
Learning to grasp objects with multiple contact points

Quoc V. Le, David Kamm, Arda F. Kara, Andrew Y. Ng

Abstract— We consider the problem of grasping novel objects
and its application to cleaning a desk. A recent successful
approach applies machine learning to learn one grasp point
in an image and a point cloud. Although those methods are
able to generalize to novel objects, they yield suboptimal results
because they rely on motion planner for finger placements. In
this paper, we extend their method to accommodate grasps with
multiple contacts. This approach works well for many human-
made objects because it models the way we grasp objects. To
further improve the grasping, we also use a method that learns
the ranking between candidates. The experiments show that
our method is highly effective compared to a state-of-the-art
competitor.

I. I NTRODUCTION

We consider the problem of robots cleaning a desk by
grasping. This task poses many challenges: the variation in
shapes and orientations of objects, the lack of complete 3D
information, the occlusions between objects.

Recent approaches [1], [2] apply machine learning tech-
niques to solve this problem. Their method generalizes well
for novel objects because they do not rely on brittle hard-
coded rules. The main shortcoming is that their system is
built on top of apinch grasp classifier [1] and relies on mo-
tion planner for finger placements. The method [2] extends
pinch grasps in [1] to model power grasps. Although it tries
to learn the position of the center of the end effector and the
direction of the wrist, motion planning plays an important
role for finger placements. Motion planners, unfortunately,
only detect collisions and do not consider force stability.

In fact, when performing experiments with their methods,
we notice that for many objects, pinch grasps [1] are not
applicable. This is because human-made objects are designed
to be reliably grasped with multiple contacts (two or more,
using the thumb and other fingers).1 Power grasps [2] are
better but sometimes objects slip off the robot hand. This
is because many configurations, despite being collision-free,
are not stable for grasping.

We will illustrate the latter observation with a simplistic
example (see Figure 1). Suppose we would like the robot to
pick up a mug. The classifier by [2] will return the location at
the red square as a good candidate because depth and visible
light images have discontinuities at that location (Figure
1, left). Their method will use this candidate and query a
motion planner for a good grasp configuration. Some grasp

Quoc V. Le, David Kamm, Arda F. Kara, Andrew Y. Ng
are with the Computer Science Department, Stanford University
quocle@cs.stanford.edu, dkamm@stanford.edu,
ardakara@stanford.edu, ang@cs.stanford.edu

1There are certainly cases that pinch grasps are preferred, such as grasping
a pen. However, our robot hand (Barrett) cannot grasp such objects very
well.

configurations, despite having no collision with objects, are
not stable. For example, if the two fingers are placed at two
locations specified by the blue circles, the motion planner
does not detect collision, but the mug may slip out of the
robot hand during grasping.

Ideally and hypothetically, their algorithm should return
a place near the centroid of the object as a candidate and
then, with high probability, the motion planner will place
the fingers at the appropriate locations (see Figure 1, right).
However, in this case, the location at the red square is rather
indistinguishable in the depth and visible light images; and
it is difficult to build a pattern recognizer to identify it.

Fig. 1. Problems with the method in [2]. Left: best candidate returned
by their classifier (red square) and finger locations (blue circles) that
have no collision. These finger placements are not stable for grasping.
Right: ideal finger placements (blue circles) and corresponding hypothesized
candidate (red square). The red square, however, does not contain any useful
information and thus cannot be found by the method in [2].

In this paper, we present a method that learns the contact
points, i.e., the locations where the blue circles touch the
objects. This method disambiguates the problem of fingertip
placements and chooses the placements that are most stable.
Our method uses a motion planner only for planning a
trajectory that has no collisions. It also allows grasping
objects at multiple contacts with pinch grasp as a special
case. We will show that meaningful features can be extracted
from these contact points. We also use supervised learning,
or more specifically Support Vector Machines, to learn
grasping concepts that generalize well for novel objects.
Our experiments show that despite its simplicity, this idea
significantly improves grasping accuracy.

With multiple contacts, most degrees of freedom (finger
closure size and orientation) are fixed. Motion planning is
used simply to avoid collisions and the number of configura-
tions that the motion planning needs to search is quite small.
This provides a big computation boost and starkly contrasts
the approach in [2] where a motion planner is extensively
used to search over 4 parameters (pitch, roll, yaw, finger
closure size).



