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Abstract— Many calibration methods calibrate a pair of
sensors at a time. For robotic systems with many sensors,
they are often time-consuming to use, and can also lead to
inaccurate results. In this paper, we combine a number of
ideas in the literature to derive a unified framework that jointly
calibrates many sensors a large system. Key to our approach
are (i) grouping sensors to produce 3D data, thereby providing
a unifying formalism that allows us to jointly calibrate all
of the groups at the same, (ii) using a variety of geometric
constraints to perform the calibration, and (iii) sharing sensors
between groups to increase robustness. We show that this gives
a simple method that is easily applicable to calibrating large
systems. Our experiments show that this method not only
reduces calibration error, but also requires less human time.

I. I NTRODUCTION

Calibration remains a challenging and time-consuming
task in robotics despite being a prerequisite for the success
of many applications, such as manipulation. The problem
of accurate calibration is especially pronounced on robots
equipped with multiple sensors such as the STanford AI
Robot (STAIR).

Researchers have proposed many techniques for calibrat-
ing specific types of sensors or pairs of sensors. Typical
examples include one-camera, camera-to-camera [1] and
laser-to-camera calibration [2]. There is, however, a lack
of methods that jointly (simultaneously) calibrate a large
system consisting of multiple sensors. A standard approach
is to divide the system into many pairs of sensors and
calibrate each pair at a time. In this process, one needs to use
different algorithms for different pairs. Consequently, system
calibration becomes very difficult, time-consuming, and often
also inaccurate.

The main contribution of our paper is to combine various
ideas in the literature to derive aunified frameworkthat
jointly calibrates a large system. Key to our approach is
the use of one objective function for the entire system.
The framework comprises two main ideas. First, we group
different sensors on the robot to form systems that output
3D data (distances to visible objects). For example, two
cameras might be grouped together to form a stereo vision
system. Then we use geometric constraints (such as distance
preservation, collinearity, coplanarity) to form an objective
function for the entire system. We call our approachjoint
calibration.

Interestingly, we recommendsharing sensors between
groups. That is, if there are many possible combinations of
sensors that can produce 3D data, we recommend having as
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many pairs as possible in the objective function, so that a
single sensor may participate in many different groups. This
redundancy in the objective adds robustness to the calibration
result, and our experiments show that it leads to reduced
error.

An advantage of having groups that output 3D data is
that the same calibration objective can now be used for
the “extrinsic” calibration problem of calibrating the groups
relative to each other, regardless of the type of sensor. More
specifically, extrinsic calibration of these systems can be
done via a closed form solution (Horn’s algorithm [3], which
requires solving for the eigenvectors of a symmetric 4x4
matrix) or via numerical optimization methods. We also
combine this with an objective for “intrinsic” calibration(of
the sensor parameters within each group), so that intrinsic
and extrinsic calibration of all the sensors is performed
simultaneously.

Our approach can be applied to many practical robotic
systems because most sensors in such systems either already
output 3D data or can be grouped to have this feature: ex-
amples include active triangulation sensors, stereo cameras,
range finders and especially robot arms.1

Our experiments illustrate the advantages of the joint
calibration approach. Compared to standard techniques, our
method is more accurate and requires less human supervi-
sion. On our robot platform (STAIR), we are able to jointly
calibrate many sensors to a 5 DOF robot arm with an average
error of less than two millimeters. Using this accurate cali-
bration, our robot is able to perform manipulation tasks such
as turning knobs, pressing small elevator buttons, opening
drawers and picking up small objects.

II. PREVIOUS WORK

The field of sensor calibration has a long history. Camera
calibration is a well studied subject [4], [5], [6]. Jointly
calibrating the intrinsic and extrinsic parameters of cameras
has been studied as well; for example, Zhang [5] proposed
jointly estimating the intrinsics and extrinsics using one
objective function. There is also software for camera-to-
camera calibration, such as the well-known Caltech cali-
bration toolbox [1], that implements this idea. Calibrating
multiple cameras simultaneously has recently gained some
interest. For example, using silhouette geometry constraints,
[7] suggest a bundle optimization method that allows a joint
optimization of many cameras.

The problem of calibrating different types of sensors
together has received less attention, but one example is [8],

1For robot arms, intrinsic calibration corresponds to findingthe kinematic
parameters.



which proposed an algorithm to calibrate a camera to a
range finder using plane constraints. A similar algorithm is
implemented in the CMU laser-to-camera calibration toolbox
[2]. Their techniques are simple yet rather specific to the
properties of the sensors, and there are no known extensions
to other types of sensors.

