Scalable Learning for Object Detection with GPU Hardware

Adam Coates, Paul Baumstarck, Quoc Le, and Andrew Y. Ng

Abstract— We consider the problem of robotic object detec-
tion of such objects as mugs, cups, and staplers in indoor envi-
ronments. While object detection has made significant progress
in recent years, many current approaches involve extremely
complex algorithms, and are prohibitively slow when applied to
large scale robotic settings. In this paper, we describe an object
detection system that is designed to scale gracefully to large
data sets and leverages upward trends in computational power
(as exemplified by Graphics Processing Unit (GPU) technology)
and memory. We show that our GPU-based detector is up to
90 times faster than a well-optimized software version and can
be easily trained on millions of examples. Using inexpensive
off-the-shelf hardware, it can recognize multiple object types
reliably in just a few seconds per frame.

. INTRODUCTION

hardware becomes available, we must choose algorithms that
leverage this exponential growth in resources. We beliese t
the most successful methods in object detection (or compute
vision in general, perhaps) may well turn out to be those that
scale most easily with these trends, as they will be able to
tackle larger and larger problems where other approaches
will be impractical

We not only desire speed but also accuracy from our
detector. A key hurdle to developing an accurate detector
is the following: training examples are few while oppor-
tunities for mistakes in the real world are many. Cluttered
background imagery, for example, provides endless vaseti
of shapes and shades that can easily be mistaken for a target
object if that particular background pattern has not been se

Achieving high accuracy in object detection tasks for &efore. Our previous system has often suffered from high
moderate number of objects is a major challenge in robotfélse positive rates due to this phenomenon. One solutfon, o
perception. Our interest in object detection stems from o@ourse, is to train on very large numbers of negative exasnple
experience with practical applications on the Stanford A0 reduce the probability of seeing a background pattern tha
Robot (STAIR), such as taking inventory of a few types ohas never been seen before. For this approach to work in
objects in an office environment [1]. While object detectiorPractice we must build a system that naturally scales teelarg
using cameras and other sensors is well studied, it remaifigta sets. The choice of algorithms in this paper is motivate
notoriously difficult to perform reliably in practice and chiefly by their ability to learn from extremely large traigi
often involves carefully crafted but fragile models apglie Sets.
to features that are computationally expensive. There areThere has also been significant interest in using large
many trade-offs to be made between computational speed &fi@fa sets in other domains. In image retrieval [4], [5], [6],
accuracy—yet we want both for a truly deployable system. Imany systems perform surprisingly well using relatively
this paper, we describe an approach to object detection tHétsophisticated algorithms. Similar observations havenbe
achieves speed through the use of highly parallel, scalabiade for natural language applications [7]. This suggésts t
algorithms, and achieves accuracy by leveraging large datg can, in fact, use relatively simple classification altoris

sets.

in our detector. Hence, learning from large amounts of data

Ideally, Moore’s Law [2] would mitigate the computational Serves the dual purposes of improving classification acgura
expenses of robot perception on a yearly basis. Unfortivhile also allowing us to use simpler algorithms.

nately, single-CPU clock speeds appear to be stagnating.!n summary, our approach to object detection is motivated
Thus, we cannot rely on clock speed alone to achieve hidly the following: (i) Algorithms that scale well with the
speed in object detection tasks. Moore's Law continues ®@xponential growth in (parallel) processing power will be
hold, but with increased computational power coming in thable tackle complex problems more effectively (and will
form of highly parallel architectures. These include multiimprove with time), and (i) learning from large trainingtse
core CPUs and, most spectacularly, inexpensive Graphie§ers us the opportunity to use simpler algorithms that are
Processing Units (GPUs) with literally hundreds of coreg anmore easily implemented, scale better, and simultaneously
enormous amounts of memory on a single card. In additiodchieve higher accuracy.

to growth in computational power we also have high growth In Section I, we begin by describing the observations and
of network bandwidth and non-volatile Storage Capacity thé)rior work that motivate our deSign choices. In Section Il
make it feasible to store and transfer extraordinary ansount/e then present our object detection approach and describe

of data. In order to develop a system that runs faster as newtw our classifiers are trained. Section IV describes our
high-speed implementation of the feature computations and

are with
University. 1The graphics community, for instance, realized some time agb tha

