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Abstract
Learning algorithms have enjoyed numerous successes in robotic control
tasks. In problems with time-varying dynamics, online learning methods
have also proved to be a powerful tool for automatically tracking and/or
adapting to the changing circumstances. However, for safety-critical ap-
plications such as airplane flight, the adoption of these algorithms has
been significantly hampered by their lack of safety, such as “stability,”
guarantees. Rather than trying to show difficult, a priori, stability guar-
antees for specific learning methods, in this paper we propose a method
for “monitoring” the controllers suggested by the learning algorithm on-
line, and rejecting controllers leading to instability. We prove that even if
an arbitrary online learning method is used with our algorithm to control
a linear dynamical system, the resulting system is stable.

1 Introduction
Online learning algorithms provide a powerful set of tools for automatically fine-tuning a
controller to optimize performance while in operation, or for automatically adapting to the
changing dynamics of a control problem. [2] Although one can easily imagine many com-
plex learning algorithms (SVMs, gaussian processes, ICA, . . . ,) being powerfully applied
to online learning for control, for these methods to be widely adopted for applications such
as airplane flight, it is critical that they come with safety guarantees, specifically stability
guarantees. In our interactions with industry, we also found stability to be a frequently
raised concern for online learning. We believe that the lack of safety guarantees represents
a significant barrier to the wider adoption of many powerful learning algorithms for online
adaptation and control. It is also typically infeasible to replace formal stability guarantees
with only empirical testing: For example, to convincingly demonstrate that we can safely
fly a fleet of 100 aircraft for 10000 hours would require 106 hours of flight-tests.
The control literature contains many examples of ingenious stability proofs for various on-
line learning schemes. It is impossible to do this literature justice here, but some examples
include [10, 7, 12, 8, 11, 5, 4, 9]. However, most of this work addresses only very specific
online learning methods, and usually quite simple ones (such as ones that switch between
only a finite number of parameter values using a specific, simple, decision rule, e.g., [4]).
In this paper, rather than trying to show difficult a priori stability guarantees for specific
algorithms, we propose a method for “monitoring” an arbitrary learning algorithm being
used to control a linear dynamical system. By rejecting control values online that appear to
be leading to instability, our algorithm ensures that the resulting controlled system is stable.

2 Preliminaries
Following most work in control [6], we will consider control of a linear dynamical system.
Let xt ∈ R

nx be the nx dimensional state at time t. The system is initialized to x0 = ~0. At
each time t, we select a control action ut ∈ R

nu , as a result of which the state transitions to
xt+1 = Axt +But + wt. (1)

Here, A ∈ R
nx×nx and B ∈ R

nx×nu govern the dynamics of the system, and wt is a
disturbance term. We will not make any distributional assumptions about the source of the



disturbances wt for now (indeed, we will consider a setting where an adversary chooses
them from some bounded set). For many applications, the controls are chosen as a linear
function of the state:

ut = Ktxt. (2)

Here, the Kt ∈ R
nu×nx are the control gains. If the goal is to minimize the expected value

of a quadratic cost function over the states and actions J = (1/T )
∑T

t=1
xT

t Qxt + uT
t Rut

and thewt are gaussian, then we are in the LQR (linear quadratic regulation) control setting.
Here, Q ∈ R

nx×nx and R ∈ R
nu×nu are positive semi-definite matrices. In the infinite

horizon setting, under mild conditions there exists an optimal steady-state (or stationary)
gain matrix K, so that setting Kt = K for all t minimizes the expected value of J . [1]
We consider a setting in which an online learning algorithm (also called an adaptive con-
trol algorithm) is used to design a controller. Thus, on each time step t, an online algorithm
may (based on the observed states and action sequence so far) propose some new gain ma-
trix Kt. If we follow the learning algorithm’s recommendation, then we will start choosing
controls according to u = Ktx. More formally, an online learning algorithm is a function
f : ∪∞

t=1(R
nx × R

nu)t 7→ R
nu×nx mapping from finite sequences of states and actions

(x0, u0, . . . , xt−1, ut−1) to controller gains Kt. We assume that f ’s outputs are bounded
(||Kt||F ≤ ψ for some ψ > 0, where || · ||F is the Frobenius norm).