II. PREVIOUS WORK

Early work in robot grasping assumed complete 2D or 3D
models of objects. Under such assumptions, many types of
grasps can be modelled and computed, for example force
closure [3], [4], [5], form-closure [6], equilibrium grasps
[7], [8], [9], stable grasps [10], compliant grasps [8]. More
recent approaches use machine learning to combine more
information for better grasping using SVMs [11] or for better
controlling using reinforcement learning [12], [13].

The main drawback of those methods is that it is hard
to extend them to real-world data where capturing complete
3D models for objects is difficult. For example, given a static
scene, the back face of objects cannot be captured using a
stereo camera. This realization leads further developments
in robotic grasping where methods have to consider more
realistic sensory data, for example, intensity images, point
clouds, haptic feedbacks. With such sensory data, researchers
have to take into account sensory noises and partial shapes.

Using local visual features, methods are proposed to find
planar grasps, i.e., looking for 2D locations where the robot
can place its fingertips [14], [15], [16], [17]. For non-
planar grasps, a schema structured method is presented to
deal with simple objects [18]. Also with schema structured
learning, Platt et al. [19] proposes a method that assumes
segmentation and fits ellipsoids to objects. Edsinger and
Kemp [20] designed an algorithm to grasp cylindrical objects
with power grasp using visual servoing.

Our method resembles methods proposed by Saxena et al.
[21], and more specifically [2]. The early work [22] only
considers intensity image data to learn the features. Later
methods [2] include depth information and design a multi-
stage processing which combines the method in [22] and
motion planning. In detail, they use a single-point classifier to
get a large number of candidates for grasping [23]. Then they
apply a second classifier which combines geometric features
to rank grasp configurations. These configurations are fed to
a motion planner to determine the final grasp.

As mentioned earlier, there are two main issues with
that approach. The first issue is accuracy and stability of
grasps. As the method in [2] is divided into several stages,
the errors get bigger after each stage. We also notice that
because their method is based on a single-point classifier
(one contact point) at the lowest level, the grasps are usually
not stable. The second issue is due to computation, or more
specifically, an extensive use of motion planning. This is
because classifiers in early stages have a very low Area under
the ROC score, the motion planner has to handle the chore
of finding a good configuration for a large number of points.

III. A BRIEF SUMMARY OF OUR SYSTEM

Our system makes use of both depth and visible light
image data. To capture depth data, we used an active tri-
angulation sensor [24] (see Figure 2). An important feature
of this sensor is that it gives very detailed depth data (also
called depth map or point cloud). However, the key ideas in
this paper can be applied to depth data captured by other
types of sensors such as stereo cameras.

Fig. 2. Image data and depth data captured by our robot. Left: visible light
image data. Right: depth data (note: missing back face of objects).

Given the depth map and intensity image data, our system
has two main steps: ranking candidates and planning motion.
Using the data, the robot first generates all grasp candidates
for the scene.2 Our system then extracts relevant features for
each candidate. Based on the features, the robot uses a trained
SVM model to compute a “score” for each candidate and
rank the scores to get top 10 candidates for grasping. Finally,
these top 10 candidates will be fed to a motion planner to
remove any collision and inverse kinematics infeasibility. To
grasp multiple objects, the robot has to execute the above
two-step procedure many times.

The grasp candidates are generated from the edge images
of depth and visible light images. The edge images are
computed by the Canny edge detection algorithm. Using
the distance between the contact points, we can prune any
candidates with contact points that are too far apart. For
instance, if the hand can only grasp objects of no larger than
10cm, we can prune away any three points that are more
than 10cm apart.

To train the SVM model, we collected training data
with human labels. During training time, for each grasp
candidate, a human editor will choose to label as either “Bad”
or “Good”or “Very Good”. Here, “Bad” indicates that the
candidate is impossible to grasp; “Good” indicates that the
candidate might be possible to grasp; “Very Good” indicates
that the candidate can be grasped very well. Sometimes, this
may require the human editor to operate the robot in order
to decide the labels. Given the labels, we used a ranking
SVM algorithm which optimizes a measure that prefers better
ranking for top candidates. Details regarding the featuresand
the training method are explained in the following sections.

The system has several key novelties. First, instead of
modelling power grasps around a point, our system learns the
contact points themselves. Second, many new and intuitive
features are designed to improve grasping results. Finally,
our system uses a ranking method to achieve better results
than a standard classifier.

Our method can work with two-contact-point candidates
(for a two-fingered hand) or three-contact-point candidates
(for a three-fingered hand). To simplify the language, we are
going to use pairs for feature illustration.

