Learning to grasp objects with multiple contact points
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Abstract— We consider the problem of grasping novel objects  configurations, despite having no collision with objects; a
and its application to cleaning a desk. A recent successful not stable. For example, if the two fingers are placed at two
approach applies machine leaming to learn one grasp point |.ations specified by the blue circles, the motion planner

in an image and a point cloud. Although those methods are 7 .
able to generalize to novel objects, they yield suboptimal results does not detect collision, but the mug may slip out of the

because they rely on motion planner for finger placements. In fobot hand during grasping.
this paper, we extend their method to accommodate grasps with  |deally and hypothetically, their algorithm should return
multiple contacts. This approach works well for many human- 5 place near the centroid of the object as a candidate and

made objects because it models the way we grasp objects. To . . . : .
further improve the grasping, we also use a method that learns then, with high probability, the motion planner will place

the ranking between candidates. The experiments show that the fingers at the appropriate locations (see Figure 1,)right
our method is highly effective compared to a state-of-the-art However, in this case, the location at the red square israthe

competitor. indistinguishable in the depth and visible light imagesi an

| INTRODUCTION it is difficult to build a pattern recognizer to identify it.

We consider the problem of robots cleaning a desk by _ — —_— —
grasping. This task poses many challenges: the variation in .' '
shapes and orientations of objects, the lack of complete 3D
information, the occlusions between objects. ’:' ’

Recent approaches [1], [2] apply machine learning tech-
nigues to solve this problem. Their method generalizes well
for novel objects because they do not rely on brittle hard-
coded rules. The main shortcoming is that their system is
built on top of apinch grasp classifier [1] and relies on mo-
t".)n planner f(?l’ finger placements. The method [2] e.XtendSig. 1. Problems with the method in [2]. Left: best candidateirresd
pinch grasps in [1] to model power grasps. Although it Mgy their classifier (red square) and finger locations (blueles) that
to learn the position of the center of the end effector and th@ve no collision. These finger placements are not stable fasping.
direction of the wrist, motion planning plays an importantRightf ideal finger placements (blue circles) and corresp(gwk_iypothesized

. . candidate (red square). The red square, however, does mi@ticany useful
role for finger placements. Motion planners, unfortunatelyytomation and thus cannot be found by the method in [2].
only detect collisions and do not consider force stability.

In fact, when performing experiments with their methods, In this paper, we present a method that learns the contact
we notice that for many objects, pinch grasps [1] are ngjoints, i.e., the locations where the blue circles touch the
applicable. This is because human-made objects are désigmbjects. This method disambiguates the problem of fingertip
to be reliably grasped with multiple contacts (two or moreplacements and chooses the placements that are most stable.
using the thumb and other fingefsPower grasps [2] are Our method uses a motion planner only for planning a
better but sometimes objects slip off the robot hand. Thigajectory that has no collisions. It also allows grasping
is because many configurations, despite being collisies;fr objects at multiple contacts with pinch grasp as a special
are not stable for grasping. case. We will show that meaningful features can be extracted

We will illustrate the latter observation with a simplistic from these contact points. We also use supervised learning,
example (see Figure 1). Suppose we would like the robot tr more specifically Support Vector Machines, to learn
pick up a mug. The classifier by [2] will return the location atgrasping concepts that generalize well for novel objects.
the red square as a good candidate because depth and visdlg experiments show that despite its simplicity, this idea
light images have discontinuities at that location (Figuraignificantly improves grasping accuracy.

1, left). Their method will use this candidate and query a with multiple contacts, most degrees of freedom (finger
motion planner for a good grasp configuration. Some grasflosure size and orientation) are fixed. Motion planning is

Quoc V. Le, David Kamm, Arda F. Kara, Andrew Y. qsed simply to avpld colllspns and the number.of cqnﬁgura—
are with the Computer Science Department, Stanford Uniyersittions that the motion planning needs to search is quite small
quocl e@s. st anford. edu, dkanm@t anf or d. edu, This provides a big computation boost and starkly contrasts

ardakara@tanf ord. edu, ang@s.stanford.edu the approach in [2] where a motion planner is extensively
There are certainly cases that pinch grasps are prefeueld as grasping

a pen. However, our robot hand (Barrett) cannot grasp sugéctsbvery used to .SearCh over 4 parameters (pitch, roll, yaw, finger
well. closure size).




