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Abstract
Depth estimation in computer vision and robotics
is most commonly done via stereo vision (stereop-
sis), in which images from two cameras are used
to triangulate and estimate distances. However,
there are also numerous monocular visual cues—
such as texture variations and gradients, defocus,
color/haze, etc.—that have heretofore been little
exploited in such systems. Some of these cues ap-
ply even in regions without texture, where stereo
would work poorly. In this paper, we apply a
Markov Random Field (MRF) learning algorithm
to capture some of these monocular cues, and in-
corporate them into a stereo system. We show that
by adding monocular cues to stereo (triangulation)
ones, we obtain significantly more accurate depth
estimates than is possible using either monocular or
stereo cues alone. This holds true for a large vari-
ety of environments, including both indoor environ-
ments and unstructured outdoor environments con-
taining trees/forests, buildings, etc. Our approach
is general, and applies to incorporating monocular
cues together with any off-the-shelf stereo system.

1 Introduction
Consider the problem of estimating depth from two images
taken from a pair of stereo cameras (Fig. 1). The most com-
mon approach for doing so is stereopsis (stereo vision), in
which depths are estimated by triangulation using the two im-
ages. Over the past few decades, researchers have developed
very good stereo vision systems (see [Scharstein and Szeliski,
2002] for a review). Although these systems work well in
many environments, stereo vision is fundamentally limited
by the baseline distance between the two cameras. Specifi-
cally, the depth estimates tend to be inaccurate when the dis-
tances considered are large (because even very small triangu-
lation/angle estimation errors translate to very large errors in
distances). Further, stereo vision also tends to fail for texture-
less regions of images where correspondences cannot be reli-
ably found.

Beyond stereo/triangulation cues, there are also numerous
monocular cues—such as texture variations and gradients,

Figure 1: Two images taken from a stereo pair of cameras,
and the depthmap calculated by a stereo system. Colors in
the depthmap indicate estimated distances from the camera.

defocus, color/haze, etc.—that contain useful and important
depth information. Even though humans perceive depth by
seamlessly combining many of these stereo and monocular
cues, most work on depth estimation has focused on stereo
vision, and on other algorithms that require multiple images
such as structure from motion [Forsyth and Ponce, 2003] or
depth from defocus [Klarquist et al., 1995].

In this paper, we look at how monocular cues from a sin-
gle image can be incorporated into a stereo system. Estimat-
ing depth from a single image using monocular cues requires
a significant amount of prior knowledge, since there is an
intrinsic ambiguity between local image features and depth
variations. In addition, we believe that monocular cues and
(purely geometric) stereo cues give largely orthogonal, and
therefore complementary, types of information about depth.
Stereo cues are based on the difference between two images
and do not depend on the content of the image. The images
can be entirely random, and it will generate a pattern of dis-
parities (e.g., random dot stereograms [Blthoff et al., 1998]).
On the other hand, depth estimates from monocular cues is
entirely based on prior knowledge about the environment and
global structure of the image. There are many examples of
beautifully engineered stereo systems in the literature, but the
goal of this work is not to directly improve on, or compare
against, these systems. Instead, our goal is to investigate how
monocular cues can be integrated with any reasonable stereo
system, to (hopefully) obtain better depth estimates than the
stereo system alone.

Depth estimation from monocular cues is a difficult task,
which requires that we take into account the global structure
of the image. [Saxena et al., 2006a] applied supervised learn-



ing to the problem of estimating depth from single monocular
images of unconstrained outdoor and indoor environments.
[Michels et al., 2005] used supervised learning to estimate
1-D distances to obstacles, for the application of driving a re-
mote controlled car autonomously. Methods such as shape
from shading [Zhang et al., 1999] rely on purely photometric
properties, assuming uniform color and texture; and hence
are not applicable to the unconstrained/textured images that
we consider. [Delage et al., 2006] generated 3-d models from
an image of indoor scenes containing only walls and floor.
[Hoiem et al., 2005] also considered monocular 3-d recon-
struction, but focused on generating visually pleasing graphi-
cal images by classifying the scene as sky, ground, or vertical
planes, rather than accurate metric depthmaps.