Finally, we note that the algorithm works by first finding
the candidate contact points, then extracting features based

2Here, each candidate contains contact points for all fingers. For example,
if the robot hand has three fingers then we have 3 contact points per
candidate.



on the contact points. Once all candidates are ranked, the
fingers can be placed approximately close to the contact
points.3 Hence, in practice, there is a small difference be-
tween finger placement locations and contact points (see
Figure 3). The main reason for this little discrepancy between
finger placement and contact point is that contact points can
be selected easily on the edge map.

Fig. 3. Edge map (white), contact points (green crosses), andfinger
placements (blue circles). This edge map is extracted from themug picture
in Figure 1. See text for more details.

IV. FEATURES

In our system, we consider features from intensity image
and depth map data. In this section, we will elucidate some
of the most important features that have significant influences
on grasping results.

A. Gradient angle features

The basic intuition for this feature is that when we grasp
at multiple points, there is a correlation between the vector
connecting the contact points and the gradient vectors at each
contact point. Figure 4 shows that, in case of two contact
points, to grasp objects well, the gradient vectors and the
connecting vectors should form a straight line.

An important note here is that the gradient at a pixel
location is usually noisy. Yet, the key insight is that the
histogram of the gradients at a patch around this pixel can
give interesting information. In this sense, our gradient angle
features resemble SIFT features [25] and HOG features [26].

Fig. 4. Illustration of gradient angle features computed forgrasping with
pairs. The features are computed as the angles between the current gradient
vector (blue line) and the vector connecting the current point with other
contact points (magenta line). This feature is highly discriminative because
it can tell apart between a good pair (left), a worse pair (middle) and a very
bad pair (right). In case of the good pair, the blue lines and the magenta
line are approximately in a straight line.

3In our experiments, finger placement locations are 1cm wider than the
contact points.

To compute the gradient vectors, we first extract a 10x10
patch around each contact point in both depth and visible
light images. Then we convolve each patch with an edge
kernel and construct a histogram of gradients for a particular
patch location using the idea in [26]. Using this histogram,
we can extract the strongest gradient vector (the mode of the
distribution). These steps are shown in Figure 5.

Given this mode gradient vector, we will use the angles
formed between it and the connecting vectors to express the
correlation mentioned earlier. These angles themselves are
the features we are interested in. More explicitly, denote by
g the mode gradient at the contact point andv a connecting
vector from another contact point to the current contact point,
the angleα is computed by

α = arccos
g⊤v

‖g‖‖v‖
(1)

Fig. 5. Gradient computed at a contact point. Top left: an object with a
contact point (red square). Top right: gradient angles at each pixel computed
by convolving a Sobel edge kernel with the patch. Bottom left: histogram
computed from the angles (−9o is the mode of this distribution). Bottom
right: the gradient (blue line) computed for the red square.

The main reason for the use of angles instead of a mere
vector dot product is that angle is more robust to changes
in lightning conditions: if the room is darker or brighter, the
magnitude of the gradient vectors changes, while the angle
does not.

In our system, we compute this feature for three types
of edge detection algorithms (Prewitt, Roberts and Sobel)
in both depth map and intensity image. For grasping with
two-contact-point candidates (also called pairs), this gives 6
features for each contact point.

These features are our attempt to robustly captureforce
stability for grasps by incorporating local information (gra-
dient at a contact point) and global information (vector con-



necting contact points). Note that these features are similar to
the concept of surface normals. Yet, unlike surface normals,
which can be unstable to compute near edges (computed by
SVD, cf. [27]), our features are generally stable and less
noisy.4 Second, note that if we design a system with one
contact point in mind, it is hard to discriminate between good
grasps and bad grasps. For instance, two results (Figure 4 left
and 4 right) have the same left point but they can turn out
to be very good or very bad depending on the choice of the
next contact point.

Gradient angle features are quite powerful and robust to
illumination, rotation and translation. They, however, have
several problems (see Figure 6). First, pairs that are on
shadows, textures on the object can be considered as good
pairs (Figure 6, left). This problem can be addressed by
taking into account collision (sphere feature, see SectionIV-
D). The second problem is that pairs that belong to different
objects may be misclassified as good pairs (Figure 6, right).
This can be solved by i) knowing the distance between the
two points (see Section IV-B) and ii) considering the depth
variation from one point to another (see Section IV-C).

