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Abstract—Many calibration methods calibrate a pair of many pairs as possible in the objective function, so that a
sensors at a time. For robotic systems with many sensors, single sensor may participate in many different groupssThi
they are often time-consuming to use, and can also lead {0 yoqyndancy in the objective adds robustness to the cabibrat

inaccurate results. In this paper, we combine a number of It d . ts sh that it leads t d d
ideas in the literature to derive a unified framework that jointly TESUIL "anc our eEXpENments SHOW that it 1€ads 10 Tealice

calibrates many sensors a large system. Key to our approach €rTor.
are (i) grouping sensors to produce 3D data, thereby providing An advantage of having groups that output 3D data is

a unifying formalism that allows us to jointly calibrate all  that the same calibration objective can now be used for
of the groups at the same, (ii) using a variety of geometric i q “extrinsic” calibration problem of calibrating the gnps

constraints to perform the calibration, and (iii) sharing sensors lative t h oth dl fthe t f M
between groups to increase robustness. We show that this gives relative to each other, regardiess ot tne type of sensorelvior

a simple method that is easily applicable to calibrating large SPecifically, extrinsic calibration of these systems can be
systems. Our experiments show that this method not only done via a closed form solution (Horn’s algorithm [3], which

reduces calibration error, but also requires less human time. requires solving for the eigenvectors of a symmetric 4x4
matrix) or via numerical optimization methods. We also
combine this with an objective for “intrinsic” calibratiofof
Calibration remains a challenging and time-consuminghe sensor parameters within each group), so that intrinsic
task in robotics despite being a prerequisite for the succegnd extrinsic calibration of all the sensors is performed
of many applications, such as manipulation. The problerimultaneously.
of accurate calibration is especially pronounced on robots Qur approach can be applied to many practical robotic
equipped with multiple sensors such as the STanford Adystems because most sensors in such systems either already
Robot (STAIR). output 3D data or can be grouped to have this feature: ex-
Researchers have proposed many techniques for calibrainples include active triangulation sensors, stereo casner
ing specific types of sensors or pairs of sensors. Typica@hnge finders and especially robot arfns.
examples include one-camera, camera-to-camera [1] andOur experiments illustrate the advantages of the joint
laser-to-camera calibration [2]. There is, however, a lackalibration approach. Compared to standard techniques, ou
of methods that jointly (simultaneously) calibrate a largenethod is more accurate and requires less human supervi-
system consisting of multiple sensors. A standard approagfon. On our robot platform (STAIR), we are able to jointly
is to divide the system into many pairs of sensors angalibrate many sensors to a 5 DOF robot arm with an average
calibrate each pair at a time. In this process, one needseto usror of less than two millimeters. Using this accurate -cali
different algorithms for different pairs. Consequentlystem bration, our robot is able to perform manipulation taskshsuc
calibration becomes very difficult, time-consuming, anéof as turning knobs, pressing small elevator buttons, opening
also inaccurate. drawers and picking up small objects.
The main contribution of our paper is to combine various
ideas in the literature to derive anified frameworkthat Il. PREVIOUS WORK
jointly calibrates a large system. Key to our approach is The field of sensor calibration has a long history. Camera
the use of one objective function for the entire systenrcalibration is a well studied subject [4], [5], [6]. Jointly
The framework Comprises two main ideas. First, we grougalibrating the intrinsic and extrinsic parameters of ceame
different sensors on the robot to form systems that outpies been studied as well; for example, Zhang [5] proposed
3D data (distances to visible objects). For example, twi®intly estimating the intrinsics and extrinsics using one
cameras might be grouped together to form a stereo visigibjective function. There is also software for camera-to-
system. Then we use geometric constraints (such as distarf@nera calibration, such as the well-known Caltech cali-
preser\/ation, Co||inearity, Cop|anarity) to form an objee bration toolbox [l], that implements this idea. Calibrgtin
function for the entire system. We call our approejoi‘nt multiple cameras simultaneously has recently gained some
calibration. interest. For example, using silhouette geometry conggai
Interestingly, we recommendharing sensors between [7] suggest a bundle optimization method that allows a joint
groups. That is, if there are many possible combinations @ptimization of many cameras.

sensors that can produce 3D data, we recommend having aghe problem of calibrating different types of sensors
together has received less attention, but one example ,is [8]
Quoc V. Le and Andrew Y. Ng are with the Computer Science
Department, Stanford Universityquocl e@s. st anf or d. edu, 1For robot arms, intrinsic calibration corresponds to finding kinematic
ang@s. stanford. edu parameters.