2.1 Stability
In classical control theory [6], probably the most important desideratum of a controlled
system is that it must be stable. Given a fixed adaptive control algorithm f and a fixed
sequence of disturbance terms w0, w1, . . ., the sequence of states xt visited is exactly de-
termined by the equations
Kt = f(x0, u0, . . . , xt−1, ut−1); xt+1 = Axt +B ·Ktxt + wt. t = 0, 1, 2, . . . (3)

Thus, for fixed f , we can think of the (controlled) dynamical system as a mapping from
the sequence of disturbance terms wt to the sequence of states xt. We now give the most
commonly-used definition of stability, called BIBO stability (see, e.g., [6]).
Definition. A system controlled by f is bounded-input bounded-output (BIBO) stable if,
given any constant c1 > 0, there exists some constant c2 > 0 so that for all sequences of
disturbance terms satisfying ||wt||2 ≤ c1 (for all t = 1, 2, . . .), the resulting state sequence
satisfies ||xt||2 ≤ c2 (for all t = 1, 2, . . .).
Thus, a system is BIBO stable if, under bounded disturbances to it (possibly chosen by an
adversary), the state remains bounded and does not diverge.
We also define the t-th step dynamics matrixDt to beDt = A+BKt. Note therefore that
the state transition dynamics of the system (right half of Equation 3) may now be written
xt+1 = Dtxt +wt. Further, the dependence of xt on the wt’s can be expressed as follows:

xt = wt−1 +Dt−1xt−1 = wt−1 +Dt−1(wt−2 +Dt−2xt−2) = · · · (4)
= wt−1 +Dt−1wt−2 +Dt−1Dt−2wt−3 + · · · +Dt−1 · · ·D1w0. (5)

Since the number of terms in the sum above grows linearly with t, to ensure BIBO stability
of a system—i.e., that xt remains bounded for all t—it is usually necessary for the terms in
the sum to decay rapidly, so that the sum remains bounded. For example, if it were true that
||Dt−1 · · ·Dt−k+1wt−k||2 ≤ (1 − ε)k for some 0 < ε < 1, then the terms in the sequence
above would be norm bounded by a geometric series, and thus the sum is bounded. More
generally, the disturbance wt contributes a term Dt+k−1 · · ·Dt+1wt to the state xt+k, and
we would like Dt+k−1 · · ·Dt+1wt to become small rapidly as k becomes large (or, in the
control parlance, for the effects of the disturbance wt on xt+k to be attenuated quickly).
If Kt = K for all t, then we say that we using a (nonadaptive) stationary controller K. In
this setting, it is straightforward to check if our system is stable. Specifically, it is BIBO
stable if and only if the magnitude of all the eigenvalues ofD = Dt = A+BKt are strictly
less than 1. [6] To informally see why, note that the effect of wt on xt+k can be written
Dk−1wt (as in Equation 5). Moreover, |λmax(D)| < 1 implies Dk−1wt → 0 as k → ∞.
Thus, the disturbance wt has a negligible influence on xt+k for large k. More precisely, it



is possible to show that, under the assumption that ||wt|| ≤ c1, the sequence on the right
hand side of (5) is upper-bounded by a geometrically decreasing sequence, and thus its sum
must also be bounded. [6]
It was easy to check for stability when Kt was stationary, because the mapping from the
wt’s to the xt’s was linear. In more general settings, if Kt depends in some complex way
on x1, . . . , xt−1 (which in turn depend on w0, . . . , wt−2), then xt+1 = Axt +BKtxt +wt

will be a nonlinear function of the sequence of disturbances.1 This makes it significantly
more difficult to check for BIBO stability of the system.
Further, unlike the stationary case, it is well-known that λmax(Dt) < 1 (for all t) is insuffi-
cient to ensure stability. For example, consider a system where Dt = Dodd if t is odd, and
Dt = Deven otherwise, where2

