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Abstract 
We present a novel approach to speaker identification in robot 
dialogue that allows a robot to recognize people during natural 
conversation and address them by name. Our STanford AI 
Robot (STAIR) dialogue system attempts to mirror the human 
speaker identification process. We model the robot dialogue 
problem as a Markov Decision Process (MDP) and apply a 
reinforcement learning algorithm to try to learn the optimal 
dialogue actions. The MDP model works in conjunction with a 
traditional statistical cluster based speaker identification 
subsystem. Our approach also addresses open-set speaker 
identification, dynamically adding new speaker profiles as 
well as continuously updating known profiles. 
Index Terms: dialogue, MDP, speaker identification, speaker 
recognition, robot conversation 

1. Introduction 
 “The sweetest sound in any language is the sound of one’s 
own name.” – Andrew Carnegie 
 

In this paper, we present an MDP based algorithm for 
speaker ID in a robot dialogue agent. The goal of our 
STanford AI Robot (STAIR) project is a robotic assistant, one 
capable of conversation, for home/office. Such a system must 
carry out spoken conversational interactions with different 
humans, address known speakers by name, and recognize new 
speakers. The robot’s conversational dialogue agent must thus 
incorporate traditional speaker recognition. Potential 
applications for speaker ID in robot dialogue include: 
• Addressing users by name. Users generally prefer spoken 

dialogue systems to be personalized [1]. 

• Authentication, so as not to follow orders of an 
unauthorized person or a young child. 

• Answering questions of the form “Who sent you?”, etc. 

Automatic speaker recognition, the task of recognizing a 
person based on her voice, has traditionally been split into two 
areas. Speaker verification, a binary classification task, deals 
with confirming whether a person is who she claims to be. 
Since an imposter may not be known to the system, speaker 
verification is generally referred to as an open-set task. 
Speaker identification, an N-way classification task, deals with 
finding the most likely match for an input voice sample from a 
known group of people. Identification usually requires the 
speakers to be known in advance, making this a closed-set 
problem. Our dialogue-based work lies in open-set speaker 
identification, and combines challenges from both verification 
and identification. Our system must decide when to identify a 
currently known speaker, and when to create a new profile for 
a speaker it has not previously met. 

The task of dialogue based open-set speaker ID imposes a 
number of design constraints. The system must accept text-
independent, variable length (often very short) utterances. 
Users must be identified in a conversationally natural way, 
much as a human might when they can’t remember 
someone’s name. Thus the agent must decide whether to 
make an identification attempt immediately or get more data 
through additional conversation. The system must be able to 
deal with unknown speakers, asking their name and adding 
them to the known set. We also desire incremental learning, 
continually adapting our model of known speakers in 
subsequent conversations.  
 

 
 

Figure 1: The STAIR robot. 

1.1. Proposed Solution 

We propose a combination of an MDP/reinforcement learning 
based dialogue agent (the Dialogue Agent or DA) and a 
statistical clustering based speaker identification system (the 
Speaker Identifier or SI). 

Following the current state of the art in dialogue agent 
design [2, 3], we model the dialogue problem as an MDP. In 
the MDP, the state of the system will capture our degree of 
certainty about the speaker’s identity (based on the SI’s 
output). Given the current state, our MDP DA will then 
choose the next conversation action. Specifically, it will first 
decide between identifying a speaker on a current dialogue 
turn or eliciting natural small talk to obtain more data. When 
identifying a person, the DA will further decide the manner 
and degree of certainty with which it will do so.   

For the SI, we use Vector Quantization (VQ) [4] with 
MFCC features. VQ is robust and accurate even for small 
amounts of training data (~5-30 seconds in our domain) [5, 6]. 



VQ is also fast to train (a necessity since we constantly need 
to retrain known users), fast to test (hence close to real time 
identification), and simple. The issues addressed in this paper 
are also largely orthogonal to the specific SI system used; our 
MDP DA approach can be straightforwardly incorporated 
with other more sophisticated SI systems. We also note that 
most traditional statistical speaker identification systems need 
to know the possible speakers in advance whereas we are 
constantly adding new speakers. The DA will handle this 
limitation in its decision process, described later. 