I. INTRODUCTION



which proposed an algorithm to calibrate a camera to @alibration step we have to collect different datasets asel u
range finder using plane constraints. A similar algorithm islifferent algorithms. Finally, this procedure can ofteadeo
implemented in the CMU laser-to-camera calibration torlboinaccurate calibrations.
[2]. Their techniques are simple yet rather specific to the
properties of the sensors, and there are no known extensions
to other types of sensors. Step 4 Step s
There are also works concentrating on calibrating the
kinematic parameters of robotic manipulators [9], [10J1]|1
[12], [13]. The goal is to obtain very high precision for
(primarily) industrial robots. Zhang and Roth [14] divide
robot calibration into four sub-tasks: kinematic modedlin
pose measurements, kinematic identification and kinematic
compensation. The calibration technique in our work fosuse
on pose measurements and kinematic identification. In [9
authors describe techniques for identifying the static an
dynamic parameters of a manipulator. Some approaches
the aid of extra sensors such as cameras [13] to calibrate
kinematic parameters. In [15], the authors show a statiistic
method for calibrating the odometry parameters of a mobile
robot. Recently, methods to learn the kinematic parameters

Step 1 Step 2 Step 3

Fig. 1. Standard calibration requires many steps to caébeat entire
system.

In contrast, our approach to joint calibration is summatize
Fig. 2. The groups are formed using a unifying principle:
‘ach group is created toutput 3D dats® We make use
osfethe fact that a sensor can appear in different groups to
ih%ve redundancy. Then we calibrate the entire system in one
optimization.

and models for legged robots [16] or manipulators [17] have

been proposed. .
Most prior work in sensor-to-arm calibration such as the .‘

early articles by Tsai et al. [18], [19], concentrates priitya .

on eye-in-hand calibration, where a camera is rigidly dutatc

to a robot arm. Also for this configuration, Horaud and

Dornaika [20] propose a numerical method while Daniilidis

[21] uses dual quaterr_uons. Simultaneously callbra_tlng thFig. 2. Joint calibration, in which all calibration paranmstare simultane-
hand and the camera is the focus of [22], [23]. While eyesusly solved for. Note the sharing and redundancy enjoyethisymethod:
in-hand calibration is beyond the scope of our work, th??r:(e ?ensr?r can appear in mar(;y groups (?hown_by) circltehS),dafrfﬁbleul
H : S H H INKS (eac representlng a coordinate transformation) eonthe different
|degs of numerical optimization (e.g., '[20]) and simultaure groups. Each group is capable of outputting 3D data.

calibration (e.g., [22]) are also used in our approach.

In general, most state-of-the-art calibration techniqaes |, getail, we use geometric constraints (distance preserva
hardware-specific and do not generalize well to other typggyn, collinearity, coplanarity) for intrinsic calibrath within
of sensors. As a result, calibrating a multi-sensor systegyn group. Extrinsic calibration between groups can be
requires both understanding the low-level details of eachyne via Horn's algorithm [3] or Levenberg-Marquardt opti-
sensor and applying a variety of specialized algorithmss Thyy,i;ati0n. More importantly, although intrinsic and exsio
approach is prohibitively expensive and complex for large,jibration could have been done separately, we arguesithste
systems. We present a unified framework that incorporat@ga; intrinsic and extrinsic calibration should be combine
some of the ideas described above, and develop a genesglj performed simultaneously. In our approach, this is done
technique for joint calibration of multiple sensors. by posing a single calibration optimization objective, ttisa

minimized through numerical optimization.
IIl. SUMMARY OF JOINT CALIBRATION

In this section we present a summary of our approach. V- EXTRINSIC AND INTRINSIC PARAMETERS