Building on [Saxena et al., 2006a], our approach is based
on incorporating monocular and stereo cues for modeling
depths and relationships between depths at different points
in the image using a hierarchical, multi-scale Markov Ran-
dom Field (MRF). MRFs and their variants are a workhorse
of machine learning, and have been successfully applied to
numerous applications in which local features were insuffi-
cient and more contextual information must be used.1 Taking
a supervised learning approach to the problem of depth esti-
mation, we designed a custom 3-d scanner to collect training
data comprising a large set of stereo pairs and their corre-
sponding ground-truth depthmaps. Using this training set,
we model the posterior distribution of the depths given the
monocular image features and the stereo disparities. Though
learning in our MRF model is approximate, MAP posterior
inference is tractable via linear programming.

Although depthmaps can be estimated from single monoc-
ular images, we demonstrate that by combining both monocu-
lar and stereo cues in our model, we obtain significantly more
accurate depthmaps than is possible from either alone. We
demonstrate this on a large variety of environments, includ-
ing both indoor environments and unstructured outdoor envi-
ronments containing trees/forests, buildings, etc.

2 Visual Cues for Depth Perception
Humans use numerous visual cues for 3-d depth perception,
which can be grouped into two categories: Monocular and
Stereo. [Loomis, 2001]

2.1 Monocular Cues
Humans have an amazing ability to judge depth from a sin-
gle image. This is done using monocular cues such as tex-
ture variations and gradients, occlusion, known object sizes,
haze, defocus, etc. [Loomis, 2001; Blthoff et al., 1998;
Saxena et al., 2006a]. Some of these cues, such as haze (re-
sulting from atmospheric light scattering) and defocus (blur-
ring of objects not in focus), are local cues; i.e., the esti-
mate of depth is dependent only on the local image proper-
ties. Many objects’ textures appear different depending on

1Examples include text segmentation [Lafferty et al., 2001], im-
age labeling [He et al., 2004; Kumar and Hebert, 2003] and smooth-
ing disparity to compute depthmaps in stereo vision [Tappen and
Freeman, 2003]. Because MRF learning is intractable in general,
most of these model are trained using pseudo-likelihood.

Figure 2: The filters used for computing texture variations
and gradients. The first 9 are Laws’ masks, and the last 6 are
oriented edge filters.

the distance to them. Texture gradients, which capture the
distribution of the direction of edges, also help to indicate
depth.2

Some of these monocular cues are based on prior knowl-
edge. For example, humans remember that a structure of a
particular shape is a building, sky is blue, grass is green, trees
grow above the ground and have leaves on top of them, and so
on. These cues help to predict depth in environments similar
to those which they have seen before. Many of these cues rely
on “contextual information,” in the sense that they are global
properties of an image and cannot be inferred from small im-
age patches. For example, occlusion cannot be determined
if we look at just a small portion of an occluded object. Al-
though local information such as the texture and colors of a
patch can give some information about its depth, this is usu-
ally insufficient to accurately determine its absolute depth.
Therefore, we need to look at the overall organization of the
image to estimate depths.

2.2 Stereo Cues
Each eye receives a slightly different view of the world and
stereo vision combines the two views to perceive 3-d depth.
An object is projected onto different locations on the two reti-
nae (cameras in the case of a stereo system), depending on
the distance of the object. The retinal (stereo) disparity varies
with object distance, and is inversely proportional to the dis-
tance of the object. Thus, disparity is not an effective cue for
small depth differences at large distances.