Fig. 6. Some problems with the gradient feature. Left: shadowsand
textures, this can be solved by sphere feature. Right: pairsin two different
objects, this can be solved by distance and depth variation feature.

B. Distance features

In our system, we use distance between pairs to rule out
pairs that are physically impossible for the robot hand to
grasp (they are too far apart). Moreover, even in the case
that the pairs are close, the hand may prefer to grasp pairs
that are in some certain sizes. As an example, in the case
of Barrett hand, it prefers to grasp pairs with distance 5cm
than pairs with distance 10cm or 1cm, even though they may
be both physically feasible. So our distance feature can be
computed as follows

d = ‖dpair − doptimal‖ (2)

where dpair is the distance of the pair in depth image,
and doptimal is the optimal grasp size of the robot hand.
For dpair, we used X-distance, Y-distance, Z-distance (in
the robot’s frame) and Euclidean distance (i.e. we have 4
distance features).

Another type of distance features we used is the distance
from the base of the robot to the pair itself. Using this

4The features are unstable in the case that the distribution is multimodal
(patches are at corners). To solve this, we tried the idea of using top two
gradients but this idea only slightly improved the results. So, to simplify
the description we only use only one gradient.

knowledge, the learner can learn to prefer pairs that are closer
than pairs that are further away.

C. Depth and pixel intensity variation features

As illustrated earlier, using gradient angle features alone,
it is hard to know whether pairs belong to different objects
or not. To address this problem, we can use the changes in
depth as a feature. Figure 7 shows that if the pair belongs to
different objects, there are a lot of changes in depth than if
the pair belong to the same object.

To compute this feature, we use the depth of the pixels
belong to the connecting line of the two contact points to
compute summary statistics of the depth variation. Some rel-
evant statistics are i) the variance of depths, ii) the maximum
depth minus the minimum depth and iii) the number of times
the line crosses depth discontinuities.5

Fig. 7. Depth variation features: we can use the changes in the depth as
a feature. Top row: a bad pair and corresponding change in depth taken
from the connecting line (magenta). Bottom row: a better pairand the
corresponding change in depth. Notice that the depths change more in the
bad pair than in the good pair.

A similar idea can be applied to the pixel intensity of
visible light image (see Figure 8).

One may view these features as a simple way to approx-
imate segmentation. Segmentation, nevertheless, is avoided
in our approach because it can be a lot harder to perform in
a cluttered scene.

D. Sphere feature

This feature is a simple way to implement collision
detection in the early stage of predicting. The goal of this
feature is to differentiate pairs that are possible to graspand
pairs that are physically impossible to grasp. Pairs that are
impossible to grasp are ones that if the fingers move there,
there must be some collision.

Figure 9 shows a case when this feature is useful. This
feature can only be computed in the depthmap. For this
feature, we find the two spheres at the locations where the
fingers should be if the contact points are used. The radii of
the spheres are equal to the size of the fingertips. The features
are computed by counting the total number of points in the

5We do not need complete 3D models to do this, only the front face of
objects with surrounding environment is enough.



Fig. 8. Pixel intensity variation features: we can use the changes in the
pixel intensity as a feature. Top row: a bad pair and corresponding change
in pixel intensity taken from the connecting line (magenta).Bottom row:
a better pair and corresponding change in pixel intensity. Notice that the
pixel intensities change more in the bad pair than in the good pair. Note that
there are more points in the x-axis of this figure than the previous figure
because of missing depth readings.

point cloud inside the two spheres. The spheres that have zero
point inside will potentially have no collision. However, due
to noise in sensory data, there might be some points inside
the spheres despite being good pairs. So we can only use this
as a feature in a learning algorithm such that the algorithm
can figure out a good threshold.

For example, the learner will learn that the case in Figure
9 is not graspable because the total number of points inside
the two spheres is too high and there must be collision when
the fingers get there.

Fig. 9. Sphere feature: we can implement a simple form of collision
detection in the early stage of predicting. The sphere features are the number
of points inside the two spheres (in the depth map, but we visualize the
spheres only in 2D). In this case, the number of points inside the left sphere
is zero and the number of points inside the right sphere is overa hundred.
The green crosses are the contact points.

E. Other features

In our algorithm, we also consider other features such as
raw depth data, raw image pixel data. These features only
slightly improve the algorithm.

V. L EARNING WITH RANKING SUPPORTVECTOR

MACHINES

A. Why learning?

As can be seen from the previous section, all of our
features are powerful but not perfect. To combine information
provided by different features, one might consider to hard
code rules to weight different features. In practice, we find

that finding good hard-coded rules is usually difficult even
with a lot of tweaking. A better way is to use learning
algorithms to learn these grasping concepts from data.