Consider the problem of calibrating the intrinsic and exdit ~ A. Extrinsic parameters

parameters of a robot system which contains two cameras, arhe extrinsic parameters of two coordinate systems consist

laser projectdt and a robot arm. o of a rotation matrix and a translation vector between the
A standard procedure for calibrating such a system igames. More specifically, a 3D coordinate transformation

shown in Fig. 1. For example, we might first calibrateaies a point in one frame and gives the coordinate of the

the pair of cameras to each other, then a camera to th@int in another frame. Associated with this transformatio
laser projector, and so on. Sensors are grouped into smaller

systems and each system is calibrated separately. AlthougRror example, suppose sensor 1 (or group 1) is calibrated teosen
there exist algorithms for each of these groups, the prlesip 2, which is calibrated to sensor 3, and so on in a long chairealth

behind th . | Al te that at libration step introduces even a small amount of error, thenerror
enin € groupings are unclear. SO, note that at €agllyq yransformation between sensor 1 and semsonay become large,

since the errors along the chain would accumulate.
2This projector can only send a laser beam and does not medsre t “Here, we assume that grouping Cam1 and Laser projector willtras
distance directly. an active triangulation sensor (as described in Sectioh-B)l



are a rotation matrix and a translation vector, which wel = ||Rp) 4+ t — p(P)|| as a normal random variable
denote byR and t. Assume the coordinate of a poipt d ~ N(0,)\?). Assume that we can collect many correspond-

is [z, y,2]" in frame A; its coordinates in framé3 is then ing points {u{*, u{")}7_, maximum likelihood estimation
given by requires us to minimize
Riz,y, 27 +t 1) Ezxtr(R,t) :ZHRI(aA,uf‘)—|—t—I(ozB,u?)H2 4

The rotation matrix also satisfies and orthonormal constrai subject to the orthonormal constraint (Eq. 2). Calibrating

RTR=1 (2) multiple sensors can be done in the same fashion by adding

. more terms to the objective function.
B. Intrinsic models and parameters

We define a 3D system as a sensor or a group of sensors V|- INTRINSIC CALIBRATION OF 3D SYSTEMS
that gives us 3D data with known depth scales. Informally, This task requires us to find intrinsic parameters of 3D
a 3D system can measure 3D coordinates of objects in frosgstems. Informally, this means we have to determine the
of it. With such systems we can define an intrinsic moddhternal parameters of a 3D system such that it obeys
that takes intrinsic parameters and data and returns a pog#ometric rules. For example, if the world has a set of points
in 3D belonging to a line, then from the perspective of the sensor,
(o, u) € R? (3) the points should also form a line.

wherew is a calibration datum (e corresponding pixels The set of constraints we can use for intrinsic calibration
. Y ' 9., b 9 PX€%ta 3D system are distance preservation, collinearitylacop
in two images), andv are the intrinsic model parameters.

) narity® In our framework, these constraints are enforced by
Here a« may be sensor dependent; for example, for a ster

. . Sikelihood estimation.
vision systemg would include the standard camera param-

eters (such as focal length, distortion, etc.) as well as th& Distance preservation constraints

transformation between the two cameras. o Suppose we can collect calibration dataand u; with
Note that our concept of intrinsic parameters is differenfqyn distancel;; in 3D. Intrinsic models of a 3D system
from that in the camera calibration Iltefature. In thatrite give us two points in 3Dp; andp;. The distancel;; between
tgre, a camgra’; |ntr|n§|c parameters include focal Iengt.l})i andp; is represented by a random normal variai)g ~
dlstortlon, pnnmpal_ p(_)lnt, skewness, etc. In contrast, 'J\/'(Ji,-,UQ), or more explicitly
our setting the intrinsic parameters of a 3D system may -
also include the rotation and translation between differen 1 p Q2
members of a group. p(di) = = eXp(_M) (5)
In our definition, a single camera isot a 3D system Z g
because it does not produce known scaled depth data. InAn example of distance preservation constraints arise in
contrast, a 3D range finder or a stereo camera are 3be case of a stereo intrinsic model of two cameras (see
systems. Fig. 3). Hereu; = {u!", u{*} which are the corresponding
pixels of two cameras’ images. Using, this system can
construct a point in 30p;. Likewise, v; givesp; . We can
This task requires us to find rotation and translatiomse the ground truth distanméj of these two points as a
parameters between systems, or informally, to find locationyistance preservation constraint.
and orientations of different frames relative to each ather ) _ _ )
To simplify notations, we begin by considering the task oB: Collinearity and Coplanarity constraints
calibrating two 3D systems. Not only distance preservation can be employed as cali-
One way to find rotation and translation from one framération constraints, the knowledge of some points belong to
to another frame given corresponding 3D data is via a closedplane or a line can also be used to help calibration.
form solution given by Horn’s algorithm [3]. Suppose some of our calibration data belong to a line or
Horn’s algorithm is elegant, but can be used only to finé plane, we can model the distané¢éom the points to the
extrinsic parameters given point constraints. In orderl$o a line/plane as a normal random variakle- N (0, o?)
address intrinsinc calibration, and to incorporate a beoad
set of constraints than point constraints (such as line and 1 |||
plane constraints, described later), we will instead use a p(d) = EGXP(—
numerical optimization method. In detail, assume a point
P = Ty(as,u) in frame A and that same point in