Dodd =
[

0.9 0
10 0.9

]

; Deven =
[

0.9 10
0 0.9

]

. (6)

Note that λmax(Dt) = 0.9 < 1 for all t. However, if we pick w0 = [1 0]T and w1 = w2 =
. . . = 0, then (following Equation 5) we have

x2t+1 = D2tD2t−1D2t−2 . . . D2D1w0 (7)

= (DevenDodd)
t
w0 (8)

=
[

100.81 9
9 0.81

]t

w0 (9)

Thus, even though the wt’s are bounded, we have ||x2t+1||2 ≥ (100.81)t, showing that the
state sequence is not bounded. Hence, this system is not BIBO stable.

3 Checking for stability
If f is a complex learning algorithm, it is typically very difficult to guarantee that the
resulting system is BIBO stable. Indeed, even if f switches between only two specific sets
of gains K, and if w0 is the only non-zero disturbance term, it can still be undecidable to
determine whether the state sequence remains bounded. [3] Rather than try to give a priori
guarantees on f , we instead propose a method for ensuring BIBO stability of a system
by “monitoring” the control gains proposed by f , and rejecting gains that appear to be
leading to instability. We start computing controls according to a set of gains K̂t only if it
is accepted by the algorithm.

From the discussion in Section 2.1, the criterion for accepting or rejecting a set of gains K̂t

cannot simply be to check if λmax(A+BKt) = λmax(Dt) < 1. Specifically, λmax(D2D1)
is not bounded by λmax(D2)λmax(D1), and so even if λmax(Dt) is small for all t—which
would be the case if the gains Kt for any fixed t could be used to obtain a stable stationary
controller—the quantity λmax(

∏t

τ=1
Dτ ) can still be large, and thus (

∏t

τ=1
Dτ )w0 can

be large. However, the following holds for the largest singular value σmax of matrices.
Though the result is quite standard, for the sake of completeness we include a proof.3

Proposition 3.1: Let any matrices P ∈ R
l×m and Q ∈ R

m×n be given. Then
σmax(PQ) ≤ σmax(P )σmax(Q).

Proof. σmax(PQ) = maxu,v:||u||2=||v||2=1 u
TPQv. Let u∗ and v∗ be a pair of vec-

tors attaining the maximum in the previous equation. Then σmax(PQ) = u∗TPQv∗ ≤

||u∗TP ||2 · ||Qv
∗||2 ≤ maxv,u:||v||2=||u||2=1 ||u

TP ||2 · ||Qv||2 = σmax(P )σmax(Q). �

Thus, if we could ensure that σmax(Dt) ≤ 1 − ε for all t, we would find that the influence
of w0 on xt has norm bounded by ||Dt−1Dt−2 . . . D1w0||2 = σmax(Dt−1 . . . D1w0) ≤

1Even if f is linear in its inputs so that Kt is linear in x1, . . . , xt−1, the state sequence’s de-
pendence on (w0, w1, . . .) is still nonlinear because of the multiplicative term Ktxt in the dynam-
ics (Equation 3).

2Clearly, such as system can be constructed with appropriate choices of A, B and Kt.
3The largest singular value of M is σmax(M) = σmax(M

T ) = maxu,v:||u||2=||v||2=1 uT Mv =
maxu:||u||2=1 ||Mu||2. If x is a vector, then σmax(x) is just the L2-norm of x.



σmax(Dt−1) . . . σmax(D1)||w0||2 ≤ (1 − ε)t−1||w0||2 (since ||v||2 = σmax(v) if v is a
vector). Thus, the influence of wt on xt+k goes to 0 as k → ∞.
However, it would be an overly strong condition to demand that σmax(Dt) < 1−ε for every
t. Specifically, there are many stable, stationary controllers that do not satisfy this. For
example, either one of the matrices Dt in (6), if used as the stationary dynamics, is stable
(since λmax = 0.9 < 1). Thus, it should be acceptable for us to use a controller with either
of these Dt (so long as we do not switch between them on every step). But, these Dt have
σmax ≈ 10.1 > 1, and thus would be rejected if we were to demand that σmax(Dt) < 1−ε
for every t. Thus, we will instead ask only for a weaker condition, that for all t,