B. Performance metric and learning method

In this section, we will discuss an accuracy metric and
a learning method that are probably more relevant to the
grasping task than previous work.

The proposed methods in [1], [2] employ a classifier to
learn to classify a grasp point to be “Good” or “Bad”, yet
at prediction time the classifier is used torank grasp points
and then pick top points to grasp. There are two issues with
this approach. First, if we would like to compare two sets
of grasping results, we cannot use classification accuracy
because the robot only considers top pairs to grasp. This
leads to the second issue: optimizing classification accuracy
is suboptimal because the learner has to make sure that all
pairs are classified correctly even though top pairs are what
matters.

We will take a full advantage of some recent developments
in learning to rank and information retrieval. In such fields,
a search engine has to rank search results and return top
documents. In this particular setting, classification accuracy
is not a meaningful measure and other ranking metrics are
used to compare and optimize rankers. It has been shown
that it is better to employ measures such as AUC (Area under
ROC), Precision@k [28], or NDCG (Normalized Discounted
Cumulative Gains) [29], [30], [31]. In this paper, we consider
a ranking method that optimizes NDCG (first described in
[31]). Here, we briefly survey the metric and the learning
algorithm. Interested readers should refer to [31] for a
detailed treatment.

Suppose we have a training set{xqi, gqi} where q =
1, . . . , n indexes the scenes in the training set.xqi is a vector
describing the features for thei-th pair corresponding to
sceneq. gqi is the numerical grade assigned to that pair
(Bad=0/Good=1/Very Good=2).

Now, assume that for each scene we havexq =
(xq1, . . . , xqmq

) which contains all features for grasping
pairs of sceneq. Also suppose that our ranker outputs ranking
yq (a permutation over{1, . . . ,mq}) whereyqi = r which
meansi-th pair has rankr.

The NDCG score for sceneq is defined as [29]

NDCGk(y, q) =
1

Nq

k∑

i=1

D(yi)Φ(gqi), (3)

where D is called the discount functionD(r) = 1
log(1+r) ,

Φ(g) = 2g − 1 andNq is a normalization constant such that
the optimal ranking based on the values ofgqi has score 1.k
is called a truncation level (in the case of search enginek =
10). Intuitively the NDCG is a ranking evaluation criterion
that puts strong emphasis at the topmost items, and between
these items, there is a small decaying factor.

As an example, suppose if we have 100 pairs on the scene
to grasp and if we misclassify top 5 pairs, we might just
end up with a classifier with95% classification accuracy;



whereas, if we use NDCG as the measure withk = 10,
i.e., we care only about top10 pairs, becauseΦ has an
exponential component, any misranking of the top pairs will
result in a bigger loss forNDCG10.

Because NDCG focuses on ranking for top pairs, it is
extensively used to measure and compare the performances
of rankers or search engines. Methods that optimize this
measure tend to perform well in practice.

The method in [31] optimizes the following objective

min
w,ξq

λ

2
w⊤w +

∑

q

ξq

s.t. ∀q,∀y 6= yq, w⊤Ψ(xq, yq) − w⊤Ψ(xq, y) ≥ ∆q(y) − ξq

where∆q(y) = 1−NDCGk(y, q), Ψ(xq, yq) is the features
we have just described, andw is the parameter vector that
we need to learn. This optimization objective is convex and
thus can be solved efficiently via cutting plane and Hungarian
Marriage algorithms (software is available in [32]). Note that,
at prediction time, the scores for all pairs are computed as
w⊤Ψ(xq, yq), then a sort operation is sufficient to obtain
ranking results.

To recapitulate, we will use NDCG as the ’offline’ perfor-
mance metric to compare different learners. In addition, we
will optimize NDCG measure because it usually gives better
ranking for the top pairs. We will show that optimizing such
measures substantially improves the outcome of grasping.

VI. M ULTIPLE CONTACT GRASPING

For the ease of presentation, we illustrate most main
concepts and features in the case of grasping with two contact
points. In practice, it is usually more stable to grasp objects
with more than two-finger. For example, for a Barrett hand,
grasping with three fingers are much more stable than with
two fingers.