V. EXTRINSIC CALIBRATION OF 3D SYSTEMS

) (6)

In detail, distances!'s can be obtained by fitting a line

o2

frame B is p® = Tp(ap,u®). Now, the coordinate or a plane__to a set of points (v?a SvD -_singular value
of p) in frame B under the coordinate transformation isd€c0MPosition [24]) and computing the distances of the
Rp() +t points to the line or the plane.

Perfect extrinsic parameters will makBp(A> +t = SNote, that these sets of constraints can also be used foingigtr

pB). As data may be noisy, we can model the distancealibration.



Y~.\ T (True distance) ideas, we first calibrate the intrinsics of each system, and
L then calibrate the extrinsics between them. However, in a
similar approach to Zhang's idea [5], we should combine
the two steps and jointly calibrate all parameters at once.
Again, using the maximum likelihood estimation, we need
to minimize

Extrintr(R,t,a4,ap) =Intr(aa) + Intr(ap)
+vEzxtr(R,t,a4,ap) (8)

where the optimization variables in the above are
i ) ) ) aa,ap,R,t and v is the tradeoff between the intrinsic
Fig. 3. An example of distance preservation constraints. Cast@am1 d extrinsi biecti The diff f thi ht
andCam?2 use a datumu; (corresponding pixels in two cameras) to find aand extrinsic 0 JEcuves. eda erence 0 1S appro;m
point p; € R? and use a datum; to find a pointp; € R3. We know the two-step incremental approach is that we are going to

ground truth distance between thed; (size of checkerboard square), estimate intrinsic and extrinsic parameters jointly.
current calibration parameters give hypothetical distadge By forcing

d;; to be close tai;;, we get good estimate of calibration parameters. VIIl. SOME 3D SYSTEMS

Although a camera is not a 3D system, there are many 3D
systems in a standard robot system. Stereo cameras, active
triangulation sensors, range finder sensors and robotis arm

Distance preservation constraints can be generated byags examples of such 3D systems. This section explains these
standard “checkerboard procedure.” For example, in the cagp systems and their intrinsic models in more details.
of stereo cameras, we can collect images of a checkerboard
with knownsquare sizes and use a corner detector algorithfy Stereo systems
to find the corners (e.g., the algorithm in [25]). A stereo system contains two or more cameras. With
We can generate collinearity and coplanarity constraipts bstereo systems, depth is found by triangulation [26], [27].
using flat (planar) surfaces as calibration targets. Fomexa Given corresponding pixels in two images, when there is no
ple, flat walls, desks, checkerboards give plane conssrainbcclusion, we can find a unique 3D point. For simplicity and
whereas intersections between them give line constraints. clarity, in this section we consider stereo systems with two
Coplanarity constraints can be generated more easily asdmeras. We define the followirgtereofunction
quickly than distance preservation constraints becauseco
detection can sometimes be imprecise. There is, however,SteTeO({R’t’O‘Sffll)m’agiin}’{“(1)’“(2)}) = [z.9,2]" ()
a trade-off between distance preservation and coplanarifyhere R, t are the rotation and translation parameters be-
constraints because artificial flat surfaces may not be gxackyween the two camerasx&)m, a&?ﬁw are parameters of the
planar. Also, one can notice that line and plane constrain{§o cameras. The parameteR,t,all),,al2), form the

camy Xcam

suffer from the scale problem: we can scale all points dowget of intrinsic parameters of a stereo system,dg =
to one single point and get a much higher likelihSod. (Rt oD @ }. This Stereo function takes pixel co-

camy Xcam
ordinatesu, 4(?) in two images of the two cameras and
give us a point in 3D. Calibration data ané!) andu(®.