σmax(Dt ·Dt−1 · · · ·Dt−N+1) < 1 − ε. (10)
This is motivated by the following, which shows that any stable, stationary controller meets
this condition (for sufficiently large N ):

Proposition 3.2: Let any 0 < ε < 1 and any D with λmax(D) < 1 be given. Then there
exists N0 > 0 so that for all N ≥ N0, we have that σmax(D

N ) ≤ 1 − ε.

The proof follows from the fact that λmax(D) < 1 implies DN → 0 as N → ∞. Thus,
given any fixed, stable controller, if N is sufficiently large, it will satisfy (10). Further,
if (10) holds, then w0’s influence on xkN+1 is bounded by

||DkN ·DkN−1 · · ·D1w0||2 ≤ σmax(DkN ·DkN−1 · · ·D1)||w0||2

≤
∏k−1

i=0
σmax(DiN+NDiN+N−1 · · ·DiN+1)||w0||2

≤ (1 − ε)k||w0||2, (11)
which goes to 0 geometrically quickly as k → ∞. (The first and second inequalities above
follow from Proposition 3.1.) Hence, the disturbances’ effects are attenuated quickly.
To ensure that (10) holds, we propose the following algorithm. Below, N > 0 and 0 < ε <
1 are parameters of the algorithm.

1. Initialization: Assume we have some initial stable controller K0, so that
λmax(D0) < 1, where D0 = A + BK0. Also assume that σmax(D

N
0 ) ≤ 1 − ε.4

Finally, for all values of τ < 0. define Kτ = K0 and Dτ = D0.
2. For t = 1, 2, . . .

(a) Run the online learning algorithm f to compute the next set of proposed
gains K̂t = f(x0, u0, . . . , xt−1, ut−1).

(b) Let D̂t = A+BK̂t, and check if
σmax(D̂tDt−1Dt−2Dt−3 . . . Dt−N+1) ≤ 1 − ε (12)

σmax(D̂
2
tDt−1Dt−2 . . . Dt−N+2) ≤ 1 − ε (13)

σmax(D̂
3
tDt−1 . . . Dt−N+3) ≤ 1 − ε (14)

. . .

σmax(D̂
N
t ) ≤ 1 − ε (15)

(c) If all of the σmax’s above are less than 1 − ε, we ACCEPT K̂t, and set
Kt = K̂t. Otherwise, REJECT K̂t, and set Kt = Kt−1.

(d) Let Dt = A+BKt, and pick our action at time t to be ut = Ktxt.

We begin by showing that, if we use this algorithm to “filter” the gains output by the online
learning algorithm, Equation (10) holds.

Lemma 3.3: Let f and w0, w1, . . . be arbitrary, and let K0,K1,K2, . . . be the sequence
of gains selected using the algorithm above. Let Dt = A + BKt be the corresponding
dynamics matrices. Then for every −∞ < t <∞, we have5

σmax(Dt ·Dt−1 · · · · ·Dt−N+1) ≤ 1 − ε. (16)

4From Proposition 3.2, it must be possible to choose N satisfying this.
5As in the algorithm description, Dt = D0 for t < 0.



Proof. Let any t be fixed, and let τ = max({0} ∪ {t′ : 1 ≤ t′ ≤ t, K̂t′was accepted}).
Thus, τ is the index of the time step at which we most recently accepted a set of gains from
f (or 0 if no such gains exist). So, Kτ = Kτ+1 = . . . = Kt, since the gains stay the same
in every time step on which we do not accept a new one. This also implies

Dτ = Dτ+1 = . . . = Dt. (17)
We will treat the cases (i) τ = 0, (ii) 1 ≤ τ ≤ t − N + 1 and (iii) τ > t − N + 1,
τ ≥ 1 separately. In case (i), τ = 0, and we did not accept any gains after time 0. Thus
Kt = · · · = Kt−N+1 = K0, which implies Dt = · · · = Dt−N+1 = D0. But from
Step 1 of the algorithm, we had chosen N sufficiently large that σmax(D