Adam Coates, Quoc Le and Andrew Y. Ng
the Computer Science Department at Stanford

{acoat es, quocl e, ang}@s. st anf ord. edu
Paul Baumstarck is with the Electrical Engineering Departna¢rStan-
ford University.pbaunst ar ck@t anf or d. edu

“brute-force image-space” methods like the Z-buffer were nsoadable and
effective than the asymptotically efficient hierarchical hoets that predated
them [3].

detection algorithm for test time evaluation using graphicclasses such as “chairs” or “cars” in a variety of scenesgusin
hardware. In Section V we conclude with experimentad fixed training set. The difficulty of this task is considdeab
results that demonstrate the accuracy and speed of ounsyst@nd contestants typically achieve average precision &f les
on realistic scenes. than 60%. With small training sets, algorithms for these
tasks must rely heavily on prior knowledge provided in the
Il. DESIGN MOTIVATION form of hand-coded features and carefully tuned parameters
The object detection system we present is designed, forghjs also suggests that the results will be brittle since the
most, for scalability with computing resources and trainclassifiers must rely on assumptions formed from very little
ing set sizes. Specifically, we will leverage the power Ofata.
GPUs and many-core CPUs to accelerate the computationalRather than focusing on improved features and algorithms,
elements of our system (especially to reduce testing timeje instead focus on learning from large datasets, and use
and we will utilize large numbers of training examples toff-the-shelf features and algorithms. Some recent wosk al
achieve good test performance. Our focus on these featufgfds credence to the hypothesis that learning from large
is motivated by several prior successes in the computevisi amounts of data may allow better generalization and higher
literature. accuracy than algorithmic ingenuity alone. The effectasm
One well-known result is the work of Viola and Jones [8].of |arge training sets for image retrieval, for instances ha
Their use of fast Haar-like features, coupled with a “caspeen observed by several researchers. Though this domain
cading” set of classifiers for culling out negative exampless concerned with somewhat different desiderata than bbjec
demonstrated state-of-the-art performance in face detect detection, results using |arge data sets are promising_ In
at full-motion frame rates. The Haar features chosen i thejhe work of Nister and Stewenius [6], they observe that
work are extremely fast and, by virtue of their speed, can h@e use of large data sets allows them to ignore geometric
computed in great variety. Surprisingly, however, the Haghformation that had previously been necessary to achieve
features have not seen as much success in detecting Q[bltrgbod performance_ Similar interest in |arge training sets h
objects. While fast, the Haar features have limited expregreen shown in object recognition research for training sets
siveness and, it seems, are particularly suited to detectifith hundreds of thousands of examples [13]. In our work,

certain facial features, while failing when applied to morgye will develop a system that scales to tens of millions of
general-purpose detection. In our work, we will use featuresxamples.

that, in a sense, are natural generalizations of Haar festur
We use features inspired by the work of Torralba et al. [9], IIl. DETECTOR LEARNING
and described in [1] These features are based on dictemari We now describe our Object detection approach and its

of image “patches” extracted from positive examples of thgnplementation for our robot. Specifically, we will detail:
target object. They are more expressive than Haar featurgg priefly, the form of the images input to our system, (i)

and at the same time more specialized to the target objagle implementation of our patch-based features, and (ii) o
class. Moreover, we will see that they are particularlyesliit hopsting-based classifier used for detection.

to implementation on GPUs.
Harnessing the growth in the computational power of\. Problem Setup