C. Generating constraints

D. Combining all constraints

Combining likelihood of the constraints in Eg. 5 and 6, . . _
maximum likelihood estimation requires us to minimize ~ B. Active triangulation systems
A typical active triangulation system contains a laser pro-

Intr(a) = Z(”I(O" w) = I(e,uy)|| = dij)® jector (scanner) and a camera [28], [29]. The laser projecto
! ) ) sends a laser pattern and the camera captures a series of
+or Y Y d(T(a,uk), L) images. A motor on the laser projector records offset angles
L kel An example of active triangulation system with a line patter
+03> > d(Z(eu), P)? (7) is described in [28].
P leP An active triangulation system finds 3D location of image

whered(z, £) is the distance from a point to a line £ and pixels. We define the following function

d(x,P) is the distance from a point to a planeP. ActiveTriangulation({R, t, eam }, {3, u}) = [z, 5y, 2]T

(10)
VII. JOINT INTRINSIC AND EXTRINSIC CALIBRATION OF
3D SYSTEMS that takes rotatioR, translationt, camera intrinsicovegm,

Assume we have two 3D systems and want to caIibraf?alxeI coordinates: and laser offset anglg and gives us a

ST o : oint in 3D. Calibration data arg, u.
their intrinsic and extrinsic parameters. Using the abov e
The parameter®, t, a.q,, form the ’intrinsic’ parameters

6To alleviate this, we must at least have one distance presmva of an active t”anQUIat'on system, I.€ActiveTriangulation =
constraint. {R,t, acam}-



C. Robot arms X. OPTIMIZATION
Given a robot arm, the job of forward kinematics is to Although the above optimization objectives are noncon
compute the position and orientation of the end effecto\;ex the ghaveasmall nu?nber of aramleters They are also in

[30] given the link lengths, encoder offsets, joint angled a - ey P ) y

joint angle offsets. For calibration, we only consider th2 3 :\t}e formdc;f slum.t(;]f s?u?reds. \lNe clan_thus uszihe :Ig_zeve?r)\?t:erg-
position of the end effector arquardt algorithm to find a local minimum [31], [32], [33].

Software packages such as MATLAB has an implementation
ForwardKinematics({1, 3},e) = [z,y, 2]" (11) of this algorithm.
) ) ) o Levenberg-Marquardt is fast but can converge to poor local
wheree is the encoder readings is the joint angle offsets minima. To alleviate this problem, we use random restart.

and encoder offsets, arlds the link lengths’ Using random restart, we usually obtain better local minima
Here, we treat the link lengths and angle offsets, encoderln our experiments, we used numerical differentiation [33]

offsets{l, 5} as intrinsic parameters and encoder readiags This is because we treat each component black-box and it is

as calibration data. i i o hard to take analytical derivatives. Numerical differatitin
An advantage of using encoder readings as calibration de}?implemented in MATLAB.

is that encoder readings are usually very accurate while lin

lengths or angle offsets are harder to measure. For example Finally, there are many ways to enforce the orthonormal
9 9 ' P®nstraints. In our experiments, we addgR"R —IJ|3 to

if the last _I|nk of the arm is modified, it is hard to accuratelythe objective function with large value of. This usually
measure its length.

works very well for us.
D. Range finders

The intrinsics of off-the-shelf range finders, such as arlase X|. EXPERIMENTS
scanner (SICK), are already well calibrated internally by t o ) .
manufacturers. We can assume that these sensors do not haWd/e perform calibration experiments with our robot (see
any intrinsic parameters that need further calibrationugth Fig- 4). Our robot has one 5 DOF Katana arm, two visible

the range finder operation can be defined as follows light cameras, one Pan-Tilt-Zoom camterand one laser
projector. Our goal is to calibrate all of these devices agfai
RangeFinder(u) = [z,y, 2]T (12) the arm.

In the next sections, we will first describe the calibratidn o
a 3D system (camera and laser projector) and then describe
the joint calibration of the whole system.

where calibration data can be a 'pixel’ location in the depth
map image.

IX. CALIBRATION OF NON-3D SYSTEMS

There are many sensors that are not 3D, for example,
cameras. There are two possible solutions for calibrating
them.

One immediate solution is to directly apply our joint
calibration method to non-3D systems at the cost of dealing
with sensor-dependent problems. For example, we can cali-
brate a camera to a camera using the extrinsic and intrinsic
calibration ideas described above. The only differenchas t
we have to treat the scale factors as optimization variables
This, however, violates our framework because the scale
factor is a sensor-dependent variable.