2. Implementation and Methodology 

2.1. Speaker Identifier 

Whenever a person speaks, our system extracts MFCC feature 
vectors (using HTK [7]), which are then concatenated and 
used for training/retraining at the end of every conversation. 
During training, we employ VQ (using Linde-Buzo-Gray 
(LBG) algorithm [8]) to find clusters of these training feature 
vectors, and represent an entire cluster by a single cluster 
centroid, or codeword. Each speaker is therefore represented 
by a set of codewords. During testing, we go through each 
speaker’s codeword set, and for each test vector, we compute 
its distance to the nearest codeword. The sum of these test 
vector distances is the total VQ distortion for that speaker, 
which reflects the likelihood of the test utterance belonging to 
her. Intuitively, the smaller the distortion, the more likely the 
utterance was by that speaker. Given an utterance, the SI 
returns a distortion for each known speaker; these distortions 
will be used by the DA to define the current MDP state. 

2.2. Dialogue Agent 

The DA uses an MDP model of the robot dialogue task. A 
finite-horizon MDP models a sequential decision process, and 
formally comprises a set of states S, a set of actions A, state 
transition probabilities P(s’|s,a), a time horizon T, a reward 
function 
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R : S " A#$, and a discount factor 0 ≤ γ < 1. The 
reward function R specifies which states are more or less 
desirable, and the agent’s goal is to choose actions so as to 
visit states with large positive rewards, and avoid states with 
negative rewards.  

More formally, on each time step t, the agent is in some 
state st ∈ S, and has to choose an action at ∈ A. As a result of 
its choice, it transitions randomly to a new state st+1 according 
to the transition probabilities P(st+1|st,at). After T turns, the 
agent will have visited some sequence of states s0, s1, …, sT. 
The goal of a reinforcement learning algorithm is to choose 
actions so as to maximize the expected value of R(s0, a0) + γ 
R(s1,a1) + γ2 R(s2,a2) + … + γT R(sT,aT). More precisely, it 
outputs a policy π: S a A that indicates which action π(s) it 
thinks we should take in each state s.  

Given a full MDP model, there are standard algorithms such 
as value iteration [9] for efficiently finding the optimal policy. 
In our MDP model, the states, actions, horizon time, rewards, 
and discount factor are exactly specified, but the state 
transition probabilities will be estimated from (either 
simulation or real) data.  

2.2.1. States 

In our DA, the MDP states capture the current dialogue turn 
number and also reflect our uncertainty about the speaker ID. 

This uncertainty is modeled using the distortions supplied by 
the SI. More precisely, we map these distortions into a finite 
number of buckets. Such a mapping is necessary since the 
dimension of the continuous-valued vector of distortions is 
unbounded and grows over time (since the set of speakers is 
constantly growing); but the simplest versions of most MDP 
algorithms (such as value iteration) require that the set states 
be finite and fixed in advance. 

For this mapping, we begin by extracting the most likely 
speaker matches by taking the minimum 20% of the distortion 
values. Doing so provides robustness against outliers with 
very large distortions. We compute the mean and variance of 
this 20% subset of the distortion values, and group these 
values into buckets according to how many standard 
deviations (σ) they fall below their mean.  

 

 
 

Figure 2: Transformation during the first dialogue turn 
 
To build the MDP state from these buckets, we compute 

two values: Countmin and Countmin+1 (see Table 1). We set 
Countmin to be the number of distortions falling into the 
minimum σ bucket that is at least 2σ less than the mean, if 
such a bucket exists (otherwise, Countmin is 0). If the number 
of distortions in this bucket is > 2, we set its value to “n” 
because having any number greater than 2 results in fairly 
similar states where the correct identification is unclear. We 
similarly set Countmin+1 to be the number of distortions in the 
σ bucket that is 1σ closer to the mean and at least 1σ less than 
the mean (or 0 if no such bucket exists). For example, the 
bucketed counts in Figure 2 above would result in the state: 
{Turn = 1, Countmin=1, Countmin+1=n}. 

 
Table 1: List of state features and their explanations.   
 

Features Values Explanation 
Turn(T) 0,1,2,3,4 Dialogue turn number. 
Countmin 0,1,2,n Number of speaker distortions 

that fall in the min σ range, (at 
least 2σ less than the mean).  n 
means count is greater than 2. 

Countmin+1 0,1,2,n Number of speaker distortions 
that fall into min+1 σ range, (at 
least 1σ less than the mean). 