N
0 ) ≤ 1 − ε. This

shows (16). In case (ii), τ ≤ t−N + 1 (and τ > 0). Together with (17), this implies

Dt ·Dt−1 · · · · ·Dt−N+1 = DN
τ . (18)

But σmax(D
N
τ ) ≤ 1− ε, because at time τ , when we accepted Kτ , we would have checked

that Equation (15) holds. In case (iii), τ > t−N + 1 (and τ > 0). From (17) we have

Dt ·Dt−1 · · · · ·Dt−N+1 = Dt−τ+1
τ ·Dτ−1 ·Dτ−2 · · · · ·Dt−N+1. (19)

But when we accepted Kτ , we would have checked that (12-15) hold, and the t− τ + 1-st
equation in (12-15) is exactly that the largest singular value of (19) is at most 1 − ε. �

Theorem 3.4: Let an arbitrary learning algorithm f be given, and suppose we use f to
control a system, but using our algorithm to accept/reject gains selected by f . Then, the
resulting system is BIBO stable.

Proof. Suppose ||wt||2 ≤ c1 for all t. For convenience also define w−1 = w−2 = · · · = 0,
and let ψ′ = ||A||F + ψ||B||F . From (5),

||xt||2 = ||
∑∞

k=0
Dt−1Dt−2 · · ·Dt−kwt−k−1||2

≤ c1
∑∞

k=0
||Dt−1Dt−2 · · ·Dt−k||2

= c1
∑∞

j=0

∑N−1

k=0
σmax(Dt−1Dt−2 · · ·Dt−jN−k)

≤ c1
∑∞

j=0

∑N−1

k=0
σmax((

∏j−1

l=0
Dt−lN−1Dt−lN−2 · · ·Dt−lN−N )

· Dt−jN−1 · · ·Dt−jN−k)

≤ c1
∑∞

j=0

∑N−1

k=0
(1 − ε)j · σmax(Dt−jN−1 · · ·Dt−jN−k)

≤ c1
∑∞

j=0

∑N−1

k=0
(1 − ε)j · (ψ′)k

≤ c1
1

ε
N(1 + ψ′)N

The third inequality follows from Lemma 3.3, and the fourth inequality follows from our
assumption that ||Kt||F ≤ ψ, so that σmax(Dt) ≤ ||Dt||F ≤ ||A||F + ||B||F ||Kt||F ≤
||A||F + ψ||Bt||F = ψ′. Hence, ||xt||2 remains uniformly bounded for all t. �

Theorem 3.4 guarantees that, using our algorithm, we can safely apply any adaptive control
algorithm f to our system. As discussed previously, it is difficult to exactly characterize
the class of BIBO-stable controllers, and thus the set of controllers that we can safety
accept. However, it is possible to show a partial converse to Theorem 3.4 that certain
large, “reasonable” classes of adaptive control methods will always have their proposed
controllers accepted by our method. For example, it is a folk theorem in control that if we
use only stable sets of gains (K : λmax(A + BK) < 1), and if we switch “sufficiently
slowly” between them, then system will be stable. For our specific algorithm, we can show
the following:

Theorem 3.5: Let any 0 < ε < 1 be fixed, and let K ⊆ R
nu×nx be a finite set of controller

gains, so that for all K ∈ K, we have λmax(A+BK) < 1. Then there exist constants N0

and k so that for all N ≥ N0, if (i) Our algorithm is run with parameters N, ε, and (ii)
The adaptive control algorithm f picks only gains in K, and moreover switches gains no
more than once every k steps (i.e., K̂t 6= K̂t+1 ⇒ K̂t+1 = K̂t+2 = · · · = K̂t+k), then all
controllers proposed by f will be accepted.
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Figure 1: (a) Typical state sequence (first component xt,1 of state vector) using switching controllers
from Equation (6). (Note log-scale on vertical axis.) (b) Typical state sequence using our algorithm
and the same controller f . (N = 150, ε = 0.1) (c) Index of the controller used over time, when using
our algorithm.