Il. PREVIOUSWORK

Early work in robot grasping assumed complete 2D or 3L
models of objects. Under such assumptions, many types
grasps can be modelled and computed, for example forg
closure [3], [4], [5], form-closure [6], equilibrium grasp
[7], [8], [9], stable grasps [10], compliant grasps [8]. Mor
recent approaches use machine learning to combine mg
information for better grasping using SVMs [11] or for bette
controlllng.usmg reinforcement Iearnlng [12.]’ [13]'. . Fig. 2. Image data and depth data captured by our robot. Lisfble light

The main drawback of those methods is that it is harghage data. Right: depth data (note: missing back face of thjec

to extend them to real-world data where capturing complete . o
3D models for objects is difficult. For example, given a stati  Gven the depth map and intensity image data, our system

scene, the back face of objects cannot be captured USiniFis two main steps: ranking candidates and planning mption.
stereo camera. This realization leads further developserifSing the data, the robot first generates all grasp candidate
in robotic grasping where methods have to consider moif@r the sce_né’.Our system then extracts relevant features fqr
realistic sensory data, for example, intensity imagesntpoieaCh candidate. Based on the features, the robot us_esez:ltram
clouds, haptic feedbacks. With such sensory data, resararchSYM model to compute a “score” for each candidate and
have to take into account sensory noises and partial shapE¥1k the scores to get top 10 candidates for grasping. Finall
Using local visual features, methods are proposed to firff€Se top 10 candidates will be fed to a motion planner to
planar grasps, i.e., looking for 2D locations where the robot€move any collision and inverse kinematics infeasibilliy
can place its fingertips [14], [15], [16], [17]. For non-9"asp multiple objects, the_ robot has to execute the above
planar grasps, a schema structured method is presented™§-Step procedure many times. _
deal with simple objects [18]. Also with schema structured The grasp candidates are generated from the edge images
learning, Platt et al. [19] proposes a method that assum@§ depth and visible light images. The edge images are
segmentation and fits ellipsoids to objects. Edsinger arffPmputed by the Canny edge detection algorithm. Using
Kemp [20] designed an algorithm to grasp cylindrical objectthe @stance petween the cpntact points, we can prune any
with power grasp using visual servoing. candidates with contact points that are too far apart. For

Our method resembles methods proposed by Saxena etigptance, if the hand can only grasp object_s of no larger than
[21], and more specifically [2]. The early work [22] only 10cm, we can prune away any three points that are more
considers intensity image data to leamn the features. Latffan 10cm apart. o
methods [2] include depth information and design a multi- 10 train the SVM model, we collected training data
stage processing which combines the method in [22] antfith human labels. During training time, for each grasp
motion planning. In detail, they use a single-point classty ~candidate, a human editor will choose to label as either "Bad
get a large number of candidates for grasping [23]. Then th&f “Goodor “Very Good". Here, “Bad" indicates that the
apply a second classifier which combines geometric featur&&ndidate is impossible to grasp; “Good” indicates that the

to rank grasp configurations. These configurations are fed ggndidate might be possible to grasp; “Very Good” indicates
a motion planner to determine the final grasp. that the candidate can be grasped very well. Sometimes, this

As mentioned earlier, there are two main issues witi"@y require the human editor to operate the robot in order
that approach. The first issue is accuracy and stability ¢f decide the labels. Given the labels, we used a ranking
grasps. As the method in [2] is divided into several stage§,VM algorithm Wh|ch optimizes ameasure that prefers better
the errors get bigger after each stage. We also notice tH&nKing for top candidates. Details regarding the featares
because their method is based on a single-point classifife training method are explained in the following sections
(one contact point) at the lowest level, the grasps are lysual The_system has several key n0\_/elt|es. First, instead of
not stable. The second issue is due to computation, or mdidelling power grasps around a point, our system leamns the
specifically, an extensive use of motion planning. This i§ontact points themselves. Second, many new and intuitive
because classifiers in early stages have a very low Area und8ptures are designed to improve grasping results. Finally

the ROC score, the motion planner has to handle the choP¥" system uses a ranking method to achieve better results
than a standard classifier.

