

P (u(·)|D) ∝ N(y |u, σ2I)P (u(·))

in order to predict y∗ on new points x∗. Here, y = [y1, . . . , yn]T and u = [u1, . . . , un]T

are vectors in R
n, and N(·|µ, Σ) is the density of a Gaussian with mean µ and covariance

Σ. For a GPR model, the prior distribution is a (zero-mean) Gaussian process defined
in terms of a positive definite kernel (or covariance) function K : X 2 → R. For the
purposes of this paper, a GP can be thought of as a mapping from arbitrary finite subsets
{x̃i} ⊂ X of points, to corresponding zero-mean Gaussian distributions with covariance
matrix K̃ = (K(x̃i, x̃j))i,j . (This notation indicates that K̃ is a matrix whose (i, j)-
element is K(x̃i, x̃j).) In this paper, we focus on the problem of speeding up GPR under
the assumption that the kernel is monotonic isotropic. A kernel function K(x, x′) is called
isotropic if it depends only on the Euclidean distance r = ‖x − x′‖2 between the points,
and it is monotonic isotropic if it can be written as a monotonic function of r.

3 Fast GPR predictions
Since u(x1), u(x2), . . . , u(xn) and u(x∗) are jointly Gaussian, it is easy to see that the
predictive (posterior) distribution P (u∗|D), u∗ = u(x∗) is given by

P (u∗|D) = N
(

u∗ |k
T
∗ M−1y , K(x∗, x∗) − kT

∗ M−1k∗

)

, (1)

where k∗ = [K(x∗, x1), . . . , K(x∗, xn)]T ∈ R
n, and M = K + σ2I , K =

(K(xi, xj))i,j . Therefore, if p = M−1y , the optimal prediction under the model is
û∗ = kT

∗ p, and the predictive variance (of P (u∗|D)) can be used to quantify our uncer-
tainty in the prediction. Details can be found in [19]. ([16] also provides a tutorial on
GPs.)
Once p is determined, making a prediction now requires that we compute

kT
∗ p =

n
∑

i=1

K(x∗, xi)pi =

n
∑

i=1

wipi (2)

which is O(n) since it requires scanning through the entire training set and computing
K(x∗, xi) for each xi in the training set. When the training set is very large, this becomes
prohibitively slow. In such situations, it is desirable to use a fast approximation instead of
the exact direct implementation.

3.1 Weighted Sum Approximation
The computations in Equation 2 can be thought of as a weighted sum, where wi =
K(x∗, xi) is the weight on the i-th summand pi. We observe that if the dataset is di-
vided into groups where all data points in a group have similar weights, then it is possible
to compute a fast approximation to the above weighted sum. For example, let G be a set of
data points that all have weights near some value w. The contribution to the weighted sum
by points in G is

∑

i:xi∈G

wipi =
∑

i:xi∈G

wpi +
∑

i:xi∈G

(wi − w)pi = w
∑

i:xi∈G

pi +
∑

i:xi∈G

εipi

Where εi = wi − w. Assuming that
∑

i:xi∈G pi is known in advance, w
∑

i:xi∈G pi

can then be computed in constant time and used as an approximation to
∑

i:xi∈G wipi

if
∑

i:xi∈G εipi is small.
We note that for a continuous isotropic kernel function, the weights wi = K(x∗, xi) and
wj = K(x∗, xj) will be similar if xi and xj are close to each other. In addition, if the



Figure 1: Example of bounding rectangles for nodes in the first three levels of a kd-tree.

kernel function monotonically decreases to zero with increasing ||xi − xj ||, then points
that are far away from the query point x∗ will all have weights near zero.
Given a new query, we would like to automatically group points together that have similar
weights. But the weights are dependent on the query point and hence the best grouping
of the data will also be dependent on the query point. Thus, the problem we now face is,
given query point, how to quickly divide the dataset into groups such that data points in the
same group have similar weights. Our solution to this problem takes inspiration and ideas
from [9], and uses an enhanced kd-tree data structure.

3.2 The kd-tree algorithm
A kd-tree [13] is a binary tree that recursively partitions a set of data points. Each node
in the kd-tree contains a subset of the data, and records the bounding hyper-rectangle for
this subset. The root node contains the entire dataset. Any node that contains more than 1
data point has two child nodes, and the data points contained by the parent node are split
among the children by cutting the parent node’s bounding hyper-rectangle in the middle of
its widest dimension.1 An example with inputs of dimension 2 is illustrated in Figure 1.
For our algorithm, we will enhance the kd-tree with additional cached information at each
node. At a node ND whose set of data points is XND, in addition to the bounding box we
also store

1. NND = |XND|: the number of data points contained by ND.

2. SUnweighted
ND

=
∑

xi∈XND
pi: the unweighted sum corresponding to the data con-

tained by ND.