The proof is omitted due to space constraints. A similar result also holds if K is infinite
(but ∃c > 0, ∀K ∈ K, λmax(A + BK) ≤ 1 − c), and if the proposed gains change on
every step but the differences ||K̂t − K̂t+1||F between successive values is small.

4 Experiments
We now present experimental results illustrating the behavior of our algorithm. In the first
experiment, we apply the switching controller given in (6). Figure 1a shows a typical state
sequence resulting from using this controller without using our algorithm to monitor it (and
wt’s from an IID standard Normal distribution). Even though λmax(Dt) < 1 for all t, the
controlled system is unstable, and the state rapidly diverges. In contrast, Figure 1b shows
the result of rerunning the same experiment, but using our algorithm to accept or reject
controllers. The resulting system is stable, and the states remain small. Figure 1c also
shows which of the two controllers in (6) is being used at each time, when our algorithm
is used. (If do not use our algorithm so that the controller switches on every time step,
this figure would switch between 0 and 1 on every time step.) We see that our algorithm is
rejecting most of the proposed switches to the controller; specifically, it is permitting f to
switch between the two controllers only every 140 steps or so. By slowing down the rate at
which we switch controllers, it causes the system to become stable (compare Theorem 3.5).
In our second example, we will consider a significantly more complex setting representative
of a real-world application. We consider controlling a Boeing 747 aircraft in a setting
where the states are only partially observable. We have a four-dimensional state vector xt

consisting of the sideslip angle β, bank angle φ, yaw rate, and roll rate of the aircraft in
cruise flight. The two-dimensional controls ut are the rudder and aileron deflections. The
state transition dynamics are given as in Equation (1)6 with IID gaussian disturbance terms
wt. But instead of observing the states directly, on each time step t we observe only

yt = Cxt + vt, (20)

where yt ∈ R
ny , and the disturbances vt ∈ R

ny are distributed Normal(~0,Σv). If the sys-
tem is stationary (i.e., ifA,B,C,Σv,Σw were fixed), then this is a standard LQG problem,
and optimal estimates x̂t of the hidden states xt are obtained using a Kalman filter:

x̂t+1 = Lt(yt+1 − C(Axt +But)) +Ax̂t +But, (21)
where Lt ∈ R

nx×ny is the Kalman filter gain matrix. Further, it is known that, in LQG,
the optimal steady state controller is obtained by picking actions according to ut = Ktx̂t,
where Kt are appropriate control gains. Standard algorithms exist for solving for the opti-
mal steady-state gain matrices L and K. [1]

In our aircraft control problem, C =
[

0 1 0 0
0 0 0 1

]

, so that only two of the four state

variables and are observed directly. Further, the noise in the observations varies over time.
Specifically, sometimes the variance of the first observation is Σv,11 = Var(vt,1) = 2

6The parameters A ∈ R
4×4 and B ∈ R

4×2 are obtained from a standard 747 (“yaw damper”)
model, which may be found in, e.g., the Matlab control toolbox, and various texts such as [6].
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Figure 2: (a) Typical evolution of true Σv,11 over time (straight lines) and online approximation to
it. (b) Same as (a), but showing an example in which the learned variance estimate became negative.
while the variance of the second observation is Σv,22 = Var(vt,2) = 0.5; and sometimes
the values of the variances are reversed Σv,11 = 0.5, Σv,22 = 2. (Σv ∈ R

