
Learning first-order Markov models for control

Pieter Abbeel
Computer Science Department

Stanford University
Stanford, CA 94305

Andrew Y. Ng
Computer Science Department

Stanford University
Stanford, CA 94305

Abstract

First-order Markov models have been successfully applied to many prob-
lems, for example in modeling sequential data using Markov chains, and
modeling control problems using the Markov decision processes (MDP)
formalism. If a first-order Markov model’s parameters are estimated
from data, the standard maximum likelihood estimator considers only
the first-order (single-step) transitions. But for many problems, the first-
order conditional independence assumptions are not satisfied, and as a re-
sult the higher order transition probabilities may be poorly approximated.
Motivated by the problem of learning an MDP’s parameters forcontrol,
we propose an algorithm for learning a first-order Markov model that ex-
plicitly takes into account higher order interactions during training. Our
algorithm uses an optimization criterion different from maximum likeli-
hood, and allows us to learn models that capture longer rangeeffects, but
without giving up the benefits of using first-order Markov models. Our
experimental results also show the new algorithm outperforming conven-
tional maximum likelihood estimation in a number of controlproblems
where the MDP’s parameters are estimated from data.

1 Introduction
First-order Markov models have enjoyed numerous successesin many sequence modeling
and in many control tasks, and are now a workhorse of machine learning.1 Indeed, even
in control problems in which the system is suspected to have hidden state and thus be
non-Markov, a fully observed Markov decision process (MDP)model is often favored over
partially observable Markov decision process (POMDP) models, since it is significantly
easier to solve MDPs than POMDPs to obtain a controller. [5]
When the parameters of a Markov model are not known a priori, they are often estimated
from data using maximum likelihood (ML) (and perhaps smoothing). However, in many
applications the dynamics are not truly first-order Markov,and the ML criterion may lead to
poor modeling performance. In particular, we will show thatthe ML model fitting criterion
explicitly considers only the first-order (one-step) transitions. If the dynamics are truly
governed by a first-order system, then the longer-range interactions would also be well
modeled. But if the system is not first-order, then interactions on longer time scales are
often poorly approximated by a model fit using maximum likelihood. In reinforcement
learning and control tasks where the goal is to maximize our long-term expected rewards,
the predictive accuracy of a model on long time scales can have a significant impact on the
attained performance.

1To simplify the exposition, in this paper we will consider only first-order Markov models. How-
ever, the problems we describe in this paper also arise with higher order models and with more
structured models (such as dynamic Bayesian networks [4, 10] and mixed memory Markov mod-
els [8, 14]), and it is straightforward to extend our methods and algorithms to these models.



As a specific motivating example, consider a system whose dynamics are governed by
a random walk on the integers. LettingSt denote the state at timet, we initialize the
system toS0 = 0, and letSt = St−1 + εt, where the incrementsεt ∈ {−1,+1} are
equally likely to be−1 or +1. Writing St in terms of only theεt’s, we haveSt = ε1 +
· · · + εt. Thus, if the increments are independent, we haveVar(ST ) = T . However
if the increments are perfectly correlated (soε1 = ε2 = · · · with probability 1), then
Var(ST ) = T 2. So, depending on the correlation between the increments, the expected
valueE[|ST |] can be eitherO(

√
T ) or O(T ). Further, regardless of the true correlation in

the data, using maximum likelihood (ML) to estimate the model parameters from training
data would return the same model withE[|ST |] = O(

√
T ).