3 Features
3.1 Monocular Features
In our approach, we divide the image into small rectangu-
lar patches, and estimate a single depth value for each patch.
Similar to [Saxena et al., 2006a], we use two types of fea-
tures: absolute features—used to estimate the absolute depth
at a particular patch—and relative features, which we use
to estimate relative depths (magnitude of the difference in
depth between two patches).3 We chose features that cap-
ture three types of local cues: texture variations, texture gra-
dients, and color, by convolving the image with 17 filters
(9 Laws’ masks, 6 oriented edge filters, and 2 color filters,
Fig. 2). [Saxena et al., 2006b]

We generate the absolute features by computing the sum-
squared energy of each of these 17 filter outputs over each

2For textured environments which may not have well-defined
edges, texture gradient is a generalization of the edge directions.
For example, a grass field when viewed at different distances has
different distribution of edges.

3If two neighbor patches of an image display similar features,
humans would often perceive them to be parts of the same object,
and to have similar depth values.



Figure 3: The absolute depth feature vector for a patch, which includes the immediate neighbors, and the distant neighbors in
larger scales. The relative depth features for each patch compute histograms of the filter outputs.

patch. Since local image features centered on the patch are in-
sufficient, we attempt to capture more global information by
using image features extracted at multiple spatial scales4 for
that patch as well as the 4 neighboring patches. (Fig. 3) This
results in a absolute feature vector of (1 + 4) ∗ 3 ∗ 17 = 255
dimensions. For relative features, we use a 10-bin histogram
for each filter output for the pixels in the patch, giving us
10 ∗ 17 = 170 values yi for each patch i. Therefore, our
features for the edge between patch i and j are the difference
yij = |yi − yj |.

3.2 Disparity from stereo correspondence
Depth estimation using stereo vision from two images (taken
from two cameras separated by a baseline distance) involves
three steps: First, establish correspondences between the two
images. Then, calculate the relative displacements (called
“disparity”) between the features in each image. Finally, de-
termine the 3-d depth of the feature relative to the cameras,
using knowledge of the camera geometry.

Stereo correspondences give reliable estimates of dispar-
ity, except when large portions of the image are featureless
(i.e., correspondences cannot be found). Further, the accu-
racy depends on the baseline distance between the cameras.
In general, for a given baseline distance between cameras, the
accuracy decreases as the depth values increase. This is be-
cause small errors in disparity then translate into huge errors
in depth estimates. In the limit of very distant objects, there is
no observable disparity, and depth estimation generally fails.
Empirically, depth estimates from stereo tend to become un-
reliable when the depth exceeds a certain distance.

Our stereo system finds good feature correspondences be-
tween the two images by rejecting pixels with little texture,
or where the correspondence is otherwise ambiguous.5 We

4The patches at each spatial scale are arranged in a grid of
equally sized non-overlapping regions that cover the entire image.
We use 3 scales in our experiments.

5More formally, we reject any feature where the best match is not
significantly better than all other matches within the search window.

Figure 4: The multi-scale MRF model for modeling relation
between features and depths, relation between depths at same
scale, and relation between depths at different scales. (Only
2 out of 3 scales, and a subset of the edges, are shown.)

use the sum-of-absolute-differences correlation as the metric
score to find correspondences. [Forsyth and Ponce, 2003] Our
cameras (and algorithm) allow sub-pixel interpolation accu-
racy of 0.2 pixels of disparity. Even though we use a fairly
basic implementation of stereopsis, the ideas in this paper can
just as readily be applied together with other, perhaps better,
stereo systems.

4 Probabilistic Model
Our learning algorithm is based on a Markov Random Field
(MRF) model that incorporates monocular and stereo fea-
tures, and models depth at multiple spatial scales (Fig. 4).
The MRF model is discriminative, i.e., it models the depths d
as a function of the image features X: P (d|X). The depth of
a particular patch depends on the monocular features of the
patch, on the stereo disparity, and is also related to the depths
of other parts of the image. For example, the depths of two
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adjacent patches lying in the same building will be highly cor-
related. Therefore, we model the relation between the depth
of a patch and its neighbors at multiple spatial scales.