graphics chips has already been explored by computer visionConsistent with our motivation to learn from large quan-
researchers, particularly for computing image features. Ftities of data, we also want to learn from rich data whenever
instance, the venerable Canny Edge Detector has been impigis available. Our robot platform is equipped with a typica
mented on GPUs using the nVidia CUDA SDK [10], as wells40x480 resolution camera that acquires 8-bit gray-scale
as Lowe’s SIFT descriptor [1]In our work we implement intensity images. In addition, however, it also uses théivac
the patch-based features in [9] using GPU hardware, achiestereo” system described in [1] to acquire depth imageseof th
ing a substantial performance gain. These features arlyideascene. Prior work in object detection has demonstrated that
suited to GPU implementation and, thus, turn out to bgepth data, in addition to 2D imagery, improves recognition
extremely fast. Indeed, we believe that scalability andedpe performance []_4], [1] We also Compute the (Smoothed)
will allow these features to perform as well as more compleyradient of the gray-scale image intensity and store its
ones, since we can compute them in greater numbers aggnitude as a new 640x480 image channel. In this image,
variety. edges appear as bright pixels and regions of uniform color
The second key feature of our object detection strategy ¥ppear dark. Figure 1 shows a typical 3-channel input to our
the reliance on large data sets. Though object detectianilin f detection system.
generality remains unsolved, the benefit of large traingtg s Gjven an input image, our object detection system builds
has already been demonstrated. For instance, the corttestajh the standard “sliding window” approach [15], [16], [17].
in the PASCAL Visual Object Classes Challenge [12] argve will construct a binary classifier that, for each sub-
asked, in one competition, to locate very generic objeggindow of an image, determines whether the target object
) i is contained (tightly) within the window. Given such a
The CUDA SDK allows programmers to run generic C/C++-styleecod . - .
in parallel directly on the GPU cores. We will use the same Sblour classifier, we then evaluate it mdependently on a series of
own implementation in Section IV. windows of varying sizes spaced at uniform intervals over

@ b ©

Fig. 1. A typical set of channels from an image captured by obot's sensors: (a) gray-scale intensity, (b) intensigdégent, (c) depth.

where ® denotes normalized cross-correlation, &hd is
channelc of the input imagez.

We have chosen these features because they are general-
purpose yet sufficiently specialized that we expect them
to work well with a wide range of objects. Since the
feature definitions are acquired from data, we can create new
features from new data whenever the necessity arises. Thus,
as computational resources become greater and training set
sizes increase, we can also expand our patch dictionary to
more accurately capture the object class structure.

Importantly, these features can also be computed ef-
ficiently on GPUs and mesh naturally with the sliding-
window approach to object detection. Once we've computed
Fig. 2. Examples of patches extracted from a labeled coffee ifivg red .the normalized F:ross—co_rrelatlon response for the ene t
rectangles with each patch represent the approximate kjpatiion of the ~ Mage, themax in Equation (1) can be computed for each
patch relative to the object center. sub-window independently in parallel. Both the normalized
cross-correlation (convolution) and the maximization ban
implemented efficiently on GPU hardware.

the image to detect objects at all locations and scales. While
this approach is somewhat brute-force, it is also simple ar@. Classifier
easy to parallelize on the GPU (as we will do in Section 1V),
and is also well-suited to our choices of features.

Our classification algorithm is also motivated by the same
considerations as our features: we use an algorithm that
B. Features scales well (both in training and testing) when presented wi

Our classification algorithm will operate on a set ofincreasing quantities of data, and can cleanly take adgenta
features computed from each 3-channel image. We use tBkthe processing power of GPUs at test time, when speed
patch-based features of [9]. First, a dictionary is comseui IS the most important.
from small image fragments. An image fragmeantis In our work, we use Gentle-Boost [18] with decision trees.
randomly extracted from image channels in hand-labele@ur choice is motivated by a number of observations, not
instances of the target object. Each patch is annotated withe least of which is that previous work has demonstrated
a rectangleR specifying its approximate location relative tothe effectiveness of this particular combination of altforis
the object center, and the indef the image channel from in practice [8], [1], [9]. The Gentle-Boost algorithm works
which it was extracted. Specifically, a patch is defined as ly training a set of “weak” classifiers (or “weak-learners”)
triple (g, R, c). Figure 2 shows some examples of patcheso that the sum of the weak-classifier outputs is a bet-
extracted from examples of coffee mugs along with theiter predictor than the weak-classifiers themselves. Bagsti
associated rectangles. algorithms, including Gentle-Boost, use this capability t

Given an input image, a patch feature value is computegenerate ensembles of classifiers that are capable of repre-
by first computing the (normalized) cross-correlation af th senting extremely complex decision functions. By incregsi
dictionary patch with the corresponding image channel, artie number of weak-learners trained by the Gentle-Boost
then taking the maximum response over the patch rectangidgorithm, we can increase the complexity of the decision
More formally, the patch response for a patghR, c) is function. Thus, when learning from a large data set with

. complex structure the complexity of our classifier can gasil
f,?g%@ ©9)ig @ pe expanded to meet the challenge.