There are also works concentrating on calibrating the
kinematic parameters of robotic manipulators [9], [10], [11],
[12], [13]. The goal is to obtain very high precision for
(primarily) industrial robots. Zhang and Roth [14] divide
robot calibration into four sub-tasks: kinematic modelling,
pose measurements, kinematic identification and kinematic
compensation. The calibration technique in our work focuses
on pose measurements and kinematic identification. In [9],
authors describe techniques for identifying the static and
dynamic parameters of a manipulator. Some approaches use
the aid of extra sensors such as cameras [13] to calibrate the
kinematic parameters. In [15], the authors show a statistical
method for calibrating the odometry parameters of a mobile
robot. Recently, methods to learn the kinematic parameters
and models for legged robots [16] or manipulators [17] have
been proposed.

Most prior work in sensor-to-arm calibration such as the
early articles by Tsai et al. [18], [19], concentrates primarily
on eye-in-hand calibration, where a camera is rigidly attached
to a robot arm. Also for this configuration, Horaud and
Dornaika [20] propose a numerical method while Daniilidis
[21] uses dual quaternions. Simultaneously calibrating the
hand and the camera is the focus of [22], [23]. While eye-
in-hand calibration is beyond the scope of our work, the
ideas of numerical optimization (e.g., [20]) and simultaneous
calibration (e.g., [22]) are also used in our approach.

In general, most state-of-the-art calibration techniquesare
hardware-specific and do not generalize well to other types
of sensors. As a result, calibrating a multi-sensor system
requires both understanding the low-level details of each
sensor and applying a variety of specialized algorithms. This
approach is prohibitively expensive and complex for large
systems. We present a unified framework that incorporates
some of the ideas described above, and develop a general
technique for joint calibration of multiple sensors.

III. SUMMARY OF JOINT CALIBRATION

In this section we present a summary of our approach.
Consider the problem of calibrating the intrinsic and extrinsic
parameters of a robot system which contains two cameras, a
laser projector2 and a robot arm.

A standard procedure for calibrating such a system is
shown in Fig. 1. For example, we might first calibrate
the pair of cameras to each other, then a camera to the
laser projector, and so on. Sensors are grouped into smaller
systems and each system is calibrated separately. Although
there exist algorithms for each of these groups, the principles
behind the groupings are unclear. Also, note that at each

2This projector can only send a laser beam and does not measure the
distance directly.

calibration step we have to collect different datasets and use
different algorithms. Finally, this procedure can often lead to
inaccurate calibrations.3

Fig. 1. Standard calibration requires many steps to calibrate an entire
system.

In contrast, our approach to joint calibration is summarized
in Fig. 2. The groups are formed using a unifying principle:
each group is created tooutput 3D data.4 We make use
of the fact that a sensor can appear in different groups to
have redundancy. Then we calibrate the entire system in one
optimization.

Fig. 2. Joint calibration, in which all calibration parameters are simultane-
ously solved for. Note the sharing and redundancy enjoyed bythis method:
One sensor can appear in many groups (shown by circles), and multiple
links (each representing a coordinate transformation) connect the different
groups. Each group is capable of outputting 3D data.

In detail, we use geometric constraints (distance preserva-
tion, collinearity, coplanarity) for intrinsic calibration within
each group. Extrinsic calibration between groups can be
done via Horn’s algorithm [3] or Levenberg-Marquardt opti-
mization. More importantly, although intrinsic and extrinsic
calibration could have been done separately, we argue instead
that intrinsic and extrinsic calibration should be combined
and performed simultaneously. In our approach, this is done
by posing a single calibration optimization objective, that is
minimized through numerical optimization.

IV. EXTRINSIC AND INTRINSIC PARAMETERS

A. Extrinsic parameters

The extrinsic parameters of two coordinate systems consist
of a rotation matrix and a translation vector between the
frames. More specifically, a 3D coordinate transformation
takes a point in one frame and gives the coordinate of the
point in another frame. Associated with this transformation

3For example, suppose sensor 1 (or group 1) is calibrated to sensor
2, which is calibrated to sensor 3, and so on in a long chain. Ifeach
calibration step introduces even a small amount of error, thenthe error
in the transformation between sensor 1 and sensorn may become large,
since the errors along the chain would accumulate.