2×2 is diagonal in
all cases.) This models a setting in which, at various times, either of the two sensors may
be the more reliable/accurate one.
Since the reliability of the sensors changes over time, one might want to apply an online
learning algorithm (such as online stochastic gradient ascent) to dynamically estimate the
values of Σv,11 and Σv,22. Figure 2 shows a typical evolution of Σv,11 over time, and the
result of using a stochastic gradient ascent learning algorithm to estimate Σv,11. Empir-
ically, a stochastic gradient algorithm seems to do fairly well at tracking the true Σv,11.
Thus, one simple adaptive control scheme would be to take the current estimate of Σv at
each time step t, apply a standard LQG solver giving this estimate (and A,B,C,Σw) to it
to obtain the optimal steady-state Kalman filter and control gains, and use the values ob-
tained as our proposed gains Lt and Kt for time t. This gives a simple method for adapting
our controller and Kalman filter parameters to the varying noise parameters.
The adaptive control algorithm that we have described is sufficiently complex that it is ex-
tremely difficult to prove that it gives a stable controller. Thus, to guarantee BIBO stability
of the system, one might choose to run it with our algorithm. To do so, note that the “state”
of the controlled system at each time step is fully characterized by the true world state xt

and the internal state estimate of the Kalman filter x̂t. So, we can define an augmented
state vector x̃t = [xt; x̂t] ∈ R

8. Because xt+1 is linear in ut (which is in turn linear in x̂t)
and similarly x̂t+1 is linear in xt and ut (substitute (20) into (21)), for a fixed set of gains
Kt and Lt, we can express x̃t+1 as a linear function of x̃t plus a disturbance:

x̃t+1 = D̃tx̃t + w̃t. (22)
Here, D̃t depends implicitly on A,B,C,Lt and Kt. (The details are not complex, but are
omitted due to space). Thus, if a learning algorithm is proposing new K̂t and L̂t matrices
on each time step, we can ensure that the resulting system is BIBO stable by computing
the corresponding D̃t as a function of K̂t and L̂t, and running our algorithm (with D̃t’s
replacing the Dt’s) to decide if the proposed gains should be accepted. In the event that
they are rejected, we set Kt = Kt−1, Lt = Lt−1.
It turns out that there is a very subtle bug in the online learning algorithm. Specifically,
we were using standard stochastic gradient ascent to estimate Σv,11 (and Σv,22), and on
every step there is a small chance that the gradient update overshoots zero, causing Σv,11

to become negative. While the probability of this occurring on any particular time step is
small, a Boeing 747 flown for sufficiently many hours using this algorithm will eventually
encounter this bug and obtain an invalid, negative, variance estimate. When this occurs, the
Matlab LQG solver for the steady-state gains outputs L = 0 on this and all successive time
steps.7 If this were implemented on a real 747, this would cause it to ignore all observations
(Equation 21), enter divergent oscillations (see Figure 3a), and crash. However, using our
algorithm, the behavior of the system is shown in Figure 3b. When the learning algorithm

7Even if we had anticipated this specific bug and clipped Σv,11 to be non-negative, the LQG
solver (from the Matlab controls toolbox) still outputs invalid gains, since it expects nonsingular Σv .
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Figure 3: (a) Typical plot of state (xt,1) using the (buggy) online learning algorithm in a sequence
in which L was set to zero part-way through the sequence. (Note scale on vertical axis; this plot is
typical of a linear system entering divergent/unstable oscillations.) (b) Results on same sequence of
disturbances as in (a), but using our algorithm.

encounters the bug, our algorithm successfully rejects the changes to the gains that lead to
instability, thereby keeping the system stable.

5 Discussion
Space constraints preclude a full discussion, but these ideas can also be applied to verifying
the stability of certain nonlinear dynamical systems. For example, if the A (and/or B)
matrix depends on the current state but is always expressible as a convex combination
of some fixed A1, . . . , Ak, then we can guarantee BIBO stability by ensuring that (10)
holds for all combinations of Dt = Ai + BKt defined using any Ai (i = 1, . . . k).8 The
same idea also applies to settings where A may be changing (perhaps adversarially) within
some bounded set, or if the dynamics are unknown so that we need to verify stability
with respect to a set of possible dynamics. In simulation experiments of the Stanford
autonomous helicopter, by using a linearization of the non-linear dynamics, our algorithm
was also empirically successful at stabilizing an adaptive control algorithm that normally
drives the helicopter into unstable oscillations.
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