4.1 Gaussian Model
We first propose a jointly Gaussian MRF (Eq. 1), parame-
terized by θ and σ. We define di(s) to be the depth of a
patch i at scale s ∈ {1, 2, 3}, with the constraint di(s + 1) =
(1/5)

∑

j∈{i,Ns(i)} dj(s). I.e., the depth at a higher scale is
constrained to be the average of the depths at lower scales.
Here, Ns(i) are the 5 neighbors (including itself) of patch i
at scale s. M is the total number of patches in the image (at
the lowest scale); xi is the absolute feature vector for patch i;
di,stereo is the depth estimate obtained from disparity;6 ZG is
the normalization constant.

The first term in the exponent in Eq. 1 models the rela-
tion between the depth and the estimate from stereo disparity.
The second term models the relation between the depth and
the multi-scale features of a single patch i. The third term
places a soft “constraint” on the depths to be smooth. We first
estimate the θr parameters in Eq. 1 by maximizing the con-
ditional likelihood p(d|X; θr) of the training data; keeping
σ constant. [Saxena et al., 2006a] We then achieve selective
smoothing by modeling the “variance” term σ2

2rs in the de-
nominator of the third term as a linear function of the patches
i and j’s relative depth features yijs. The σ2

1r term gives a
measure of uncertainty in the second term, which we learn as
a linear function of the features xi. This is motivated by the
observation that in some cases, depth cannot be reliably es-
timated from the local monocular features. In this case, one
has to rely more on neighboring patches’ depths or on stereo
cues to infer a patch’s depth.

Modeling Uncertainty in Stereo
The errors in disparity are modeled as either Gaussian [Das
and Ahuja, 1995] or via some other, heavier-tailed distribu-
tion (e.g., [Szelinski, 1990]). Specifically, the errors in dispar-
ity have two main causes: (a) Assuming unique/perfect corre-
spondence, the disparity has a small error due to image noise
(including aliasing/pixelization), which is well modeled by
a Gaussian. (b) Occasional errors in correspondence causes
larger errors, which results in a heavy-tailed distribution for
disparity. [Szelinski, 1990]

We estimate depths on a log scale as d = log(C/g) from
disparity g, with camera parameters determining C. If the
standard deviation is σg in computing disparity from stereo
images (because of image noise, etc.), then the standard devi-

6In this work, we directly use di,stereo as the stereo cue.
In [Saxena et al., 2007], we use a library of features created from
stereo depths as the cues for identifying a grasp point on objects.

ation of the depths7 will be σd,stereo ≈ σg/g. For our stereo
system, we have that σg is about 0.2 pixels;8 this is then used
to estimate σd,stereo. Note therefore that σd,stereo is a func-
tion of the estimated depth, and specifically, it captures the
fact that variance in depth estimates is larger for distant ob-
jects than for closer ones.

When given a new test image, MAP inference for depths d
can be derived in closed form.

4.2 Laplacian Model
In our second model (Eq. 2), we replace the L2 terms with
L1 terms. This results in a model parameterized by θ and
by λ, the Laplacian spread parameters, instead of Gaussian
variance parameters. Since ML parameter estimation in the
Laplacian model is intractable, we learn these parameters
following an analogy to the Gaussian case. [Saxena et al.,
2006a] Our motivation for using L1 terms is three-fold. First,
the histogram of relative depths (di − dj) is close to a Lapla-
cian distribution empirically, which suggests that it is better
modeled as one. Second, the Laplacian distribution has heav-
ier tails, and is therefore more robust to outliers in the image
features and errors in the training-set depthmaps (collected
with a laser scanner; see Section 5.1). Third, the Gaussian
model was generally unable to give depthmaps with sharp
edges; in contrast, Laplacians tend to model sharp transi-
tions/outliers better. (See Section 5.2.) Given a new test im-
age, MAP posterior inference for the depths d is tractable,
and is easily solved using linear programming (LP).