Now, let
SWeighted

ND
=

∑

i:xi∈XND

K(x∗, xi)pi (3)

be the weighted sum corresponding to node ND. One way to calculate SWeighted
ND

is to
simply have the 2 children of ND recursively compute SWeighted

Left(ND) and SWeighted
Right(ND) (where

1There are numerous other possible kd-tree splitting criteria. Our criteria is the same as the one
used in [9] and [5]



Left(ND) and Right(ND) are the 2 children of ND) and then sum the two results. This
takes O(n) time—same as the direct computation—since all O(n) nodes need to be pro-
cessed. However, if we only want an approximate result for the weighted sum, then we can
cut off the recursion at nodes whose data points have nearly identical weights for the given
query point.
Since each node maintains a bounding box of the data points that it owns, we can easily
bound the maximum weight variation of the data points owned by a node (as in [9]). The
nearest and farthest points in the bounding box to the query point can be computed in
O(input dimension) operations, and since the kernel function is isotropic monotonic, these
points give us the maximum and minimum possible weights wmax and wmin of any data
point in the bounding box.
Now, whenever the difference between wmax and wmin is small, we can cutoff the recursion
and approximate the weighted sum in Equation 3 by w∗SUnweighted

ND
where w = 1

2 (wmin +
wmax). The speed and accuracy of the approximation is highly dependent on the cutoff
criteria. Moore et al. used the following cutoff rule in [9]:

wmax − wmin ≤ 2ε(WSoFar + NNDwmin).
Here, WSoFar is the weight accumulated so far in the computation and WSoFar+NNDwmin

serves as a lower bound on the total sum of weights involved in the regression. In our
experiments, we found that although the above cutoff rule ensures the error incurred at
any particular data point in ND is small, the total error incurred by all the data points in
ND can still be high if NND is very large. In our experiments (not reported here), their
method gave poor performance on the GPR task, in many cases incurring significant errors
in the predictions (or, alternatively running no faster than exact computation, if sufficiently
small ε is chosen to prevent the large accumulation of errors). Hence, we chose instead the
following cutoff rule:

NND(wmax − wmin) ≤ 2ε(WSoFar + NNDwmin),
which also takes into account the total number of points contained in a node.
From the forumla above, we see that the decision of whether to cutoff computation at a
node depends on the value of WSoFar (the total weight of all the points that have been
added to the summation so far). Thus it is desirable to quickly accumulate weights at the
beginning of the computations, so that more of the later recursions can be cut off. This can
be accomplished by going into the child node that’s nearer to the query point first when we
recurse into the children of a node that doesn’t meet the cutoff criteria. (In contrast, [9] al-
ways visits the children in left-right order, which in our experiments also gave significantly
worse performance than our version.) Our overall algorithm is summarized below:

WeightedSum(x∗,ND, WSoFar, ε)

compute wmaxand wminfor the given query point x∗

SWeighted
ND

= 0
if (wmax − wmin) ≤ 2ε(WSoFar + NNDwmin)
then

SWeighted
ND

= 1
2 (wmin + wmax)S

Unweighted
ND

WSoFar = WSoFar + wminNND

return SWeighted
ND

else
determine which child is nearer to the query point x∗

SWeighted
Nearer = WeightedSum(x∗, Nearer child of ND, WSoFar, ε)

SWeighted
Farther = WeightedSum(x∗, Farther child of ND, WSoFar, ε)

SWeighted
ND

= SWeighted
Nearer + SWeighted

Farther

return SWeighted
ND



4 Fast Training
Training (or first-level inference) in the GPR model requires solving the positive definite
linear system

M p = y , M = K + σ2I (4)
for the vector p, which in the previous section we assumed had already been pre-computed.
Directly calculating p by inverting the matrix M costs about O(n3) in general. However,
in practice there are many ways to quickly obtain approximate solutions to linear systems.
Since the system matrix is symmetric positive definite, the conjugate gradient (CG) algo-
rithm can be applied. CG is an iterative method which searches for p by maximizing the
quadratic function

q(z) = yT z −
1

2
zT M z .