of finding a good configuration for a large number of points: ) , )
Our method can work with two-contact-point candidates
[1l. A BRIEF SUMMARY OF OUR SYSTEM (for a two-fingered hand) or three-contact-point candislate
Our system makes use of both depth and visible lighfor a three-fingered hand). To simplify the language, we are
image data. To capture depth data, we used an active tgoing to use pairs for feature illustration.
angulation sensor [24] (see Figure 2). An important feature Finally, we note that the algorithm works by first finding
of this sensor is that it gives very detailed depth data (aldte candidate contact points, then extracting featuresdbas

called depth map or point cloud). However, the key ideas in, . . ) )
Here, each candidate contains contact points for all fingensexample,

this paper can be applied to depth data captured by Othf”ihe robot hand has three fingers then we have 3 contact pgat
types of sensors such as stereo cameras. candidate.




on the contact points. Once all candidates are ranked, theTo compute the gradient vectors, we first extract a 10x10
fingers can be placed approximately close to the contapatch around each contact point in both depth and visible
points® Hence, in practice, there is a small difference belight images. Then we convolve each patch with an edge
tween finger placement locations and contact points (s&ernel and construct a histogram of gradients for a pasdicul
Figure 3). The main reason for this little discrepancy betwe patch location using the idea in [26]. Using this histogram,
finger placement and contact point is that contact points cave can extract the strongest gradient vector (the mode of the
be selected easily on the edge map. distribution). These steps are shown in Figure 5.

Given this mode gradient vector, we will use the angles
formed between it and the connecting vectors to express the
correlation mentioned earlier. These angles themselves ar
the features we are interested in. More explicitly, dengte b
g the mode gradient at the contact point and connecting
vector from another contact point to the current contachoi
the anglea is computed by
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Fig. 3. Edge map (white), contact points (green crosses), famgbr
placements (blue circles). This edge map is extracted fronmibg picture
in Figure 1. See text for more details.

IV. FEATURES

In our system, we consider features from intensity imag
and depth map data. In this section, we will elucidate sorr
of the most important features that have significant inflesnc
on grasping results.

A. Gradient angle features

The basic intuition for this feature is that when we graS|20

at multiple points, there is a correlation between the wectc
connecting the contact points and the gradient vectorscéit ez1s ‘
_|IIII l|

contact point. Figure 4 shows that, in case of two contac
points, to grasp objects well, the gradient vectors and trm
connecting vectors should form a straight line.

An important note here is that the gradient at a pixe
location is usually noisy. Yet, the key insight is that the
histogram of the gradients at a patch around this pixel ce IIII IlI
give interesting information. In this sense, our gradiergla 9 N
features resemble SIFT features [25] and HOG features [2(71.DU -50 0 gl 10

Fig. 5. Gradient computed at a contact point. Top left: an abjeéth a
contact point (red square). Top right: gradient angles ah géxel computed

by convolving a Sobel edge kernel with the patch. Bottom lefftogram
computed from the angles-0° is the mode of this distribution). Bottom

right: the gradient (blue line) computed for the red square.

[*g]

The main reason for the use of angles instead of a mere
vector dot product is that angle is more robust to changes
in lightning conditions: if the room is darker or brightenet
magnitude of the gradient vectors changes, while the angle
does not.