4Here, we assume that grouping Cam1 and Laser projector will result in
an active triangulation sensor (as described in Section VIII-B).



are a rotation matrix and a translation vector, which we
denote byR and t. Assume the coordinate of a pointp
is [x, y, z]T in frame A; its coordinates in frameB is then
given by

R[x, y, z]T + t (1)

The rotation matrix also satisfies and orthonormal constraint:

R
T
R = I (2)

B. Intrinsic models and parameters

We define a 3D system as a sensor or a group of sensors
that gives us 3D data with known depth scales. Informally,
a 3D system can measure 3D coordinates of objects in front
of it. With such systems we can define an intrinsic model
that takes intrinsic parameters and data and returns a point
in 3D

I(α, u) ∈ R
3 (3)

where u is a calibration datum (e.g., corresponding pixels
in two images), andα are the intrinsic model parameters.
Hereα may be sensor dependent; for example, for a stereo
vision system,α would include the standard camera param-
eters (such as focal length, distortion, etc.) as well as the
transformation between the two cameras.

Note that our concept of intrinsic parameters is different
from that in the camera calibration literature. In that litera-
ture, a camera’s intrinsic parameters include focal length,
distortion, principal point, skewness, etc. In contrast, in
our setting the intrinsic parameters of a 3D system may
also include the rotation and translation between different
members of a group.

In our definition, a single camera isnot a 3D system
because it does not produce known scaled depth data. In
contrast, a 3D range finder or a stereo camera are 3D
systems.

V. EXTRINSIC CALIBRATION OF 3D SYSTEMS

This task requires us to find rotation and translation
parameters between systems, or informally, to find locations
and orientations of different frames relative to each others.
To simplify notations, we begin by considering the task of
calibrating two 3D systems.

One way to find rotation and translation from one frame
to another frame given corresponding 3D data is via a closed
form solution given by Horn’s algorithm [3].

Horn’s algorithm is elegant, but can be used only to find
extrinsic parameters given point constraints. In order to also
address intrinsinc calibration, and to incorporate a broader
set of constraints than point constraints (such as line and
plane constraints, described later), we will instead use a
numerical optimization method. In detail, assume a point
p(A) = IA(αA, u(A)) in frame A and that same point in
frame B is p(B) = IB(αB , u(B)). Now, the coordinate
of p(A) in frame B under the coordinate transformation is
Rp(A) + t.

Perfect extrinsic parameters will makeRp(A) + t =
p(B). As data may be noisy, we can model the distance

d = ‖Rp(A) + t − p(B)‖ as a normal random variable
d ∼ N (0, λ2). Assume that we can collect many correspond-
ing points{u(A)

i , u
(B)
i }n

i=1, maximum likelihood estimation
requires us to minimize

Extr(R, t) =
∑

i

‖RI(αA, uA
i ) + t − I(αB , uB

i )‖2 (4)

subject to the orthonormal constraint (Eq. 2). Calibrating
multiple sensors can be done in the same fashion by adding
more terms to the objective function.

VI. I NTRINSIC CALIBRATION OF 3D SYSTEMS

This task requires us to find intrinsic parameters of 3D
systems. Informally, this means we have to determine the
internal parameters of a 3D system such that it obeys
geometric rules. For example, if the world has a set of points
belonging to a line, then from the perspective of the sensor,
the points should also form a line.

The set of constraints we can use for intrinsic calibration
of a 3D system are distance preservation, collinearity, copla-
narity.5 In our framework, these constraints are enforced by
likelihood estimation.

A. Distance preservation constraints

Suppose we can collect calibration dataui and uj with
known distanced̄ij in 3D. Intrinsic models of a 3D system
give us two points in 3D,pi andpj . The distancedij between
pi andpj is represented by a random normal variabledij ∼
N (d̄ij , σ

2), or more explicitly

p(dij) =
1

Z
exp(−

‖dij − d̄ij‖
2

σ2
) (5)

An example of distance preservation constraints arise in
the case of a stereo intrinsic model of two cameras (see
Fig. 3). Hereui = {u

(1)
i , u

(2)
i } which are the corresponding

pixels of two cameras’ images. Usingui, this system can
construct a point in 3Dpi. Likewise,uj gives pj . We can
use the ground truth distancēdij of these two points as a
distance preservation constraint.

B. Collinearity and Coplanarity constraints

Not only distance preservation can be employed as cali-
bration constraints, the knowledge of some points belong to
a plane or a line can also be used to help calibration.