Briefly, CG ensures that z after iteration k is a maximizer of q over a (Krylow) subspace
of dimension k. For details about CG and many other approximate linear solvers, see
[15]. Thus, z “converges” to p (the unconstrained maximizer of q) after n steps, but
intermediate z can be used as approximate solutions. The speed of convergence depends
on the eigenstructure of M . In our case, M typically has only a few large eigenvalues, and
most of the spectrum is close to the lower bound σ2; under these conditions CG is known
to produce good approximations after only a few iterations. Crucially, the only operation
on M performed in each iteration of CG is a matrix-vector multiplication (MVM) with
M .
Since M = K + σ2I , speeding up MVM with M is critically dependent on our ability to
perform fast MVM with the kernel matrix K . We can apply the algorithm from Section 3
to perform fast MVM.
Specifically, observe that the i-th row of K is given by ki = [K(xi, x1), . . . , K(xi, xn)]T .
Thus, ki has the same form as that of the vector k∗ used in the prediction step. Hence to
compute the matrix-vector product Kv , we simply need to compute the inner products

k
T
i v =

n
∑

j=1

K(xi, xj)vj

for i = 1, . . . , n. Following exactly the method presented in Section 3, we can do this
efficiently using a kd-tree, where here v now plays the role of p in Equation 2.
Two additional optimizations are possible. First, in different iterations of conjugate gra-
dient, we can use the same kd-tree structure to compute kT

i v for different i and different
v . Indeed, given a dataset, we need only ever find a single kd-tree structure for it, and the
same kd-tree structure can then be used to make multiple predictions or multiple MVM
operations. Further, given fixed v , to compute kT

i v for different i = 1, . . . , n (to obtain
the vector resulting from one MVM operation), we can also share the same pre-computed
partial unweighted sums in the internal nodes of the tree. Only when v (or p) changes do
we need to change the partial unweighted sums (discussed in Section 3.2) of v stored in
the internal nodes (an O(n) operation).

5 Performance Evaluation
We evaluate our kd-tree implementation of GPR and an implementation that uses direct
computation for the inner products. Our experiments were performed on the nine regression
datasets in Table 1. 2

2Data for the Helicopter experiments come from an autonomous helicopter flight project, [10]
and the three tasks were to model three subdynamics of the helicopter, namely its yaw rate, forward
velocity, and lateral velocity one timestep later as a function of the helicopter’s current state. The
temperature and humidity experiments use data from a sensornet comprising a network of simple
sensor motes, [2] and the goal here is to predict the conditions at a mote from the measurements



Data set name Input dimension Training set size Test set size
Helicopter yaw rate 3 40000 4000
Helicopter x-velocity 2 40000 4000
Helicopter y-velocity 2 40000 4000
Mote 10 temperature 2 20000 5000
Mote 47 temperature 3 20000 5000
Mote 47 humidity 3 20000 5000
Housing income 2 18000 2000
Housing value 2 18000 2000
Housing age 2 18000 2000

Table 1: Datasets used in our experiments.

Exact cost Tree cost Speedup Exact error Tree error
Helicopter yaw rate 14.95 0.31 47.8 0.336 0.336
Helicopter x-velocity 12.37 0.41 30.3 0.594 0.595
Helicopter y-velocity 11.25 0.41 27.3 0.612 0.614
Mote 10 temperature 4.54 0.69 6.6 0.278 0.258
Mote 47 temperature 4.34 1.11 3.9 0.385 0.433
Mote 47 humidity 3.87 0.82 4.7 1.189 1.273
Housing income 2.75 0.76 3.6 0.478 0.478
Housing value 4.47 0.51 8.8 0.496 0.496
Housing age 3.21 1.15 2.8 0.787 0.785

Table 2: Prediction performance on 9 regression problems. Exact uses exact computation
of Equation 2. Tree is the kd-tree based implementation described in Section 3.2. Cost is
the computation time measured in milliseconds per prediction. The error reported is the
mean absolute prediction error.

For all experiments, we used the Gaussian RBF kernel

K(x, x′) = exp−
‖x − x′‖2

2d2
,

which is monotonic isotropic, with d and σ chosen to be reasonable values for each problem
(via cross validation). The ε parameter used in the cutoff rule was set to be 0.001 for all
experiments.

5.1 Prediction performance
Our first set of experiments compare the prediction time of the kd-tree algorithm with exact
computation, given a precomputed p. Our average prediction times are given in Table 2.
These numbers include the cost of building the kd-tree (but remain small since the cost is
then amortized over all the examples in the test set). As we see, our algorithm runs 2.8-
47.8 times faster than exact computation. Further, it incurs only a very small amount of
additional error compared to the exact algorithm.