The method described above can be applied to the case of
grasping with multiple contact points. For example, for the
gradient angle feature, instead of having one angle for two
contact points, we can have one angle for any pair of contact
point in the case of grasping with three contact points.
Likewise, for the distance feature, instead of having one
distance feature, we will have three distance features; each
corresponds to the distance between every pair of contact
points. As a result, we will have more features and rely on the
learning algorithm to learn the right combination of features
that give the most stable grasping.

In fact, all of the experiments in the next section are
performed with a robot with 3 fingers (i.e., three contact
points).

VII. D ESCRIPTIONS OF THE ROBOT

We performed our experiment on the STanford AI Robot
(STAIR2). This robot has a 7-DOF arm (WAM, Barrett
Technologies) and a three-fingered 4-DOF hand.

To capture depth data, the robot uses an active triangu-
lation sensor which contains a laser projector and a camera
[24]. The camera returns a 640x480 gray scale image. The
active triangulation sensor returns a very dense depth map

for most pixels in the image. This sensor, however, suffers
from problems such as occlusions and noisy readings at the
edges or shiny objects. Figure 2 shows data captured by the
camera and the active triangulation system.

The whole system (arm, camera, laser) is calibrated by
our recently proposed algorithm for joint calibration [33].
The average calibration errors of the entire system are often
less than 5mm.

VIII. E XPERIMENTS

We consider three sets of experiments. The first set of
experiments is performed offline on a hold out test set with
the purpose of verifying the performance metric and compar-
ing different methods. In the second set of experiments, we
compare our method and method in [2] when grasping novel
objects. In the third set of experiments, we demonstrate the
our method is effective for the task of cleaning up a table.

In our experiments, we consider graspingtriples only, this
means there are three contact points per candidate. The main
reason is that our robot hand (Barrett) has three fingers.

A. Offline test

Our dataset contains 8 scenes and 420 grasping candidates.
We split the dataset to 6 scenes with 336 candidates for
training and 2 scenes with 84 for a hold-out test set. The
training set is further split to training and validation setfor
model selection. All the data are collected with real objects:
simple wooden blocks and boxes (see Figure 10).

Fig. 10. Training object examples.

This test is entirely offline, i.e. without robot execution.
The goal is to determine the capability of the software
component. We also would like to compare the generalization
power of our method against previous approach. For this test,
we will use NDCG as the performance measure. All methods
are trained with linear models.

To make the two systems comparable, we label the grasp-
ing triples densely and any one-point result returned by
[2] will query a motion planner to find three corresponding
contact points. If the three contact points are close to any
three contact points given by the label, we consider that as
a successful triple.

In the first experiment, we would like to make sure that
optimizing NDCG in the training set can give good perfor-
mance in the test set. Table I shows that optimizing NDCG
indeed gives a big improvement in ranking performance
(5% increase in NDCG). Note that, although classification



accuracy gets worse when optimizing NDCG, this is not
a big problem because classification accuracy considers
suboptimal triples which are never used in the grasping. Also
note that NDCG of88.52 is considered to be very good
(informally, every time we issue a query,88% of the ranking
results are good).

In the second experiment, we would like to confirm that
grasping with multiple contact points improves grasping
results compared to [2]. The results of the experiment
(shown in Table II) show that it is indeed the case. This is
because grasping with multiple contact points can give more
discriminative features compared to grasping with one point
and that combining multiple stages in [2] removes errors.6

TABLE I

ADVANTAGES OF USING RANKINGSVMS: OPTIMIZING NDCG WILL

RESULT IN BETTER RANKING PERFORMANCE.

Measure Optimize classification Optimize NDCG
accuracy

Accuracy 93.67% 91.43%

NDCG10 83.27% 88.52%

TABLE II

PERFORMANCE OF OUR METHOD AND PREVIOUS METHOD[2].

Measure Previous method [2] Our method
Accuracy 76.21% 91.43%

NDCG10 72.04% 88.52%

B. Grasping novel objects with the STAIR2 robot

Fig. 11. Examples of objects we used in grasping-novel-objects experiment.
Note that for some objects, it is hard to separate the object from the
background.

In this test, we are interested in the task of grasping novel
objects, the objects that never appear in the training set. The
objects we consider in our experiment are slightly harder
than objects used in [2]. For each object, we extensively
performed 20 trials, and compared our method with method
in [2]. Each trial is considered as success if the hand can
grasp the object and move it to the bin. To speed up the
method in [2], we hard coded the table height for their
method such that the motion planner does not need to spend
time looking at random locations on the desk. However, for
our system, we did not hard-code the table height, which

6Note that, for method in [2] we optimized both NDCG and classification
accuracy and found out that optimizing NDCG gives better ranking NDCG
score for the test set. The results reported in Table II are obtained by
optimizing NDCG in the training set.

makes the problem harder for our algorithm. We reported
the average success rates in Table III.