To see how these effects can lead to poor performance on a control task, consider learning
to control a vehicle (such as a car or a helicopter) under disturbancesεt due to very strong
winds. The influence of the disturbances on the vehicle’s position over one time step may be
small, but if the disturbancesεt are highly correlated, their cumulative effect over time can
be substantial. If our model completely ignores these correlations, we may overestimate
our ability to control the vehicle (thinking our variance inposition isO(T ) rather than
O(T 2)), and try to follow overly narrow/dangerous paths.
Our motivation also has parallels in the debate on using discriminative vs. generative al-
gorithms for supervised learning. There, the consensus (assuming there is ample training
data) seems to be that it is usually better to directly minimize the loss with respect to the
ultimate performance measure, rather than an intermediateloss function such as the like-
lihood of the training data. (See, e.g., [16, 9].) This is because the model (no matter how
complicated) is almost always not completely “correct” forthe problem data. By anal-
ogy, when modeling a dynamical system for a control task, we are interested in having
a model that accurately predicts the performance of different control policies—so that it
can be used to select a good policy—and not in maximizing the likelihood of the observed
sequence data.
In related work, robust control offers an alternative family of methods for accounting for
model inaccuracies, specifically by finding controllers that work well for a large class of
models. (E.g., [13, 17, 3].) Also, in applied control, some practitioners manually adjust
their model’s parameters (particularly the model’s noise variance parameters) to obtain a
model which captures the variability of the system’s dynamics. Our work can be viewed
as proposing an algorithm that gives a more structured approach to estimating the “right”
variance parameters. The issue of time scales has also been addressed in hierarchical re-
inforcement learning (e.g., [2, 15, 11]), but most of this work has focused on speeding up
exploration and planning rather than on accurately modeling non-Markovian dynamics.
The rest of this paper is organized as follows. We define our notation in Section 2, then
formulate the model learning problem ignoring actions in Section 3, and propose a learn-
ing algorithm in Section 4. In Section 5, we extend our algorithm to incorporate actions.
Section 6 presents experimental results, and Section 7 concludes.

2 Preliminaries
If x ∈ R

n, thenxi denotes thei-th element ofx. Also, letj:k = [j j+1 j+2 · · · k−1 k]T .
For anyk-dimensional vector of indicesI ∈ N

k, we denote byxI the k-dimensional
vector with the subset ofx’s entries whose indices are inI. For example, ifx =
[0.0 0.1 0.2 0.3 0.4 0.5]T , thenx0:2 = [0.0 0.1 0.2]T .
A finite-state decision process (DP) is a tuple(S,A, T, γ,D,R), whereS is a finite set of
states;A is a finite set of actions;T = {P (St+1 = s′|S0:t = s0:t, A0:t = a0:t)} is a set of
state transition probabilities (here,P (St+1 = s′|S0:t = s0:t, A0:t = a0:t) is the probability
of being in a states′ ∈ S at timet + 1 after having taken actionsa0:t ∈ At+1 in states
s0:t ∈ St+1 at times0 : t); γ ∈ [0, 1) is a discount factor;D is the initial state distribution,
from which the initial states0 is drawn; andR : S 7→ R is the reward function. We assume
all rewards are bounded in absolute value byRmax. A DP is not necessarily Markov.



A policy π is a mapping from states to probability distributions over actions. LetV π(s) =
E[

∑∞
t=0 γtR(st)|π, s0 = s] be the usual value function forπ. Then the utility ofπ is

U(π) = Es0∼D[V π(s0)] = E[
∑∞

t=0 γtR(st)|π] =
∑∞

t=0 γt
∑

st
P (St = st|π)R(st).

The second expectation above is with respect to the random state sequences0, s1, . . . drawn
by starting froms0 ∼ D, picking actions according toπ and transitioning according toP .
Throughout this paper,P

θ̂
will denote some estimate of the transition probabilities.We de-

note byÛ(π) the utility of the policyπ in an MDP whose first-order transition probabilities
are given byP

θ̂
(and similarlyV̂ π the value function in the same MDP). Thus, we have2

Û(π) = Ês0∼D[V̂ π(s0)] = Ê[
∑∞

t=0 γtR(st)|π] =
∑∞

t=0 γt
∑

st
P

θ̂
(St = st|π)R(st).

Note that if|U(π) − Û(π)| ≤ ε for all π, then finding the optimal policy in the estimated
MDP that uses parametersP

θ̂
(using value iteration or any other algorithm) will give a

policy whose utility is within2ε of the optimal utility. [6]
For stochastic processes without decisions/actions, we will use the same notation but drop
the conditioning onπ. Often we will also abbreviateP (St = st) by P (st).