A better solution is to build 3D systems out of non 3D
systems. For example, we can group two cameras together
and have a 3D system. Another example is that we cafg. 4. Our robot platform with all sensors and the arm usedhie
group a laser projector and a camera to have a 3D actiggperiment.
triangulation system.

Grouping is advantageous because it simplifies calibration In the experiments, optimization variables are initiadize
For example, it is very challenging to calibrate a camerBy simple guesses. For example, the translation vector be-
with a laser range finder [8], [2]. This is because the cametaeen two cameras can be measured by a ruler, the rotation
gives 3D rays whereas a laser range finder gives 3D poinis. set to the identity matrix.

However, if we find another camera and group two cameras
together, calibrating a laser range finder vs. a stereo syste 8Every time the algorithm converges we restart the algorithymatiding

can be easier. some perturbations to the best-so-far parameters and usedbésitializa-
tion for the next iteration.
"Here, we only consider static parameters. 9The PTZ camera is held fixed in the experiments.




TABLE |

A. Intrinsic active triangulation calibration
MEAN VALIDATION ERROR OF ACTIVE TRIANGULATION CALIBRATION

The major focus of this work is calibrating a system that

has many 3D groups. We can, however, apply our algorithm [_Method | Eror (mm) |
to a very basic level to calibrate the intrinsic parametdrs o Incremental calibration | 4.11
(without random restart)
a 3D group. . ) o . Incremental calibration 1.83
We would like to calibrate intrinsic parameters of an active (with random restart)
triangulation sensor consisting a laser projector and aecam Joint calibration 0.75
(with random restart)

(camera 2 in Fig. 4). The intrinsic parameters of this system
are described earlier in Section VIII-B.

We collected 10 images of a checkerboard (see Fig. 5) a
5 images of planes (see Fig. 6). We used 9 checkerbo
images and 4 plane images for training and the rest f
validation.

First, we considered incremental calibration which cali
brates intrinsic, extrinsic incrementally. We used thet&zi
calibration toolbox [1] to obtain the intrinsic parametefs W
the camera. We then held these intrinsic parameters fixed and L AT

. . . . Fig. 7. Test result of intrinsic calibration of an activeamgulation sensor.
calibrated other parameters of the active triangulatiorsse Left: Image taken by camera. Right: 3D data captured by theeasgnsor.

We call this 'Incremental calibration’ based on the facttthaThe table and wall surfaces are flat thanks to very accurdileration.
we did not calibrate the intrinsic parameters of the camera
jointly with other parameters.

Next, we considered our joint approach that optimize§upervision and complex hardware compared to our method.
all intrinsic parameters of the active triangulation syste In particular, they [34] use an LCD projector with coded
simultaneously and called the method Joint calibration’. line patterns for the sensor and granite reference plane wit

The results of different calibration methods on the validaflatness of 7 microns for the calibration target. Nevertbgle
tion set are reported in Table |. As can be seen from the tabe think smaller calibration error is not needed for robotic
the joint calibration technique with random restart givegnanipulation tasks because robot arms usually have repeata
very good result for calibration. A result of joint intriresi  bility of a millimeter.
calibration is illustrated in Fig. 7.

B. Simple calibration test

Over several years, we had made small changes to our
Katana robot arm; as a result, the manufacturer supplied
parameters were no longer accurate. Further, we found it
difficult to directly measure these parameters (using arrule
for example). To better understand the effects of these
errors, we took the best calibration parameters of the activ
triangulation sensor in the previous section, and caldafat
that against our arm, using the default link lengths andeng|
offsets provided by the manufacturer. We did this using the
algorithm in [3], and global optimization using Levenberg-
Fig. 5. An image of a (distorted) checkerboard and a laser besptured  Marquardt. We obtained a calibration error of more than 3
by camera 2 (right corner). cm on a validation set. For many manipulation tasks, this
error is unacceptably high.