5.2 Learning performance
Our second set of experiments examine the running times for learning (i.e., solving the
system of Equations 4,) using our kd-tree algorithm for the MVM operation, compared to
exact computation. For both approximate and exact MVM, conjugate gradient was used

of nearby motes. The housing experiments make use of data collected from the 1990 Census in
California. [12] The median income of a block group is predicted from the median house value and
average number of rooms per person; the median house value is predicted using median housing
age and median income; the median housing age is predicted using median house value and average
number of rooms per household.



Exact cost Tree cost Speedup Exact error Tree error
Helicopter yaw rate 22885 279 82.0 0.336 0.336
Helicopter x-velocity 23412 619 37.9 0.594 0.595
Helicopter y-velocity 14341 443 32.4 0.612 0.614
Mote 10 temperature 2071 253 8.2 0.278 0.258
Mote 47 temperature 2531 487 5.2 0.385 0.433
Mote 47 humidity 2121 398 5.3 1.189 1.273
Housing income 1922 581 3.3 0.478 0.478
Housing value 997 138 7.2 0.496 0.496
Housing age 1496 338 4.4 0.787 0.785

Table 3: Training time on the 9 regression problems. Cost is the computation time measured
in seconds.

(with the same number of iterations). Here, we see that our algorithm performs 3.3-82
times faster than exact computation.3

6 Discussion
6.1 Related Work
Multiresolution tree data structures have been used to speed up the computation of a wide
variety of machine learning algorithms [9, 5, 7, 14]. GP regression was introduced to
the machine learning community by Rasmussen and Williams [19]. The use of CG for
efficient first-level inference is described by Gibbs and MacKay [6]. The stability of Krylov
subspace iterative solvers (such as CG) with approximate matrix-vector multiplication is
discussed in [4].
Sparse approximations to GP inference provide a different way of overcoming the O(n3)
scaling [18, 3, 8], by selecting a representative subset of D of size d � n. Sparse methods
can typically be trained in O(n d2) (including the active forward selection of the subset)
and require O(d) prediction time only. In contrast, in our work here we make use of all of
the data for prediction, achieving better scaling by exploiting cluster structure in the data
through a kd-tree representation.
More closely related to our work is [20], where the MVM primitive is also approximated
using a special data structure for D. Their approach, called the improved fast Gauss trans-
form (IFGT), partitions the space with a k-centers clustering of D and uses a Taylor expan-
sion of the RBF kernel in order to cache repeated computations. The IFGT is limited to the
RBF kernel, while our method can be used with all monotonic isotropic kernels. As a topic
for future work, we believe it may be possible to apply IFGT’s Taylor expansions at each
node of the kd-tree’s query-dependent multiresolution clustering, to obtain an algorithm
that enjoys the best properties of both.

6.2 Isotropic Kernels
Recall that an isotropic kernel K(x, x′) can be written as a function of the Euclidean
distance r = ‖x−x′‖. While the RBF kernel of the form exp(−r2) is the most frequently
used isotropic kernel in machine learning, there are many other isotropic kernels to which
our method here can be applied without many changes (since the kd-tree cutoff criteria
depends on the pairwise Euclidean distances only). An interesting class of kernels is the
Matérn model (see [17], Sect. 2.10) K(r) ∝ (αr)νKν(αr), α = 2ν1/2, where Kν is the
modified Bessel function of the second kind. The parameter ν controls the roughness of
functions sampled from the process, in that they are bνc times mean-square differentiable.

3The errors reported in this table are identical to Table 2, since for the kd-tree results we always
trained and made predictions both using the fast approximate method. This gives a more reasonable
test of the “end-to-end” use of kd-trees.



For ν = 1/2 we have the “random walk” Ornstein-Uhlenbeck kernel of the form e−αr, and
the RBF kernel is obtained in the limit ν → ∞. The RBF kernel forces u(·) to be very
smooth, which can lead to bad predictions for training data with partly rough behaviour, and
its uncritical usage is therefore discouraged in Geostatistics (where the use of GP models
was pioneered). Here, other Matérn kernels are sometimes preferred. We believe that our
kd-trees approach holds rich promise for speeding up GPR with other isotropic kernels
such the Matérn and Ornstein-Uhlenbeck kernels.
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