3 Problem Formulation
To simplify our exposition, we will begin by considering stochastic processes that do not
have decisions/actions. Section 5 will discuss how actionscan be incorporated into the
model.
We first consider how well̂V (s0) approximatesV (s0). We have

|V̂ (s0) − V (s0)| =

∣

∣

∣

∣

∣

∞
∑

t=0

γt
∑

st

P
θ̂
(st|s0)R(st) −

∞
∑

t=0

γt
∑

st

P (st|s0)R(st)

∣

∣

∣

∣

∣

≤ Rmax

∞
∑

t=0

γt
∑

st

∣

∣P
θ̂
(st|s0) − P (st|s0)

∣

∣ . (1)

So, to ensure that̂V (s0) is an accurate estimate ofV (s0), we would like the parameterŝθ of
the model to minimize the right hand side of (1). The term

∑

st

∣

∣P
θ̂
(st|s0) − P (st|s0)

∣

∣ is
exactly (twice) the variational distance between the two conditional distributionsP

θ̂
(·|s0)

and P (·|s0). UnfortunatelyP is not known when learning from data. We only get to
observe state sequences sampled according toP . This makes Eqn. (1) a difficult criterion
to optimize. However, it is well known that the variational distance is upper bounded by
a function of the KL-divergence. (See, e.g., [1].) The KL-divergence betweenP andP

θ̂
can be estimated (up to a constant) as the log-likelihood of asample. So, given a training
sequences0:T sampled fromP , we propose to estimate the transition probabilitiesP

θ̂
by

θ̂ = arg max
θ

T−1
∑

t=0

T−t
∑

k=1

γk log Pθ(st+k|st). (2)

Note the difference between this and the standard maximum likelihood (ML) esti-
mate. Since we are using a model that is parameterized as a first-order Markov
model, the probability of the data under the model is given byPθ(s0, . . . , sT ) =
Pθ(sT |sT−1)Pθ(sT−1|sT−2) . . . Pθ(s1|s0)D(s0) (whereD is the initial state distribution).
By definition, maximum likelihood (ML) chooses the parametersθ that maximize the prob-
ability of the observed data. Taking logs of the probabilityabove, (and ignoringD(s0),
which is usually parameterized separately), we find that theML estimate is given by

θ̂ = arg max
θ

T−1
∑

t=0

log Pθ(st+1|st). (3)

2SinceP
θ̂

is a first-order model, it explicitly parameterizes onlyP
θ̂
(St+1 = st+1|St = st, At =

at). We useP
θ̂
(St = st|π) to denote the probability thatSt = st in an MDP with one-step

transition probabilitiesP
θ̂
(St+1 = st+1|St = st, At = at) and initial state distributionD when

acting according to the policyπ.



SS S S0 1 2 3
S S

S S

S S0 1

1 2

2 3

S

S

S

S S

S S S0 1 2 3

21

2S S0 1

3

(a) (b) (c)
Figure 1: (a) A length four training sequence. (b) ML estimation for a first-order Markov model op-
timizes the likelihood of the second node given the first node in each of the length two subsequences.
(c) Our objective (Eqn. 2) also includes the likelihood of the last node given the first node in each
of these three longer subsequences of the data. (White nodes represent unobserved variables, shaded
nodes represent observed variables.)

All the terms above are of the formPθ(st+1|st). Thus, the ML estimator explicitly
considers, and tries to model well,only the observed one-step transitions. In Figure 1
we use Bayesian network notation to illustrate the difference between the two objec-
tives for a training sequence of length four. Figure 1(a) shows the training sequence,
which can have arbitrary dependencies. Maximum likelihood(ML) estimation maximizes
fML(θ) = log Pθ(s1|s0) + log Pθ(s2|s1) + log Pθ(s3|s2). Figure 1(b) illustrates the in-
teractions modeled by ML. Ignoringγ for now, for this example our objective (Eqn. 2) is
fML(θ) + log Pθ(s2|s0) + log Pθ(s3|s1) + log Pθ(s3|s0). Thus, it takes into account both
the interactions in Figure 1(b) as well as the longer-range ones in Figure 1(c).

4 Algorithm
We now present an EM algorithm for optimizing the objective in Eqn. (2) for a first-order
Markov model.3 Our algorithm is derived using the method of [7]. (See the Appendix for
details.) The algorithm iterates between the following twosteps:

• E-step: Compute expected counts

– ∀i, j ∈ S, setstats(j, i) = 0

– ∀t : 0 ≤ t ≤ T − 1,∀k : 1 ≤ k ≤ T − t,∀l : 0 ≤ l ≤ k − 1,∀i, j ∈ S
stats(j, i) + = γkP

θ̂
(St+l+1 = j, St+l = i|St = st, St+k = st+k)

• M-step: Re-estimate model parameters

Updateθ̂ such that∀i, j ∈ S, P
θ̂
(j|i) = stats(j, i)/

∑

k∈S stats(k, i)