Our system uses decision trees as weak-learners. This(Again, one histogram for positive and another for negative
motivated partly by their compact structure, but also byrtheexamples. Note that these histograms are the same as would
(very) sparse dependence on the elements of the featloe computed on a single machine operating on the entire
vector, which has the benefit of reducing the number dfaining set.) The resulting histograms allow us to compute
features used by the final classifier that is run at test timéhe Gini coefficients for the distribution of feature valzesl,

It is also possible to train the decision trees in a distedut thus, choose the best split for the node. It is easy to gareral
fashion, which will allow us to train rapidly on very large this procedure to training full trees. The only approxiroati
training sets. in this procedure is the quantization of the histograms—the
algorithm is otherwise identical to running boosting on a
single machine and will compute an (approximately) optimal

To train our boosted decision trees, we chose to pursuesalution.
distributed, parallel approach. There are two main benefits We have available to us a 32 processor-core cluster (8
of distributed training: (i) the use of multi-core systenos t machines), with 2GB of RAM available per core (8GB per
process the training data repeatedly in parallel to redugfiachine). Each training example is stored on our distribute
training time and (ii) the ability to leverage the abundaate file system with the features values quantized to 8-bit inte-
RAM on multiple machines to hold massive training sets igers? Thus, using the procedure above, we can accommodate
main memory (thus avoiding expensive disk and networkver 60GB of training data or, assuming a 1000-dimensional
transfers). The Gentle-Boost algorithm is inexpensive bjeature vector, more than 60 million training examples.da a
itself and can easily be run on a standard desktop P#ition, we have achieved over 25-fold speedups over single-
for enormous data setsThus, the only step that must be machine training by running on 32 cores simultaneofisly.
distributed is the training of the weak-learners (decisiens,
in our case), which we now describe. IV. REAL-TIME TESTING

Our decision trees are trained similarly to the well-known 14 achieve real-time detection rates we implemented the
CART algorithm [19] to minimize the squared error in labelmajor test-time components of our system using nVidia's
predictions (using Gini coefficients as the split crite)iofo cupa GPU development library. The computational ad-
make our training algorithm distributed, however, we cannQ,gntages of GPUs over CPUs are formidable, and seem
simply compute the Gini coefficient from the entire datgnjikely to dissipate. Unlike CPUs, which devote a large
set on a single machine. Instead, we use an approximatigimper of transistors to large, deep cache systems, GPU
that has seen success in the data-mining community: Vgechitectures have large numbers of computational units wi
accumulate the feature values for each training exampte in§mall, shallow caches. GPU pipelines are also optimized for
a histogram, which serves as a sufficient statistic for thfﬁiarallel operations using vector processing units, whieh a
feature [20]. Each histogram has 256 buckets (we use fixgfhturally suited to computing a single function in parallel
bounds, since our features are all normalized to the rangger several pieces of data at once. Thus, while GPUs and
[-1,+1]) and thus they are easy to store or transmit, andpys may have similar numbers of transistors (with that
we only need two histograms per feature (for each machingmper growing according to Moore’s Law), GPUs allocate
participating in the training). these transistors in a way that trades generality for ise®ga

In more detail, during training, each worker machine i%omputational throughput [21].
assigned a subset of the training data and loads thosen@aini | order to achieve high performance using GPUs, we must
examples into local memory. Each training examplé ge algorithms that appeal to the strengths of these acehite
is associated with a weight") provided by the Gentle- tres while avoiding their shortcomings. We must maximize
Boost algorithm. The worker then accumulates a Weighteﬁ'arallelism (since GPUs are optimized for such operatjons)
histogram for each feature. Thus, buckeof the histogram gata |ocality (since the GPU caches are small), and, it turns
for feature;j on workerk is computed as: out, minimize memory transfers to and from the device. In