Suppose some of our calibration data belong to a line or
a plane, we can model the distanced from the points to the
line/plane as a normal random variabled ∼ N (0, σ2)

p(d) =
1

Z
exp(−

‖d‖2

σ2
) (6)

In detail, distancesd’s can be obtained by fitting a line
or a plane to a set of points (via SVD - singular value
decomposition [24]) and computing the distances of the
points to the line or the plane.

5Note, that these sets of constraints can also be used for extrinsic
calibration.



Fig. 3. An example of distance preservation constraints. CamerasCam1

andCam2 use a datumui (corresponding pixels in two cameras) to find a
point pi ∈ R

3 and use a datumuj to find a pointpj ∈ R
3. We know

ground truth distance between them̄dij (size of checkerboard square),
current calibration parameters give hypothetical distancedij . By forcing
dij to be close tod̄ij , we get good estimate of calibration parameters.

C. Generating constraints

Distance preservation constraints can be generated by a
standard “checkerboard procedure.” For example, in the case
of stereo cameras, we can collect images of a checkerboard
with knownsquare sizes and use a corner detector algorithm
to find the corners (e.g., the algorithm in [25]).

We can generate collinearity and coplanarity constraints by
using flat (planar) surfaces as calibration targets. For exam-
ple, flat walls, desks, checkerboards give plane constraints;
whereas intersections between them give line constraints.

Coplanarity constraints can be generated more easily and
quickly than distance preservation constraints because corner
detection can sometimes be imprecise. There is, however,
a trade-off between distance preservation and coplanarity
constraints because artificial flat surfaces may not be exactly
planar. Also, one can notice that line and plane constraints
suffer from the scale problem: we can scale all points down
to one single point and get a much higher likelihood.6

D. Combining all constraints

Combining likelihood of the constraints in Eq. 5 and 6,
maximum likelihood estimation requires us to minimize

Intr(α) =
∑

i

(‖I(α, ui) − I(α, uj)‖ − d̄ij)
2

+ σ2
1

∑

L

∑

k∈L

d(I(α, uk),L)2

+ σ2
2

∑

P

∑

l∈P

d(I(α, ul),P)2 (7)

whered(x,L) is the distance from a pointx to a lineL and
d(x,P) is the distance from a pointx to a planeP.

VII. JOINT INTRINSIC AND EXTRINSIC CALIBRATION OF

3D SYSTEMS

Assume we have two 3D systems and want to calibrate
their intrinsic and extrinsic parameters. Using the above

6To alleviate this, we must at least have one distance preservation
constraint.

ideas, we first calibrate the intrinsics of each system, and
then calibrate the extrinsics between them. However, in a
similar approach to Zhang’s idea [5], we should combine
the two steps and jointly calibrate all parameters at once.

Again, using the maximum likelihood estimation, we need
to minimize

ExtrIntr(R, t, αA, αB) =Intr(αA) + Intr(αB)

+ γExtr(R, t, αA, αB) (8)

where the optimization variables in the above are
αA, αB ,R, t and γ is the tradeoff between the intrinsic
and extrinsic objectives. The difference of this approach to
the two-step incremental approach is that we are going to
estimate intrinsic and extrinsic parameters jointly.

VIII. SOME 3D SYSTEMS

Although a camera is not a 3D system, there are many 3D
systems in a standard robot system. Stereo cameras, active
triangulation sensors, range finder sensors and robotic arms
are examples of such 3D systems. This section explains these
3D systems and their intrinsic models in more details.

A. Stereo systems

A stereo system contains two or more cameras. With
stereo systems, depth is found by triangulation [26], [27].
Given corresponding pixels in two images, when there is no
occlusion, we can find a unique 3D point. For simplicity and
clarity, in this section we consider stereo systems with two
cameras. We define the followingStereofunction

Stereo({R, t, α(1)
cam, α(2)

cam}, {u(1), u(2)}) = [x, y, z]T (9)

where R, t are the rotation and translation parameters be-
tween the two cameras,α(1)

cam, α
(2)
cam are parameters of the

two cameras. The parametersR, t, α
(1)
cam, α

(2)
cam form the

set of intrinsic parameters of a stereo system, i.eαS =

{R, t, α
(1)
cam, α

(2)
cam}. This Stereo function takes pixel co-

ordinatesu(1), u(2) in two images of the two cameras and
give us a point in 3D. Calibration data areu(1) andu(2).