 
The MDP state is then the concatenation of the current 

conversation turn, the value of Countmin, and the value of 
Countmin+1. This gives a total of 80 possible states. Informally, 
a state characterized by the lowest distortion value being a 
lone outlier far below the mean is one where the system 
would likely identify a known speaker. In contrast, a state that 
has more speaker distortions closer to the mean, and none 
much smaller than the mean, is one where we detect a new 
speaker. In that case, we ask for the speaker’s name, add her 
to the system and then proceed to learn her set of codewords. 



2.2.2. Actions 

The 5 actions (denoted A1- A5) available to the DA at every 
state are illustrated in Table 2. They represent the spectrum of 
uncertainty with which the system can choose to identify a 
new or known user, naturally and without being rude.  
 
  Table 2: Set of actions in the MDP 
 

Action Response Template 
A1 Hello $name. 
A2 I think you are $name. 
A3 I think we have met before.   
A4 What is your name? 
A5 Small talk depending on turn number 
 

The utterance for action A5 is retrieved from a table 
containing various small talk responses for a given dialogue 
turn. With a fully functional Automatic Speech Recognition 
(ASR) system, we could expand the responses to be more 
context sensitive by making use of the additional semantic 
meaning, but in our prototype, simply examining the turn 
number was sufficient for adequately compelling small talk. 

2.2.3. Finite Horizon 

   Our DA uses a finite horizon MDP. We found that 
speakers can only endure a few dialogue turns of small talk 
before becoming bored. Thus, after 5 turns, the DA must 
decide to make one of the possible identifications or ask for a 
name. The MDP also uses discounting, so that rewards 
obtained (from a correct identification) later in the 
conversation are worth less than rewards obtained earlier; this 
prevents the agent from becoming a chatterbox, encouraging 
it to make an identification in as few turns as possible.  

2.2.4. Reinforcement Learning  

Once the current state is calculated via the transformation 
from Section 2.2.1, we find the best action to take in that state 
by consulting the optimal policy for the MDP. Specifically, 
the DA chooses actions so as to try to maximize the expected 
discounted sum of rewards, or utility, obtained. We assign a 0 
reward for non-terminal states, and for terminal ones where 
we attempt identification, we give higher constant reward 
values to correct and more confident actions (such as “Hello 
Bobby” rather than “I think you are Bobby”). The system is 
similarly penalized for incorrect identification, more so for a 
confident identification that is incorrect, than for a more 
tentative one. When the system decides to identify a known 
user, it retrieves the name of the speaker with the minimum 
distortion and inserts it into the response template. The reward 
function is dependent on not just the state and the action taken 
in that state, but also the user confirmation, which decides 
whether we assign a positive or negative reward. To get 
speaker confirmation, after the agent makes an identification 
or requests a new speaker’s name, the system either asks “Did 
I get your name right?” or “Have we met?” After each 
conversation, the transition probabilities are updated (see 
Section 2.2.5 for details), and the new policy is recalculated 
using one round of value iteration [9]:   
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where Vi is the value of a state after the ith conversation, R is 
the reward function, and γ is the discount factor. 

  As the robot interacts with different users, the transition 
probabilities are continuously re-estimated, so that the 
computed policy slowly improves over time.   

2.2.5. MDP Parameter Learning 

As with any machine learning approach, an early hurdle is 
gathering realistic training data, either real or simulated [10]. 
In order to train our sample MDP DA for observation, we 
develop an efficient dialogue simulation engine to run the 
MDP through many dialogues to initialize its states and 
transition probabilities. We record 10 speakers, each engaging 
in free-form conversation for 15 seconds. We then split up the 
utterances into smaller 3 second clips and use different 
permutations of clip sequences as sample dialogues to the 
DA. This allows us to create many sample dialogues out of a 
small amount of real world data even in the absence of an 
ASR system, because only the MFCC features, not the 
content, of the utterance are used for speaker ID. Thus, we 
build up the MDP with possible states as well as initial 
transition probabilities using the following formula: 
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where Count is the number of occurrences and Ssa is the set of 
all states that transition from s via action a. 
   Once the MDP is initialized, we have a system that can then 
be used in live dialogue to obtain additional data, which 
allows us to more accurately learn the state transition 
probabilities that we can then use to re-compute the policy.   

3. Results 
The ideal evaluation would involve having a complete 

robotic agent interacting with users, whose reactions we 
would then compare with and without our system. However, 
the STAIR platform is still in development, and we must 
defer such a test to the future. Given that we are primarily 
interested in incorporating speaker ID into spoken dialogue, 
we were still able to build a complete system, as described 
above, and evaluate its interactions with live users. 