H]k (B] = Z w®. general, G_PUs are best suited 'Fo “data parallel” opgratiops
where a single piece of code is executed many times in
parallel across multiple pieces of data. The main companent
This is done separately for the positively and negativelpf our object detection system share this characteristic-C
labeled training examples, resulting in two histograms fovolutions can be viewed as many pixel-wise multiplications
each feature. The resulting histograms for each worker agxecuted on overlapping sub-windows, and our classifier can
sent to a master machine where they are summed togetitr run in parallel over independent sub-windows of the test
to yield two histograms for each feature: image. We now discuss the implementation of our feature
computations and classifiers on the GPU in more detail.
H;[B] = Hf[B].
k

D. Classifier Training

i:x_(ji')EB

4The loss of precision in storing our features this way isléwant since
the histograms used during training have only 256 bins.

3The only significant computation that is necessary is the tgpdathe 5At the time our experiments were performed, we did not have a GPU-
weights after each round. This cost scales only linearhhwhie data set equipped computing cluster, and thus CPU-based trainingeoltister was
size and is, by a constant factor, quite small. faster than using a single machine with a GPU.

The main computational cost of our detection algorithn
is performing the correlations of the test image with the 2[1201

image fragments from the patch dictionary, as described Voo

Section IlI-B. The patches come in sizes of 4-by-4 pixels u I cup

to 16-by-16 pixels. Each patch is correlated with the entir 100r | T Banana

scene, yielding a response image containing (normalize [stapler == -- -
cross-correlation values for every possible position @& th gol L= = ~Average

patch in the scene. This “embarrassingly parallel” operati
is naturally implemented through the CUDA library. Both the
patch and a small portion of the test image can be load¢
into the cache of the GPU processors. Once in the cache, 1
correlation operation can be performed very quickly (usin
brute-force multiplication and summation) due to the hyghl 401
data-parallel nature of the computation. After computing
the normalized cross-correlation values, it is similargse
to compute the necessary maximization of Equation 1 i 207
parallel for every window on which the classifier will be
evaluated.

Implementing the feature computations alone leads to 8800 GTX 9800 GTX
noticeable speed up. Unfortunately, this also revealstizalri GPU
bottleneck: memory bandwidth. Our source images are 64u
by 480 pixels and hence occupy 1.2MB of memory whefig. 3. The factor speedup of our GPU detector implementatidative
converted to single-precision floating-point. Meanwhite, ts‘fjc%:;;zg"ﬁgzur;f‘]?;fn”iﬁgs)'f“p'ementat'on for two nVidia GPreng
typical CUDA-capable GPU has host-to-device memory
bandwidth of roughly a few megabytes per millisecond. Thus
the cost of simply copying a full response image back to the o)
host after performing a correlation on the device can sewere-igure 3, this yielded a relative speed boost of nearly 40
discount the raw GPU speedup, since we must copy a fdimes relative to our (software) reference implementation
response image (itself over 1MB in size) for each featurd0 demonstrate the value of leveraging GPU hardware, we
In order to achieve higher speeds, naive implementation 8S0 show the relative speed boost using a newer nVidia
expensive computations on the GPU is not enough: one mP00GTX. This GPU is only a single generation beyond the
also minimize the transfer of data back and forth from th8800GTX (being released approximately 6 months apart), yet
host to the device. we already see that our detector’s running time now improves

One solution to the memory bandwidth problem is tdver the software implementation by more than 90 times on
avoid transferring the response images and features back&@rage.
the CPU by simply evaluating the decision trees natively The primary explanation for the large speedup is that our
on the GPU. This solution is a natural one since we cafictionary patches are relatively small, allowing the GPU
evaluate the classifier over each sliding window in paralleimplementation to operate almost entirely on cache memory.
as well as evaluate each decision tree of our boosted ctassifin hindsight, the key benefit of the GPU implementation is
in parallel for each window. The only necessary memor{#ot simply that GPUs have greater computational throughput
transfer back from the GPU is then the classifier result fdwhich, at present, is roughly 10x greater overall than high
each window instead of an entire feature vector, directignd CPUs [21]). Instead, we find that because the GPU
translating to an immense bandwidth savings. Thus tHeXPOses control of the cache directly to the user, it admits
choice of a light-weight and parallelizable classifier tban highly optimized implementations of our feature computa-
be stored and evaluated easily on the GPU is key to ofjiPns that would be much more difficult to implement on
object detector implementation. This modification yielded CPUs. We believe that focusing on cache-friendly algorghm
2x to 3x speedup over simply performing the correlations of$ thus an important direction for future research, since
the GPU. this is critical for high-speed operation on both GPU and