Prior to starting EM, the transition probabilitiesP
θ̂

can be initialized with the first-order
transition counts (i.e., the ML estimate of the parameters), possibly with smoothing.4

Let us now consider more carefully the computation done in the E-step for one specific pair
of values fort andk (corresponding to one termlog Pθ(st+k|st) in Eqn. 2). Fork ≥ 2, as
in the forward-backward algorithm for HMMs (see, e.g., [12,10]), the pairwise marginals
can be computed by a forward propagation (computing the forward messages), a backward
propagation (computing the backward messages), and then combining the forward and
backward messages.5 Forward and backward messages are computed recursively:

for l = 1 to k − 1, ∀i ∈ S m→t+l(i) =
∑

j∈S m→t+l−1(j)Pθ̂
(i|j), (4)

for l = k − 1 down to1, ∀i ∈ S mt+l←(i) =
∑

j∈S mt+l+1←(j)P
θ̂
(j|i), (5)

3Using higher order Markov models or more structured models (such asdynamic Bayesian net-
works [4, 10] or mixed memory Markov models [8, 14]) offer no special difficulties, though the
notation becomes more involved and the inference (in the E-step) might become more expensive.

4A parameterP
θ̂
(j|i) initialized to zero will remain zero throughout successive iterations of EM.

If this is undesirable, then smoothing could be used to eliminate zero initial values.
5Note that the special casek = 1 (and thusl = 0) does not require inference. In this case we

simply haveP
θ̂
(St+1 = j, St = i|St = st, St+1 = st+1) = 1{i = st}1{j = st+1}.



where we initializem→t(i) = 1{i = st}, andmt+k←(i) = 1{i = st+k}. The pairwise
marginals can be computed by combining the forward and backward messages:

P
θ̂
(St+l+1 = j, St+l = i|St = st, St+k = st+k) = m→t+l(i)Pθ̂

(j|i)mt+l+1←(j). (6)

For the termlog Pθ(st+k|st), we end up performing2(k − 1) message computations, and
combining messages into pairwise marginalsk − 1 times. Doing this for all terms in the
objective results inO(T 3) message computations andO(T 3) computations of pairwise
marginals from these messages. In practice, the objective (2) can be approximated by
considering only the terms in the summation withk ≤ H, whereH is some time horizon.6

In this case, the computational complexity is reduced toO(TH2).

4.1 Computational Savings
The following observation leads to substantial savings in the number of message compu-
tations. The forward messages computed for the termlog Pθ(st+k|st) depend only on the
value ofst. So the forward messages computed for the terms{log Pθ(st+k|st)}H

k=1 are the
same as the forward messages computed just for the termlog Pθ(st+H |st). A similar ob-
servation holds for the backward messages. As a result, we need to compute onlyO(TH)
messages (as opposed toO(TH2) in the naive algorithm).
The following observation leads to further, (even more substantial) savings. Consider two
terms in the objectivelog Pθ(st1+k|st1) andlog Pθ(st2+k|st2). If st1 = st2 andst1+k =
st2+k, then both terms will have exactly the same pairwise marginals and contribution to
the expected counts. So expected counts have to be computed only once for every triple
i, j, k for which (St = i, St+k = j) occurs in the training data. As a consequence, the
running time for each iteration (once we have made an initialpass over the data to count
the number of occurrences of the triples) is onlyO(|S|2H2), which is independent of the
size of the training data.

5 Incorporating actions
In decision processes, actions influence the state transition probabilities. To generate train-
ing data, suppose we choose an exploration policy and take actions in the DP using this
policy. Given the resulting training data, and generalizing Eqn. (2) to incorporate actions,
our estimator now becomes

θ̂ = arg max
θ

T−1
∑

t=0

T−t
∑

k=1

γk log Pθ(st+k|st, at:t+k−1). (7)

The EM algorithm is straightforwardly extended to this setting, by conditioning on the
actions during the E-step, and updating state-action transition probabilitiesPθ(j|i, a) in
the M-step.
As before, forward messages need to be computed only once foreach value oft, and back-
ward messages only once for each value oft + k. However achieving the more substantial
savings, as described in the second paragraph of Section 4.1, is now more difficult. In par-
ticular, now the contribution of a triplei, j, k (one for which(St = i, St+k = j) occurs
in the training data) depends on the action sequenceat:t+k−1. The number of possible
sequences of actionsat:t+k−1 grows exponentially withk.
If, however, we use a deterministic exploration policy to generate the training data (more
specifically, one in which the action taken is a deterministic function of the current state),
then we can again obtain these computational advantages: Counts of the number of oc-
currences of the triples described previously are now againa sufficient statistic. How-
ever, a single deterministic exploration policy, by definition, cannot explore all state-action
pairs. Thus, we will instead use a combination of several deterministic exploration policies,
which jointly can explore all state-action pairs. In this case, the running time for the E-step
becomesO(|S|2H2|Π|), where|Π| is the number of different deterministic exploration
policies used. (See Section 6.2 for an example.)