Since the active triangulation sensor has an error well
under 3 cm (and the arm arm has high repeatability), this
strongly suggests that the main source of error in this
result is the inaccurate kinematic parameters. Here, kitiem
parameters include link lengths, angle offsets, encodsetsf
and angle offsets. It is very difficult to directly measure

Fig. 6. Three images of three planar regions captured by cathera angle offsets or encoder offsets, so a better way to fix these

parameters is by separately calibration the arm’s kinemati

We have just showed that by a very simple and generplarameters. We describe this in the next section.
method, we can calibrate the intrinsic parameters of an o
active triangulation system very accurately. We note thdt- Whole system calibration
special techniques exist for calibrating these system$ [34 In this experiment, we would like to calibrate the en-
However, although their method [34] may produce bettetire system at once. This includes the extrinsic parameters
results, it is prohibitively more expensive in terms of huma between sensors and intrinsic parameters of each sensor.




Throughout the experiment, we would like to assess the
contribution different ideas mentioned earlier in the pape
joint intrinsic-extrinsic, sharing sensors, and redurayan
Candidates for comparison are incremental calibrationl, an
joint calibration with some degrees of sharing and redun-
dancy. These methods are described as follows.
First, we used an incremental approach to calibration.
We calibrated the two cameras using the Caltech camera
calibration toolbox [1], then calibrated an active triatagion
system formed by grouping camera 1 and Laser. In the third
step, we took the arm manufacturer's kinematic parameters,
and then further adjusted them improve how well they matclf:} 10 Joint calibration 2: . ibrati i J
a set of of measured positions of the arm when placqgg‘undéncy?m calibration 2: one-step calibration with 15hg and some
in a variety of poses. Finally, we calibrated three systems
together. This procedure is illustrated in Fig. 8.

Step 1 Step 2 Step 3

Step 4
Step 5

Fig. 8. Incremental calibration steps.

Next, we used our joint calibration approach and calibrated
everything jointly using the method described in this paper
Since there are so many possible groupings. First, we décide
to use the same groupings as before. The difference is tHa@. 11.  Joint calibration 3: one-step calibration with $hg, more
we will calibrate these two systems and the arm altogether [F2Undancy-
one optimization. This procedure is called 'Joint calilwat

1* and illustrated in Fig. 9. reported in Table 1119 It can be seen from the table, our

joint calibration approaches give significantly betterufes
than the incremental approach. Also, joint calibrationhwit
more redundancy has higher accuracy. An explanation is that
different pair sees different views of the world, the algjom

can make use of more constraints. Another reason is that

Fig. 9. Joint calibration 1: one-step calibration withobiasng and without joint calibration does not accumulate errors like in theecas
dund - trinsi ters. . L -
redundancy in extrinsic parameters of calibrating in pairs.

Finally, as there are also other possible groupings, for TABLE Il
example, we can group any pair of cameras or any camera MEAN/STD CROSS VALIDATION ERRORS OF WHOLE SYSTEM
and the laser projector. We decided to use all possible CALIBRATION.

groupings between cameras and the projector. Such grouping Viethod [ Error in calibration (mm)]
has a property that some sensors are shared between many e ermrbanon 57761630
groups. The two procedures are called 'Joint calibration 2’ | (one component at a time, Fig. 8)
(Fig. 10) and 'Joint calibration 3’ (Fig. 11). The differanc Joint calibration 1 5.19+2.41
between these two methods is that 'Joint calibration 2’ has g';?nft:'igga"trc;g'zg) T
a tree structure while *Joint calibration 3’ is a graph. Thus | (sharing, some redundancy, Fig. 10) ' '
there is more redundancy in "Joint calibration 3'. Joint calibration 3 _ 1.17+0.89
We collected 10 checkerboard images with corresponding L(Sha1ing. more redundancy, Fig. 11)
encoder readings for each corner of the checkerboard. We ) _ . .
also collected 5 images of planes. To extensively evaluate 1€ incremental calibration method is more costly in
calibration methods, we employed a five-fold cross valatati human time becaulse We'h_ave to WO!’k with one group at a
scheme. Each fold contains 8 checkerboard images andtime. In contrast, with our joint calibration techniqueeth is
plane images for training and the rest for validating. EveryUch less work on planning, code running. In total, it takes
calibration method was trained and validated five times. 10To compute the errors, we used geometric constraints on pateregor

Cross validation results of all the calibration methods arend arm and averaged errors all pairs.




us less than 2 hours of human time to get all the calibration7] H. Yamazoe, A. Utsumi, and S. Abe, “Multiple camera calitoat
parameters of the whole system. with bundled optimization using silhouette geometry coristsd in