As can be seen from the table, our method significantly
outperforms method in [2] for 8 out of 9 objects. The reason
for the improvement is that our approach gives more stable
grasps than [2] does.

TABLE III

PERFORMANCE OF OUR METHOD AND PREVIOUS METHOD[2] FOR THE

TASK OF GRASPING NOVEL OBJECTS.

Object Previous method [2] Our method

Football 50% 70%

Cup 70% 85%

Mug 80% 90%

CD Holder 75% 95%

Wooden robot arm link 70% 80%

Foam (deformable) 70% 85%

Nerf gun 50% 75%

Helmet 90% 75%

Mean/Std 69.37 ± 13.74% 81.87 ± 8.42%

Fig. 12. Performance of two methods in bar chart.

For some objects, we were unable to match the perfor-
mance reported in [2]. There are several possible reasons for
this mismatch. The first reason is that although the objects
have the same name, they look quite different and harder to
grasp than those in [2]. Furthermore, in our experiments, the
objects are placed in rather difficult locations and unless the
predictor makes a very good prediction, the grasp is going to
fail. Finally, unlike [2], we performed 20 trials per object, and
this makes the statistics more stable than their experiments.
For some objects, the performance of their method is higher
than reported in [2] because our sensor has higher resolution.

In the introduction, we already elucidated the main intu-
ition why grasps produced by [2] are unstable. This basic
intuition indeed translated to their failure cases in the ex-
periments. The main problem is that despite trying to learn
features for power grasps, some of the features do not work
well because the first stage gives bad pinch grasp predictions.
Their method thus has to depend on motion planning to make
the choice of finger placements. As explained earlier, this is
problematic because the motion planning does not consider
force stability.

Interestingly, the method in [2] outperforms our method
in the case of helmets. In general, our method works for



observable triples: the triples that can be captured by a
camera. Most of observable triples in the case of helmets are
either too far apart or unstable to grasp. The method in [2]
simply queries the motion planner and luckily most answers
given by the motion planner are good. In this direction, we
are considering a hybrid approach where both methods can
play a role in the prediction.

Except from the helmets, most of our failures are mostly
related to missing sensor readings due to occlusions (the
camera cannot see the laser beam). A smaller faction of
failures is due to the fact that sometimes the hand cannot
hold the object strongly even though the predictions are good.
There are also a few cases where the raw predictions are bad.

C. Cleaning up desks with the STAIR2 robot

Finally, we apply our method to clean desks that contain
a few objects. In this setting, we use the counts of suc-
cess/failure of the first attempt per object and use this as
the performance metric. Unlike [2] where only an object is
grasped from a cluttered scene, we would like to grasp all
objects in a table. The results reported will be the average
success rates for all objects.

We performed experiments with at tables with increasing
difficulties: number of objects (ranging from 2 to 8) and
different textures on tables. Figure 13 shows an example
scene. Again, we would like to compare our method with
the method in [2].

Fig. 13. An example scene which our STAIR2 robot tries to clean.

To make the comparison formal, we use similar desk set-
ups for the competitive methods. For each algorithm, we
performed 10 trials. And the rate of success of our algorithm
is around80% vs.70% for the method in [2]. These statistics
agree closely with the average performance reported in the
previous section.

We also conducted several experiments with our algorithm
only counting failures if the objects are moved out of the
robot’s vision. In this setting, our robot can autonomously
clean up tables with 5 to 10 objects completely. We note
that in our experiments, the objects are lying very close to
and sometimes touching each other (see attached video).

In the attached video, we show some example cases that
the robot cleans the table using our algorithm. More full
length video sequences will be uploaded in the STAIR
website http://stair.stanford.edu .

ACKNOWLEDGMENT

We thank John Duong Dang, Morgan Quigley, Josh Taylor,
Lawson Wong and STAIR teams for the help with the project
and the paper. Support from the Office of Naval Research
under MURI N000140710747 is gratefully acknowledged.

REFERENCES

[1] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping ofnovel
objects using vision,”IJRR, 2008.

[2] A. Saxena, L. Wong, and A. Y. Ng, “Learning grasp strategies with
partial shape information,” inAAAI, 2008.