5 Experiments
5.1 Laser Scanner
We designed a 3-d scanner to collect stereo image pairs and
their corresponding depthmaps (Fig. 6). The scanner uses the
SICK laser device which gives depth readings in a vertical
column, with a 1.0◦ resolution. To collect readings along the
other axis (left to right), we mounted the SICK laser on a
panning motor. The motor rotates after each vertical scan
to collect laser readings for another vertical column, with a
0.5◦ horizontal angular resolution. The depthmap is later re-
constructed using the vertical laser scans, the motor readings

7Using the delta rule from statistics: Var(f(x)) ≈
(f ′(x))2Var(x), derived from a second order Taylor series approx-
imation of f(x).

8One can also envisage obtaining a better estimate of σg

as a function of a match metric used during stereo correspon-
dence, [Scharstein and Szeliski, 2002] such as normalized sum of
squared differences; or learning σg as a function of disparity/texture
based features.



Figure 5: Results for a varied set of environments, showing one image of the stereo pairs (column 1), ground truth depthmap
collected from 3-d laser scanner (column 2), depths calculated by stereo (column 3), depths predicted by using monocular cues
only (column 4), depths predicted by using both monocular and stereo cues (column 5). The bottom row shows the color scale
for representation of depths. Closest points are 1.2 m, and farthest are 81m. (Best viewed in color)



Figure 6: The custom 3-d scanner to collect stereo image
pairs and the corresponding depthmaps.

and known position and pose of the laser device and the cam-
eras. The laser range finding equipment was mounted on a
LAGR (Learning Applied to Ground Robotics) robot. The
LAGR vehicle is equipped with sensors, an onboard com-
puter, and Point Grey Research Bumblebee stereo cameras,
mounted with a baseline distance of 11.7cm.

We collected a total of 257 stereo pairs+depthmaps, with
an image resolution of 1024x768 and a depthmap resolu-
tion of 67x54. In the experimental results reported here,
75% of the images/depthmaps were used for training, and
the remaining 25% for hold-out testing. The images con-
sist of a wide variety of scenes including natural environ-
ments (forests, trees, bushes, etc.), man-made environments
(buildings, roads, trees, grass, etc.), and purely indoor en-
vironments (corridors, etc.). Due to limitations of the laser,
the depthmaps had a maximum range of 81m (the maximum
range of the laser scanner), and had minor additional errors
due to reflections and missing laser scans. Prior to running
our learning algorithms, we transformed all the depths to a
log scale so as to emphasize multiplicative rather than addi-
tive errors in training.

5.2 Results and Discussion
We evaluate the performance of the model on our test-set
comprising a wide variety of real-world images. To quan-
titatively compare effects of various cues, we report results
from the following classes of algorithms that use monocular
and stereo cues in different ways:
(i) Baseline: The model, trained without any features, pre-
dicts the mean value of depth in the training depthmaps.
(ii) Stereo: Raw stereo depth estimates, with the missing val-
ues set to the mean value of depth in the training depthmaps.
(iii) Stereo (smooth): This method performs interpolation
and region filling; using the Laplacian model without the sec-
ond term (which models depths as a function of monocular

Table 1: The average errors (RMS errors gave similar results)
for various cues and models, on a log scale (base 10).

ALGORITHM ALL CAMPUS FOREST INDOOR
BASELINE .341 .351 .344 .307
STEREO .138 .143 .113 .182
STEREO (SMOOTH) .088 .091 .080 .099
MONO (GAUSSIAN) .093 .095 .085 .108
MONO (LAP) .090 .091 .082 .105
STEREO+MONO .074 .077 .069 .079
(LAP)

cues) in Eq. 2, and also without using monocular cues to es-
timate λ2 as a function of the image.
(iv) Mono (Gaussian): Depth estimates using only monocu-
lar cues, without the first term in the exponent of the Gaussian
model.
(v) Mono (Lap): Depth estimates using only monocular
cues, without the first term in the exponent of the Laplacian
model.
(vi) Stereo+Mono: Depth estimates using the full model.
Table 1 shows that the performance is significantly improved
when we combine both mono and stereo cues. The algo-
rithm is able to estimate depths with an error of .074 orders of
magnitude,9 which represents a significant improvement over
stereo (smooth) performance of .088.