6Because of the discount termγk in the objective (2), one can safely truncate the summation over
k after aboutO(1/(1 − γ)) terms without incurring too much error.



S

G

A B

0 0.2 0.4 0.6 0.8
−80

−70

−60

−50

−40

−30

Correlation level for noise

U
til

ity

new algorithm
maximum likelihood

0.7 0.75 0.8 0.85 0.9 0.95
−800

−600

−400

−200

Correlation level between arrivals

U
til

ity

new algorithm
maximum likelihood

(a) (b) (c)
Figure 2: (a) Grid-world. (b) Grid-world experimental results, showing the utilities of policies ob-
tained from the MDP estimated using ML (dash-dot line), and utilities of policiesobtained from the
MDP estimated using our objective (solid line). Results shown are means over 5 independent trials,
and the error bars show one standard error for the mean. The horizontal axis (correlation level for
noise) corresponds to the parameterq in the experiment description. (c) Queue experiment, show-
ing utilities obtained using ML (dash-dot line), and using our algorithm (solid line). Results shown
are means over 5 independent trials, and the error bars show one standard error for the mean. The
horizontal axis (correlation level between arrivals) corresponds to the parameterb in the experiment
description. (Shown in color, where available.)

6 Experiments
In this section, we empirically study the performance of model fitting using our proposed
algorithm, and compare it to the performance of ordinary ML estimation.

6.1 Shortest vs. safest path
Consider an agent acting for 100 time steps in the grid-worldin Figure 2(a). The initial
state is marked by S, and the absorbing goal state by G. The reward is -500 for the gray
squares, and -1 elsewhere. This DP has four actions that (tryto) move in each of the four
compass directions, and succeed with probability1− p. If an action is not successful, then
the agent’s position transitions to one of the neighboring squares. Similar to our example in
Section 1, the random transitions (resulting from unsuccessful actions) may be correlated
over time. In this problem, if there is no noise (p = 0), the optimal policy is to follow
one of the shortest paths to the goal that do not pass through gray squares, such as pathA.
For higher noise levels, the optimal policy is to stay as far away as possible from the gray
squares, and try to follow a longer path such asB to the goal.7 At intermediate noise levels,
the optimal policy is strongly dependent on how correlated the noise is between successive
time steps. The larger the correlation, the more dangerous path A becomes (for reasons
similar to the random walk example in Section 1). In our experiments, we compare the
behavior of our algorithm and ML estimation with different levels of noise correlation.8

Figure 2(b) shows the utilities obtained by the two different models, under different degrees
of correlation in the noise. The two algorithms perform comparably when the correlation is
weak, but our method outperforms ML when there is strong correlation. Empirically, when
the noise correlation is high, our algorithm seems to be fitting a first-order model with a
larger “effective” noise level. When the resulting estimated MDP is solved, this gives more
cautious policies, such as ones more inclined to choose pathB over A. In contrast, the
ML estimate performs poorly in this problem because it tendsto underestimate how far
sideways the agent tends to move due to the noise (cf. the example in Section 1).

7For very high noise levels (e.g.p = 0.99) the optimal policy is qualitatively different again.
8Experimental details: The noise is governed by an (unobserved) Markov chain with four states

corresponding to the four compass directions. If an action at timet is not successful, the agent moves
in the direction corresponding to the state of this Markov chain. On each step, the Markov chain
stays in the current state with probabilityq, and transitions with probability1 − q uniformly to any
of the four states. Our experiments are carried out varyingq from 0 (low noise correlation) to 0.9
(strong noise correlation). A 200,000 length state-action sequence forthe grid-world, generated using
a random exploration policy, was used for model fitting, and a constant noise levelp = 0.3 was used
in the experiments. Given a learned MDP model, value iteration was used to find the optimal policy
for it. To reduce computation, we only included the terms of the objective (Eqn. 7) for whichk = 10.