[3] V. Nguyen, “Constructing stable force-closure grasps,” in ACM Fall
joint computer conference, 1986.

[4] ——, “Constructing stable grasps,”IJRR, 1989.
[5] J. Ponce, D. Sam, and B. Faverjon, “On computing two-finger force-

closure grasps of curved 2d objects,”IJRR, 1993.
[6] K. Lakshminarayana, “Mechanics of form closure,” inASME, 1978.
[7] J. Salisbury, “Active stiffness control of a manipulatorin cartesian

coordinates,” inIEEE Conference on Decision and Control, 1980.
[8] ——, “Kinematic and force analysis of articulated hands,”Ph.D.

dissertation, Stanford University, 1982.
[9] M. Cutkosky, “Machanical properties for the grasp of a robotic hand,”

CMU, Tech. Rep., 1984.
[10] H. Hanafusa and H. Asada, “Stable prehension by a robot hand with

elastic fingers,” inSeventh Inter. Symp. on Industrial Robots, 1977.
[11] R. Pelossof, A. Miller, and T. Jebera, “An SVM learning approach to

robotic grasping,” inICRA, 2004.
[12] K. Hsiao and T. Lozano-Perez, “Imitation learning of whole-body

grasps,” inIROS, 2006.
[13] K. Hsiao, L. Kaelbling, and T. Lozano-Perez, “GraspingPOMPDPs,”

in International Conference on Robotics and Automation, 2007.
[14] E. Chinellato, R. Fisher, A. Morales, and A. del Pobil, “Ranking planar

grasp configurations for a three-finger hand,” inICRA, 2003.
[15] J. Coelho, J. Piater, and R. Grupen, “Developing hapticand visual

perceptual categories for reaching and grasping with a humanoid
robot,” in Robotics and Autonomous Systems, 2001.

[16] D. Bowers and R. Lumia, “Manipulation of unmodelled objects using
intelligent grasping schemes,”IEEE Trans. on Fuzzy Systems, 2003.

[17] A. Morales, E. Chinellato, P. Sanz, and A. del Pobil, “Learning to
predict grasp reliability for a multifinger robot hand by using visual
features,” inInternational Conference AI Soft Computing, 2004.

[18] R. Platt, R. Grupen, and A. Fagg, “Improving grasp skillsusing shema
structured learning,” inICDL, 2006.

[19] R. Platt, A. H. Fagg, and R. Grupen, “Learning grasp context dis-
tinctions that generalize,” inIEEE-RAS International Conference on
Humanoid Robots, 2006.

[20] A. Edsinger and C. Kemp, “Manipulation in human environments,” in
IEEE/RAS International Conference on Humanoid Robotics, 2006.

[21] A. Saxena, “Monocular depth perception and robotic grasping of novel
objects,” Ph.D. dissertation, Stanford University, 2009.

[22] A. Saxena, J. Driemeyer, J. Kearns, and A. Ng, “Robotic grasping of
novel objects,” inNIPS, 2006.

[23] L. Wong, “Robotic grasping on the Stanford artificial intelligence
robot,” 2008.

[24] M. Quigley, S. Batra, S. Gould, E. Klingbeil, Q. Le, A. Wellman,
and A. Y. Ng, “High accuracy 3D sensing for mobile manipulators:
Improving object detection and door opening,” inICRA, 2009.

[25] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
in International Journal of Computer Vision, 2004.

[26] N. Dalai and B. Triggs, “Histograms of oriented gradients for human
detection,” inCVPR, 2005.

[27] A. Ng, A. Zheng, and M. Jordan, “Link analysis, eigenvectors, and
stability,” in IJCAI, 2001.

[28] T. Joachims, “A support vector method for multivariate performance
measures,” inIn Proc. Intl. Conf. Machine Learning, 2005.

[29] K. Jarvelin and J. Kekalainen, “Cumulated gain-based evaluation of ir
techniques,”ACM Transactions on Information Systems, 2002.

[30] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nonsmooth
cost functions,” inNIPS, 2007.

[31] O. Chapelle, Q. Le, and A. Smola, “Large margin optimization of
ranking measures,” inNIPS Worskop in learning to rank, 2007.

[32] C. Teo, S. Vishwanathan, A. Smola, and Q. Le, “Bundle methods for
regularized risk minimization,” inJMLR, 2010.

[33] Q. Le and A. Ng, “Joint calibration of multiple sensors,”in IROS,
2009.