International Conference on Pattern Recogniti@®06.
Note that compa_red.to the _Work of [16], [17], our method [8] Q.Zhang and R. Pless, “Extrinsic calibration of camerd kser range
assumes parametric kinematic models of the arm. We chose finder,” in IEEE/RSJ International Conference on intelligent robots
this because the kinematic model is known, simple and_ and systems2004. _ .
= . th ¢ R. Bernhardt and S. AlbrightRobot calibration Kluwer, 1993.
accurate. For a comparison, the average errors presen eql H. Zhuang, J. Yan, and O. Masory, “Calibration of stew@atforms

[17] are in the order of centimeters while our average errors  and other parallel manipulators by minimizing inverse kinemati

are in the order of a millimeter. residuals,”Journal of Robotics Systemt998.
[11] H. Zhuang, S. Motaghedi, and Z. Roth, “Robot calibmtwith planar
X1l. CONCLUSION constraints,” ininternational Conference on Robotics and Automation
’ 1999.

We considered joint calibration as a method to calibratl2] S. Besnard and W. Khalil, “Identifiable parameters forgtlal robots

. . . kinematic calibration,” inInternational Conference on Robotics and
multiple sensors simultaneously. We built our framework Automation 2001.

upon 3D systems, geometric constraints and sharing Sensqis] L. Beyer and J. Wulfsberg, “Practical robot calibratioith ROSY,”
Our experiment showed strong results for calibration of a  Robotica vol. 22, pp. 505-512, 2004. o

robot that has many sensors. 14] Tégzguang and Z. RottCamera-aided robot calibratian CRC-Press,
Many robotic manipulation applications require caliboati [15] N. Roy and S. Thrun, “Online self-calibration for mobilebots,” in

accuracy in the order of a millimeter. Examp|es of such International Conference Robotics and Automati®899.

. . .[16] J. Kolter and A. Ng, “Learning omnidirectional path f@iting using
tasks are opening doors, pressing elevator buttons, mgtati dimensionality reduction,” irRobotics Science and Syster2807.

thermometer buttons, picking up small objects [35], [36][17] J. Sturm, C. Plagemann, and W. Burgard, “Adaptive bodyeseh
[28]. The algorithm presented in this paper is our first suc- models for robust robotic manipulation,” iRobotics Science and

; : i : Systems2008.
cessful method which fulfills the precision requirements fo[18] R, Y. Tsai and R. Lenz, “Real time versatile robotics Waye

the tasks. Not only does it satisfy the accuracy requirement ~ calibration using 3D machine vision,” imternational Conference on
this method also requires much less human time compared to Robotics and Automatiori988.

; : e i 9] R. Y. Tsai, “A new technique for fully autonomous and a#fitt 3D
older methods. The fact that it takes less time is Slgmflcar[& robotics hand/eye calibrationJEEE Transactions on Robotics and

because the arrangement of our sensors changes quickly over automation vol. 5, no. 3, 1989.

time and we would like to have a method that can calibrat0] R. Horaud and F. Dornaika, “Hand-eye calibratiojternational
. . Journal of Robotics Researchol. 14, no. 3, pp. 195-210, 1995.
everything as fast as posgble_. . L [21] K. Daniilidis, “Hand-eye calibration using dual quat®ns,” Interna-
Thanks to accurate calibration, we improved significantly ~ tional Journal of Robotics Research999.
the success rates of the above tasks in our STanford KP] H. Zhuang and K. Wang, “Simultaneous calibration of adtoand a

. . hand-mounted cameraEEE Transactions on Robotics and Automa-
Robot (STAIR). Video segments of STAIR pressing elevator tion, vol. 11, no. 5, 1995,

buttons, pulling drawers, rotating knobs using our methogs] F. Dornaika and R. Horaud, “Simultaneous robot-worldl fiand-eye
can be found in our project website (http://stair.stanfedd). calibration,” IEEE Transactions on Robotics and Automafié898.
We note that in the videos, the hardware settings chang&f! & H: Golub and C. F. V. LoanMatrix Computations - The Johns

. . Hopkins Press, 1996.
over time and thus having a fast and good approach fgss) Inc, “The opencv opensource computer vision li-

calibration is essential. brary” Intel Inc., Tech. Rep., 2009. [Online]. Available:
http://opencvlibrary.sourceforge.net
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