Fig. 5 shows that the model is able to predict depthmaps
(column 5) in a variety of environments. It also demonstrates
how the model takes the best estimates from both stereo
and monocular cues to estimate more accurate depthmaps.
For example, in row 6 (Fig. 5), the depthmap generated by
stereo (column 3) is very inaccurate, however, the monocular-
only model predict depths fairly accurately (column 4). The
combined model uses both sets of cues to produce a better
depthmap (column 5). In row 3, stereo cues give a better
estimate than monocular ones, and again we see that using
our combined MRF model, which uses both monocular and
stereo cues, results in an accurate depthmap (column 5), cor-
recting some mistakes of stereo, such as some far-away re-
gions which stereo predicted as close.

We note that monocular cues rely on prior knowledge
learned from the training set about the environment. This
is because monocular 3-d reconstruction is an inherently am-
biguous problem. Thus, the monocular cues may not general-
ize well to images very different from ones in the training set,
such as underwater images or aerial photos. In contrast, the
stereopsis cues we used are are purely geometric, and there-
fore should work well even on images taken from very differ-
ent environments. To test the generalization capability of the
algorithm, we also tested the algorithm on images (e.g. con-
taining trees, buildings, roads, etc.) downloaded from the In-
ternet (images for which camera parameters are not known).
The model (using monocular cues only) was able to produce
reasonable depthmaps on most of the images. (However, not
having ground-truth depthmaps and stereo images for images
downloaded from the Internet, we are unable to give quanti-

9Errors are on a log
10

scale. Thus, an error of ε means a multi-
plicative error of 10ε in actual depth. E.g., 10.074 = 1.186, which
thus represents an 18.6% multiplicative error.
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Figure 7: The average errors (on a log scale, base 10) as a
function of the distance from the camera.

tative comparisons for these images.10)
In Fig. 7, we study the behavior of the algorithm as a func-

tion of the 3-d distance from the camera. At small distances,
the algorithm relies more on stereo cues, which are more ac-
curate than the monocular cues in this regime. However, at
larger distances, the performance of stereo degrades; and the
algorithm relies more on monocular cues. Since, our algo-
rithm models uncertainties in both stereo and monocular cues,
it is able to combine stereo and monocular cues effectively.

We also carried out an error analysis, to identify the cases
when the algorithm makes mistakes. Some of its errors can
be attributed to limitations of the training set. For example,
the maximum value of the depths in the training and test set
is 81m; therefore, far-away objects are all mapped to the one
distance of 81m. The monocular algorithm fails sometimes
to predict correct depths for objects which are only partially
visible in the image (e.g., Fig. 5, row 2: tree on the left). For
depth at such a point, most of its neighbors lie outside the
image area, hence the relations between neighboring depths
are not effective. However, in those cases, stereo cues often
help produce the correct depthmap (row 2, column 5).

6 Conclusions
We have presented a hierarchical, multi-scale MRF learning
model for capturing monocular cues and incorporating them
into a stereo system so as to obtain significantly improved
depth estimates. The monocular cues and (purely geomet-
ric) stereo cues give largely orthogonal, and therefore com-
plementary, types of information about depth. We show that
by using both monocular and stereo cues, we obtain signif-
icantly more accurate depth estimates than is possible using
either monocular or stereo cues alone. This holds true for
a large variety of environments, including both indoor envi-
ronments and unstructured outdoor environments containing
trees/forests, buildings, etc. Our approach is general, and ap-

10Results on internet images are available at:
http://ai.stanford.edu/∼asaxena/learningdepth

plies to incorporating monocular cues together with any off-
the-shelf stereo system.
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