In total, offloading our entire detector computation tdCPU architectures. Indeed, our experience with memory
the GPU has reduced the testing time of our classifieR@ndwidth limitations on the GPU highlights this conclusio
dramatically. Our software reference implementation @hi algorithms that minimize memory access will accelerate
uses the well-optimized OpenCV library to perform the patcRrofoundly with improvements in processing power.
convolutions) requires roughly 5 minutes on a 2.66GHz Xeon
workstation to generate all detections for a single object V. EXPERIMENTS
class on a single image. In sharp contrast, our CUDA- We demonstrate our entire detection system on imagery of
based implementation executing on an nVidia 8800GTX caaiffice scenes collected by our robot. As described prewousl
be executed comfortably in under 10 seconds. As seen tinese images include intensity, gradient, and depth data.

60

Speedup over CPU

TABLE |
DICTIONARY SIZES AND RUN TIME FOR SINGLE IMAGE

Object Dict. Size | GPU Time | CPU Time
Mug 590 2.96 s 286 s
Cup 540 3.13s 320 s
Stapler 472 3.90s 372s
Banana 827 416 s 302 s

Fig. 5. A scene where some objects are missed.

TABLE I
OBJECT DETECTION ACCURACY
Object Count | Hit | False Pos.| Precision| Recall
Mug 67 63 1 0.984 0.940
Cup 43 41 0 1 0.953
Stapler 55 30 0 1 0.54
Banana 21 5 0 1 0.23

Fig. 4. A typical scene where all objects have been detectddkassified
correctly by our classifier (best viewed in color).

To test the accuracy of our detector, we ran it on 20 unseen

Our approach is demonstrated with four different objectdmages from newly imaged office scenes containing instances
coffee mugs, disposable paper coffee cups, office staplers,the 4 object classes. Examples of two typical scenes are
and bananas. The first two of these objects have many simiitown in Figure 4 and Figure 5. In Figure 4, our detector
features, making them easy to confuse with one anotheaorrectly identifies all 9 target objects in the scene. Fédayr
while the other two objects are elongated and appear differehowever, shows a case where the detector does not do as
from various orientations. well. Since our classifiers have been trained to be extremely

For training we acquired 150 images (including depti§onservative as a result of the large negative training set,
data) of office scenes consisting of the objects we want &me objects are ignored (incorrectly) as backgroundeslutt
identify. Each image typically contains between one and fou Table Il shows our results for all of the objects using a
instances of an object, each of which is labeled by harglassification threshold that was fixed a priori to probapili
using a bounding rectangle. For each object, this yields &5. Notice that the most difficult objects are those that
training set consisting of several hundred positive exasipl exhibit large amounts of variation over different viewsis'h
We also train on a background negative set consisting & because the fixed feature patches used by our detectors are
positive examples from all other object classes as well asn®t naturally suited to this scenario. In principle, thisicb
large fraction of all of the examples considered by the stjdi be solved by training separate classifiers for each view of
window algorithm that do not overlap positively labeled obihe object. Nonetheless, in cases where views of the object
jects. This procedure yields between 5000 and 7000 negatide not differ too much (like mugs and cups) the classifier
examples for each training image, yielding nearly a milliorperforms extremely well.
negative training examples for each classifier.

Our decision trees are trained as described in Section Ill- VI. CONCLUSION
C. Training for a single object class takes approximately 2 In this paper, we have demonstrated that we can perform
hours for 200 rounds of boosting (using 32 cores on oukliable object detection in well under 5 seconds using
computing cluster). consumer-grade graphics hardware with a straight-forward

We extract 1200 random patches from each set of positivésarning algorithm that is easy to implement and train. More
to build a dictionary for the corresponding objects. Afteimportantly, however, we have presented a system that is
training, the dictionary is pruned to retain only featurescalable at every point of its execution. From distributed
actually used by the decision tree algorithm. Table | reportraining to the fully GPU-based detection algorithm itself
our average detection times for each object per image aloegery step of the pipeline benefits substantially from the
with the final dictionary sizes (GPU time is measured on thpredictable upward trends in computing power and data set
9800 GTX). sizes.