B. Active triangulation systems

A typical active triangulation system contains a laser pro-
jector (scanner) and a camera [28], [29]. The laser projector
sends a laser pattern and the camera captures a series of
images. A motor on the laser projector records offset angles.
An example of active triangulation system with a line pattern
is described in [28].

An active triangulation system finds 3D location of image
pixels. We define the following function

ActiveTriangulation({R, t, αcam}, {β, u}) = [x, y, z]T

(10)

that takes rotationR, translationt, camera intrinsicαcam,
pixel coordinatesu and laser offset angleβ and gives us a
point in 3D. Calibration data areβ, u.

The parametersR, t, αcam form the ’intrinsic’ parameters
of an active triangulation system, i.e.αActiveTriangulation =
{R, t, αcam}.



C. Robot arms

Given a robot arm, the job of forward kinematics is to
compute the position and orientation of the end effector
[30] given the link lengths, encoder offsets, joint angles and
joint angle offsets. For calibration, we only consider the 3D
position of the end effector

ForwardKinematics({l, β}, e) = [x, y, z]T (11)

wheree is the encoder readings,β is the joint angle offsets
and encoder offsets, andl is the link lengths.7

Here, we treat the link lengths and angle offsets, encoder
offsets{l, β} as intrinsic parameters and encoder readingse

as calibration data.
An advantage of using encoder readings as calibration data

is that encoder readings are usually very accurate while link
lengths or angle offsets are harder to measure. For example,
if the last link of the arm is modified, it is hard to accurately
measure its length.

D. Range finders

The intrinsics of off-the-shelf range finders, such as a laser
scanner (SICK), are already well calibrated internally by the
manufacturers. We can assume that these sensors do not have
any intrinsic parameters that need further calibration. Thus,
the range finder operation can be defined as follows

RangeF inder(u) = [x, y, z]T (12)

where calibration datau can be a ’pixel’ location in the depth
map image.

IX. CALIBRATION OF NON-3D SYSTEMS

There are many sensors that are not 3D, for example,
cameras. There are two possible solutions for calibrating
them.

One immediate solution is to directly apply our joint
calibration method to non-3D systems at the cost of dealing
with sensor-dependent problems. For example, we can cali-
brate a camera to a camera using the extrinsic and intrinsic
calibration ideas described above. The only difference is that
we have to treat the scale factors as optimization variables.
This, however, violates our framework because the scale
factor is a sensor-dependent variable.

A better solution is to build 3D systems out of non 3D
systems. For example, we can group two cameras together
and have a 3D system. Another example is that we can
group a laser projector and a camera to have a 3D active
triangulation system.

Grouping is advantageous because it simplifies calibration.
For example, it is very challenging to calibrate a camera
with a laser range finder [8], [2]. This is because the camera
gives 3D rays whereas a laser range finder gives 3D points.
However, if we find another camera and group two cameras
together, calibrating a laser range finder vs. a stereo system
can be easier.

7Here, we only consider static parameters.

X. OPTIMIZATION

Although the above optimization objectives are noncon-
vex, they have a small number of parameters. They are also in
the form of sum of squares. We can thus use the Levenberg-
Marquardt algorithm to find a local minimum [31], [32], [33].
Software packages such as MATLAB has an implementation
of this algorithm.

Levenberg-Marquardt is fast but can converge to poor local
minima. To alleviate this problem, we use random restart.8

Using random restart, we usually obtain better local minima.
In our experiments, we used numerical differentiation [33].

This is because we treat each component black-box and it is
hard to take analytical derivatives. Numerical differentiation
is implemented in MATLAB.

Finally, there are many ways to enforce the orthonormal
constraints. In our experiments, we addedν‖RT

R− I‖2
2 to

the objective function with large value ofν. This usually
works very well for us.

XI. EXPERIMENTS

We perform calibration experiments with our robot (see
Fig. 4). Our robot has one 5 DOF Katana arm, two visible
light cameras, one Pan-Tilt-Zoom camera9 and one laser
projector. Our goal is to calibrate all of these devices against
the arm.

In the next sections, we will first describe the calibration of
a 3D system (camera and laser projector) and then describe
the joint calibration of the whole system.

Fig. 4. Our robot platform with all sensors and the arm used inthe
experiment.

In the experiments, optimization variables are initialized
by simple guesses. For example, the translation vector be-
tween two cameras can be measured by a ruler, the rotation
is set to the identity matrix.