3.1. Dialogue Agent Results 

The following two tables illustrate an example dialogue with 
the tuned MDP agent using the learned policy, and give the 
computations that occurred during a part of the conversation. 
 
Table 3: Sample Dialogue with MDP Dialogue Agent 
 
Speaker Utterance State Action 
Human Hello, Robot.   
Robot Hello, how are you 

today? 

 

A5 

Human I am doing well.   
Robot I am really looking 

forward to spring 
break.  What about 
you?  

A5 

Human Definitely. I need a 
break. 

  



Robot I think you are Bobby.  
Did I get your name 
right? 

 

A2 

Human Yes   
 

Table 4: Expected values of state actions and the optimal 
action chosen in Robot’s 3rd turn 

 
State Expected Value Best Action 

 
Turn = 3 

Countmin = 1 
Countmin+1= n 

! 

R(s,A1) + P(s' | s,A1
s'

" )V (s') = 2.4
 

! 

R(s,A2) + P(s' | s,A2
s'

" )V (s') = 3.0
 

! 

R(s,A3) + P(s' | s,A3
s'

" )V (s') =1.6
 

! 

R(s,A4 ) + P(s' | s,A4
s'

" )V (s') = 0.6
 

! 

R(s,A5) + P(s' | s,A5
s'

" )V (s') = 0.3
 

! 

A2 =

argmax
a

R(s,a) +

P(s' | s,a)V (s')
s'

"

 

3.2 Speaker Identifier 

We tested the accuracy and speed of the VQ SI to ensure 
reasonable performance. We performed a closed-set test on 10 
live speakers, training each speaker model on short (10 
second) utterances, and testing on both a typical short 
utterance (1 sec) and a typical long one (5 sec). We also tried 
training on utterances with both the same words and different 
words across speakers. We used 128 codewords, a value 
empirically observed to give the best performance.  

Our SI test accuracy was 70% on 1 second utterances and 
90% on 5 second utterances. We found no significant 
differences in SI accuracy between training with same and 
training with different utterances across users. 

Training took 11.46 seconds on average for 10 second 
utterances. Testing time took between 0.53 seconds (for 1 
second utterances) and 1.31 seconds (for 5 second utterances).  

4. Discussion and Analysis 
Our Dialogue Agent interacted appropriately and adapted 
based on the user responses. Although a good distortions to 
states mapping merits additional research, our mapping 
worked well and correctly handled a growing speaker set, 
even when the speakers’ distortions differed greatly. A finite 
horizon MDP also proved helpful, since users were 
consequently not bored given the 5 turn limit.  

In our experiments, the policy started off overly confident, 
and thus was heavily penalized in the early stages of learning. 
Over time, the system learned to make identifications that 
were better calibrated for confidence; for example, making 
more tentative identifications when uncertain.  However, 
states with significant outliers in the SI distribution resulted in 
identifications that were correct as well as confident and were 
therefore awarded positively. Neutral states, as predicted, 
resulted in STAIR making some new friends. 

The Speaker Identifier was found to have adequate 
accuracy, especially with the longer test utterances. This 
reinforces our DA’s goal to elicit small talk to gather more 
data. Nonetheless, the short utterances were often sufficient to 
make an identification, which is important for the frequent, 
very short phrases, such as “Hello, Robot.” 

 Our fast running time (just over real time for training, 
much faster for test) is critical for performing identification 
during conversation, and was one of the benefits of using the 
simple VQ technique for SI. 

5. Conclusions  
We present a novel approach for embedding speaker 
identification within a dialogue system for a robotic assistant. 
The task requires open-set identification, incremental learning 
and identifying speakers within a conversational context, 
which we achieve by combining an MDP and reinforcement 
learning based dialogue agent with a traditional speaker 
recognition subsystem. The SI subsystem is found to give 
reasonable performance, and the resulting MDP DA 
converges to a good policy that allows a robot assistant to 
naturally identify users, much like humans would.   

Future research directions include using more accurate 
speaker recognition [11,12], using a Partially Observable 
MDP (POMDP) [13] to model uncertainty in SI output, or 
implementing a more sophisticated reward function based on  
the overall quality of the interaction (not just on whether the 
system properly identified the user).  The latter may help 
correctly balance false  negatives (the robot says it has never 
met the user) and false positives (calling them the wrong 
name). We hope that our current work and such future work 
will make natural speaker identification systems a crucial part 
of any robotic assistant. 
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