VII. ACKNOWLEDGMENTS

(1]

The authors thank Olga Russakovsky for helpful discus-
sions. Adam Coates is supported by a Stanford Graduetgeé]
Fellowship. Support from the Office of Naval Research under
MURI N000140710747 is gratefully acknowledged.

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]
(9]
(20]

REFERENCES

M. Quigley, S. Batra, S. Gould, E. Klingbeil, Q. V. Le, A. &iman,
and A. Y. Ng, “High-accuracy 3d sensing for mobile manipulatio
Improving object detection and door opening,”IEEEE International
Conference on Robotics and Automafi@@09.

G. E. Moore, “Cramming more components onto integrated ¢s¢u
Electronics vol. 38, no. 8, April 1965.

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “Acitter-
ization of ten hidden-surface algorithm&bmputing Surveys/ol. 6,
no. 1, March 1974.

A. Torralba, R. Fergus, and Y. Weiss, “Small codes anddargage
databases for recognition,” i@VPR 2008 June 2008.

A. Torralba, R. Fergus, and W. Freeman, “80 million tiny ireag
a large dataset for non-parametric object and scene recghiin
PAMI, 2007.

D. Nister and H. Stewenius, “Scalable recognition witlracabulary
tree,” in CVPR 2006, pp. 2161-2168.

M. Banko and E. Brill, “Scaling to very very large corpdi@r natural
language disambiguation,” B9th Annual Meeting on Association for
Computational Linguistigs2001.

P. Viola and M. Jones, “Robust real-time object detectitiCV, 2001.
A. Torralba, K. Murphy, and W. Freeman, “Sharing visuatigres for
multiclass and multiview object detectiorPAMI, 2007.

Y. Luo and R. Duraiswami, “Canny edge detection on nvidiaa,”
Computer Vision and Pattern Recognition Workshqms 1-8, June
2008.

(23]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

S. Heymann, K. Mller, A. Smolic, B. Frhlich, and T. Wiegari&ift
implementation and optimization for general-purpose gpu,’1%th
International Conference in Central Europe on Computer @ras,
Visualization and Computer Visip2007.

M. Everingham, L. Van Gool, C. K. |. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2008 (VOC2008) Results,” http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/inderih

Y. Lecun, F. J. Huang, and L. Bottou, “Learning methodsdeneric
object recognition with invariance to pose and lightingy’ CVPR
2004.

S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Kalle
“Integrating visual and range data for robotic object diétec’ in
ECCV Workshop on Multi-camera and Multi-modal Sensor Fusio
Algorithms and Applications (M2SFA2}008.

N. Dalal and B. Triggs, “Histograms of oriented gradgfidr human
detection,” inCVPR 2005.

H. A. Rowley, S. Baluja, and T. Kanade, “Human face detecin
visual scenes,” ildvances in Neural Information Processing Systems
1995.

V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Grougsadjacent
contour segments for object detectiotEEE Trans. Pattern Analysis
and Machine Intelligence2008.

J. Friedman, T. Hastie, and R. Tibshirani, “Additive iistic regression:

a statistical view of boosting,” Dept. of Statistics, Standf University,
Tech. Rep., 1998.

L. Breiman, J. Friedman, R. Olshen, and C. Stdbkssification and
Regression Trees Monterey, CA: Wadsworth and Brooks, 1984.

K. Alsabti, S. Ranka, and V. Singh, “CLOUDS: A decisioreg¢
classifier for large datasets,” #th Intl. Conf. on Knowledge Discovery
and Data Mining 1998.

nVidia CUDA Programming GuideNVIDIA Corporation, 2701 San
Tomas Expressway, Santa Clara, CA 95050. [Online]. Availabl
http://developer.download.nvidia.com/