8Every time the algorithm converges we restart the algorithm by adding
some perturbations to the best-so-far parameters and use these as initializa-
tion for the next iteration.

9The PTZ camera is held fixed in the experiments.



A. Intrinsic active triangulation calibration

The major focus of this work is calibrating a system that
has many 3D groups. We can, however, apply our algorithm
to a very basic level to calibrate the intrinsic parameters of
a 3D group.

We would like to calibrate intrinsic parameters of an active
triangulation sensor consisting a laser projector and a camera
(camera 2 in Fig. 4). The intrinsic parameters of this system
are described earlier in Section VIII-B.

We collected 10 images of a checkerboard (see Fig. 5) and
5 images of planes (see Fig. 6). We used 9 checkerboard
images and 4 plane images for training and the rest for
validation.

First, we considered incremental calibration which cali-
brates intrinsic, extrinsic incrementally. We used the Caltech
calibration toolbox [1] to obtain the intrinsic parametersof
the camera. We then held these intrinsic parameters fixed and
calibrated other parameters of the active triangulation sensor.
We call this ’Incremental calibration’ based on the fact that
we did not calibrate the intrinsic parameters of the camera
jointly with other parameters.

Next, we considered our joint approach that optimizes
all intrinsic parameters of the active triangulation system
simultaneously and called the method ’Joint calibration’.

The results of different calibration methods on the valida-
tion set are reported in Table I. As can be seen from the table,
the joint calibration technique with random restart gives
very good result for calibration. A result of joint intrinsic
calibration is illustrated in Fig. 7.

Fig. 5. An image of a (distorted) checkerboard and a laser beamcaptured
by camera 2 (right corner).

Fig. 6. Three images of three planar regions captured by camera2.

We have just showed that by a very simple and general
method, we can calibrate the intrinsic parameters of an
active triangulation system very accurately. We note that
special techniques exist for calibrating these systems [34].
However, although their method [34] may produce better
results, it is prohibitively more expensive in terms of human

TABLE I

MEAN VALIDATION ERROR OF ACTIVE TRIANGULATION CALIBRATION

Method Error (mm)

Incremental calibration 4.11
(without random restart)
Incremental calibration 1.83
(with random restart)
Joint calibration 0.75
(with random restart)

Fig. 7. Test result of intrinsic calibration of an active triangulation sensor.
Left: Image taken by camera. Right: 3D data captured by the active sensor.
The table and wall surfaces are flat thanks to very accurate calibration.

supervision and complex hardware compared to our method.
In particular, they [34] use an LCD projector with coded
line patterns for the sensor and granite reference plane with
flatness of 7 microns for the calibration target. Nevertheless,
we think smaller calibration error is not needed for robotic
manipulation tasks because robot arms usually have repeata-
bility of a millimeter.

B. Simple calibration test

Over several years, we had made small changes to our
Katana robot arm; as a result, the manufacturer supplied
parameters were no longer accurate. Further, we found it
difficult to directly measure these parameters (using a ruler,
for example). To better understand the effects of these
errors, we took the best calibration parameters of the active
triangulation sensor in the previous section, and calibrated
that against our arm, using the default link lengths and angle
offsets provided by the manufacturer. We did this using the
algorithm in [3], and global optimization using Levenberg-
Marquardt. We obtained a calibration error of more than 3
cm on a validation set. For many manipulation tasks, this
error is unacceptably high.

Since the active triangulation sensor has an error well
under 3 cm (and the arm arm has high repeatability), this
strongly suggests that the main source of error in this
result is the inaccurate kinematic parameters. Here, kinematic
parameters include link lengths, angle offsets, encoder offsets
and angle offsets. It is very difficult to directly measure
angle offsets or encoder offsets, so a better way to fix these
parameters is by separately calibration the arm’s kinematic
parameters. We describe this in the next section.

C. Whole system calibration

In this experiment, we would like to calibrate the en-
tire system at once. This includes the extrinsic parameters
between sensors and intrinsic parameters of each sensor.



Throughout the experiment, we would like to assess the
contribution different ideas mentioned earlier in the paper:
joint intrinsic-extrinsic, sharing sensors, and redundancy.
Candidates for comparison are incremental calibration, and
joint calibration with some degrees of sharing and redun-
dancy. These methods are described as follows.