6.2 Queue
We consider a service queue in which the average arrival rateis p. Thus, p =
P (a customer arrives in one time step). Also, for each actioni, let qi denote the service
rate under that action (thus,qi = P (a customer is served in one time step|action= i)). In
our problem, there are three service ratesq0 < q1 < q2 with respective rewards0,−1,−10.
The maximum queue size is 20, and the reward for any state of the queue is 0, except when
the queue becomes full, which results in a reward of -1000. The service rates areq0 = 0,
q1 = p andq2 = 0.75. So the inexpensive service rateq1 is sufficient to keep up with
arrivals on average. However, even though the average arrival rate isp, the arrivals come
in “bursts,” and even the high service rateq2 is insufficient to keep the queue small during
the bursts of many consecutive arrivals.9

Experimental results on the queue are shown in Figure 2(c). We plot the utilities obtained
using each of the two algorithms for high arrival correlations. (Both algorithms perform
essentially identically at lower correlation levels.) We see that the policies obtained with
our algorithm consistently outperform those obtained using maximum likelihood to fit the
model parameters. As expected, the difference is more pronounced for higher correlation
levels, i.e., when the true model is less well approximated by a first-order model.
For learning the model parameters, we used three deterministic exploration policies, each
corresponding to always taking one of the three actions. Thus, we could use the more
efficient version of the algorithm described in the second paragraph of Section 4.1 and
at the end of Section 5. A single EM iteration for the experiments on the queue took 6
minutes for the original version of the algorithm, but took only 3 seconds for the more
efficient version; this represents more than a 100-fold speedup.

7 Conclusions
We proposed a method for learning a first-order Markov model that captures the system’s
dynamics on longer time scales than a single time step. In ourexperiments, this method was
also shown to outperform the standard maximum likelihood model. In other experiments,
we have also successfully applied these ideas to modeling the dynamics of an autonomous
RC car. (Details will be presented in a forthcoming paper.)

References
[1] T. M. Cover and J. A. Thomas.Elements of Information Theory. Wiley, 1991.
[2] T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decom-

position.JAIR, 2000.
[3] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali.LMI Control Toolbox. Natick, MA, 1995.
[4] Z. Ghahramani. Learning dynamic Bayesian networks. InAdaptive Processing of Sequences

and Data Structures, pages 168–197. Springer-Verlag, 1998.

9Experimental details: The true process has two different (hidden) modes for arrivals. The first
mode has a very low arrival rate, and the second mode has a very higharrival rate. We denote
the steady state distribution over the two modes by(φ1, φ2). (I.e., the system spends a fractionφ1

of the time in the low arrival rate mode, and a fractionφ2 = 1 − φ1 of the time in high arrival
rate mode.) Given the steady state distribution, the state transition matrix[a 1 − a; 1 − b b] has
only one remaining degree of freedom, which (essentially) controls howoften the system switches
between the two modes. (Here,a [resp.b] is the probability, if we are in the slow [resp. fast] mode,
of staying in the same mode the next time step.) More specifically, assumingφ1 > φ2, we have
b ∈ [0, 1], a = 1 − (1 − b)φ2/φ1. The largerb is, the more slowly the system switches between
modes. Our experiments usedφ1 = 0.8, φ2 = 0.2, P (arrival|mode 1) = 0.01, P (arrival|mode 2) =
0.99. This meansb = 0.2 gives independent arrival modes for consecutive time steps. In our
experiments,q0 = 0, andq1 was equal to the average arrival ratep = φ1P (arrival|mode 1) +
φ2P (arrival|mode 2). Note that the highest service rateq2(= 0.75) is lower than the fast mode’s
arrival rate. Training data was generated using 8000 simulations of 25 time steps each, in which the
queue length is initialized randomly, and the same (randomly chosen) actionis taken on all 25 time
steps. To reduce computational requirements, we only included the termsof the objective (Eqn. 7)
for which k = 20. We used a discount factorγ = .95 and approximated utilities by truncating at a
finite horizon of 100. Note that although we explain the queuing process byarrival/departure rates,
the algorithm learns full transition matrices for each action, and not only thearrival/departure rates.



[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains.Artificial Intelligence, 101, 1998.

[6] M. Kearns, Y. Mansour, and A. Y. Ng. Approximate planning in large POMDPs via reusable
trajectories. InNIPS 12, 1999.

[7] R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other
variants. InLearning in Graphical Models, pages 355–368. MIT Press, 1999.

[8] H. Ney, U. Essen, and R. Kneser. On structuring probabilistic dependencies in stochastic lan-
guage modeling.Computer Speech and Language, 8, 1994.

[9] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive Bayes. InNIPS 14, 2002.

[10] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-
gan Kauffman, 1988.

[11] D. Precup, R. S. Sutton, and S. Singh. Theoretical results on reinforcement learning with
temporally abstract options. InProc. ECML, 1998.

[12] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77, 1989.

[13] J. K. Satia and R. L. Lave. Markov decision processes with uncertain transition probabilities.
Operations Research, 1973.

[14] L. K. Saul and M. I. Jordan. Mixed memory Markov models: decomposing complex stochastic
processes as mixtures of simpler ones.Machine Learning, 37, 1999.

[15] R. S. Sutton. TD models: Modeling the world at a mixture of time scales.In Proc. ICML, 1995.
[16] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.
[17] C. C. White and H. K. Eldeib. Markov decision processes with imprecise transition probabili-

ties. Operations Research, 1994.

Appendix: Derivation of EM algorithm
This Appendix derives the EM algorithm that optimizes Eqn. (7). The derivation is based
on [7]’s method. Note that because of discounting, the objective is slightly different from
the standard setting of learning the parameters of a Markov chain with unobserved variables
in the training data.
Since we are using a first-order model, we haveP

θ̂
(st+k|st, at:t+k−1) =

∑

St+1:t+k−1
P

θ̂
(st+k|St+k−1, at+k−1)Pθ̂

(St+k−1|St+k−2, at+k−2) . . . P
θ̂
(St+1|st, at).

Here, the summation is over all possible state sequencesSt+1:t+k−1. So we have
∑T−1

t=0

∑T−t

k=1 γk log P
θ̂
(st+k|st, at:t+k−1)

=
∑T−1

t=0 γ log P
θ̂
(st+1|st, at) +

∑T−1
t=0

∑T−t

k=2 γk log
∑

St+1:t+k−1

Qt,k(St+1:t+k−1)
Qt,k(St+1:t+k−1)

P
θ̂
(st+k|St+k−1, at+k−1)Pθ̂

(St+k−1|St+k−2, at+k−2) . . . P
θ̂
(St+1|st, at)

≥ ∑T−1
t=0 γ log P

θ̂
(st+1|st, at) +

∑T−1
t=0

∑T−t

k=2 γkQt,k(St+1:t+k−1)

log
P

θ̂
(st+k|St+k−1,at+k−1)Pθ̂

(St+k−1|St+k−2,at+k−2)...Pθ̂
(St+1|st,at)

Qt,k(St+1:t+k−1)
. (8)

Here,Qt,k is a probability distribution, and the inequality follows from Jensen’s inequality
and the concavity oflog(·). As in [7], the EM algorithm optimizes Eqn. (8) by alternately
optimizing with respect to the distributionsQt,k (E-step), and the transition probabilities
P

θ̂
(·|·, ·) (M-step). Optimizing with respect to theQt,k variables (E-step) is achieved by

settingQt,k(St+1:t+k−1) =
P

θ̂
(St+1, . . . , St+k−1|St = st, St+k = st+k, At:t+k−1 = at:t+k−1). (9)

Optimizing with respect to the transition probabilitiesP
θ̂
(·|·, ·) (M-step) for Qt,k

fixed as in Eqn. (9) is done by updatinĝθ to θ̂new such that∀ i, j ∈ S,∀ a ∈ A
we have that P

θ̂new
(j|i, a) = stats(j, i, a)/

∑

k∈S stats(k, i, a), where

stats(j, i, a) =
∑T−1

t=0

∑T−t

k=1

∑k−1
l=0 γkP

θ̂
(St+l+1 = j, St+l = i|St = st, St+k =

st+k, At:t+k−1 = at:t+k−1)1{at+l = a}. Note that only the pairwise marginals
P

θ̂
(St+l+1, St+l|St, St+k, At:t+k−1) are needed in the M-step, and so it is sufficient to

compute only these when optimizing with respect to theQt,k variables in the E-step.