First, we used an incremental approach to calibration.
We calibrated the two cameras using the Caltech camera
calibration toolbox [1], then calibrated an active triangulation
system formed by grouping camera 1 and Laser. In the third
step, we took the arm manufacturer’s kinematic parameters,
and then further adjusted them improve how well they match
a set of of measured positions of the arm when placed
in a variety of poses. Finally, we calibrated three systems
together. This procedure is illustrated in Fig. 8.

Fig. 8. Incremental calibration steps.

Next, we used our joint calibration approach and calibrated
everything jointly using the method described in this paper.
Since there are so many possible groupings. First, we decided
to use the same groupings as before. The difference is that
we will calibrate these two systems and the arm altogether in
one optimization. This procedure is called ’Joint calibration
1’ and illustrated in Fig. 9.

Fig. 9. Joint calibration 1: one-step calibration without sharing and without
redundancy in extrinsic parameters.

Finally, as there are also other possible groupings, for
example, we can group any pair of cameras or any camera
and the laser projector. We decided to use all possible
groupings between cameras and the projector. Such grouping
has a property that some sensors are shared between many
groups. The two procedures are called ’Joint calibration 2’
(Fig. 10) and ’Joint calibration 3’ (Fig. 11). The difference
between these two methods is that ’Joint calibration 2’ has
a tree structure while ’Joint calibration 3’ is a graph. Thus
there is more redundancy in ’Joint calibration 3’.

We collected 10 checkerboard images with corresponding
encoder readings for each corner of the checkerboard. We
also collected 5 images of planes. To extensively evaluate
calibration methods, we employed a five-fold cross validation
scheme. Each fold contains 8 checkerboard images and 4
plane images for training and the rest for validating. Every
calibration method was trained and validated five times.

Cross validation results of all the calibration methods are

Fig. 10. Joint calibration 2: one-step calibration with sharing and some
redundancy.

Fig. 11. Joint calibration 3: one-step calibration with sharing, more
redundancy.

reported in Table II.10 It can be seen from the table, our
joint calibration approaches give significantly better results
than the incremental approach. Also, joint calibration with
more redundancy has higher accuracy. An explanation is that
different pair sees different views of the world, the algorithm
can make use of more constraints. Another reason is that
joint calibration does not accumulate errors like in the case
of calibrating in pairs.

TABLE II

MEAN/STD CROSS VALIDATION ERRORS OF WHOLE SYSTEM

CALIBRATION .

Method Error in calibration (mm)

Incremental calibration 24.76± 6.32
(one component at a time, Fig. 8)
Joint calibration 1 5.19± 2.41
(no sharing, Fig. 9)
Joint calibration 2 2.08± 1.27
(sharing, some redundancy, Fig. 10)
Joint calibration 3 1.17± 0.89
(sharing, more redundancy, Fig. 11)

The incremental calibration method is more costly in
human time because we have to work with one group at a
time. In contrast, with our joint calibration technique, there is
much less work on planning, code running. In total, it takes

10To compute the errors, we used geometric constraints on pair ofsensor
and arm and averaged errors all pairs.



us less than 2 hours of human time to get all the calibration
parameters of the whole system.

Note that compared to the work of [16], [17], our method
assumes parametric kinematic models of the arm. We chose
this because the kinematic model is known, simple and
accurate. For a comparison, the average errors presented in
[17] are in the order of centimeters while our average errors
are in the order of a millimeter.

XII. CONCLUSION

We considered joint calibration as a method to calibrate
multiple sensors simultaneously. We built our framework
upon 3D systems, geometric constraints and sharing sensors.
Our experiment showed strong results for calibration of a
robot that has many sensors.

Many robotic manipulation applications require calibration
accuracy in the order of a millimeter. Examples of such
tasks are opening doors, pressing elevator buttons, rotating
thermometer buttons, picking up small objects [35], [36],
[28]. The algorithm presented in this paper is our first suc-
cessful method which fulfills the precision requirements for
the tasks. Not only does it satisfy the accuracy requirement,
this method also requires much less human time compared to
older methods. The fact that it takes less time is significant
because the arrangement of our sensors changes quickly over
time and we would like to have a method that can calibrate
everything as fast as possible.

Thanks to accurate calibration, we improved significantly
the success rates of the above tasks in our STanford AI
Robot (STAIR). Video segments of STAIR pressing elevator
buttons, pulling drawers, rotating knobs using our method
can be found in our project website (http://stair.stanford.edu).
We note that in the videos, the hardware settings changed
over time and thus having a fast and good approach for
calibration is essential.
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