Fig. 4. lllustration of gradient angle features computeddmsping with In our system, we compute this feature for three types

pairs. The fea_tures are computed as the a_ngles between me_t_oylradient of edge detection algorithms (Prewitt, Roberts and Sobel)
vector (blue line) and the vector connecting the currennpaiith other

contact points (magenta line). This feature is highly disamative because 1N both depth map an(_j intensity image. Fo_r grasping. with
it can tell apart between a good pair (left), a worse pair (ieipidnd a very  two-contact-point candidates (also called pairs), thi®gié
bad pair (right). In case of the good pair, the blue lines drhagenta fagtyres for each contact point.

line are approximately in a straight line.
PP Y 9 These features are our attempt to robustly capfaree

3In our experiments, finger placement locations are 1cm widen the St.ab'“ty for grasps b_y 'ncorporat'ng_local mf_ormatlon (gra'
contact points. dient at a contact point) and global information (vector-con




necting contact points). Note that these features areaingil knowledge, the learner can learn to prefer pairs that arseclo
the concept of surface normals. Yet, unlike surface normalthan pairs that are further away.

which can be unstable to compute near edges (computed hy Denth and pixel i . ation f
SVD, cf. [27]), our features are generally stable and less” epth and pixel intensity variation features

noisy? Second, note that if we design a system with one As illustrated earlier, using gradient angle features @jon
contact point in mind, it is hard to discriminate betweendjooit is hard to know whether pairs belong to different objects
grasps and bad grasps. For instance, two results (Figufe 4 |er not. To address this problem, we can use the changes in
and 4 right) have the same left point but they can turn oulepth as a feature. Figure 7 shows that if the pair belongs to
to be very good or very bad depending on the choice of tHéifferent objects, there are a lot of Changes in depth than if
next contact point. the pair belong to the same object.

Gradient angle features are quite powerful and robust to To compute this feature, we use the depth of the pixels
illumination, rotation and translation. They, howeveryéa belong to the connecting line of the two contact points to
several problems (see Figure 6). First, pairs that are diPmpute summary statistics of the depth variation. Some rel
shadows, textures on the object can be considered as gdd@nt statistics are i) the variance of depths, ii) the maxim
pairs (Figure 6’ |eft) This prob'em can be addressed Wepth minus the minimum depth and |||) the number of times
taking into account collision (sphere feature, see Sedion the line crosses depth discontinuites.

D). The second problem is that pairs that belong to different s
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objects may be misclassified as good pairs (Figure 6, right
This can be solved by i) knowing the distance between tt
two points (see Section 1V-B) and ii) considering the deptl
variation from one point to another (see Section IV-C).
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Fig. 6. Some problems with the gradient feature. Left: shadews Fig. 7. Depth variation features: we can use the changeseiiépth as
textures, this can be solved by sphere feature. Right: jmitso different & feature. Top row: a bad pair and corresponding change ithdejen

objects, this can be solved by distance and depth variaéiatufe. from the connecting line (magenta). Bottom row: a better aid the
corresponding change in depth. Notice that the depths eharaye in the

. bad pair than in the good pair.

B. Distance features

In our system, we use distance between pairs to rule outA similar idea can be applied to the pixel intensity of
pairs that are physically impossible for the robot hand teisible light image (see Figure 8).
grasp (they are too far apart). Moreover, even in the case One may view these features as a simple way to approx-
that the pairs are close, the hand may prefer to grasp pairaate segmentation. Segmentation, nevertheless, is eoid
that are in some certain sizes. As an example, in the cageour approach because it can be a lot harder to perform in
of Barrett hand, it prefers to grasp pairs with distance 5cm cluttered scene.
than pairs with distance 10cm or 1cm, even though they ma

be both physically feasible. So our distance feature can Sphere feature

computed as follows This feature is a simple way to implement collision
detection in the early stage of predicting. The goal of this
d = |[dpair — doptimatl| (2)  feature is to differentiate pairs that are possible to giasgp

pairs that are physically impossible to grasp. Pairs that ar

where d,.;» IS the distance of the pair in depth image, . . .
and dopeima: IS the optimal grasp size of the robot hand]mpossmle to grasp are ones that if the fingers move there,

For dp.r, We used X-distance, Y-distance, Z-distance (ir]ih?:r,e mus; bﬁ some coII|S|onH his f , ful. Thi
the robot's frame) and Euclidean distance (i.e. we have 4 Igure 9 Shows a case when ,t Is feature s useiul. 1S
distance features) feature can only be computed in the depthmap. For this
Another type of distance features we used is the distan gature, we find the two spheres at the locations where__the
from the base of the robot to the pair itself. Using thi ingers should be if the contact points are used. The radii of
' the spheres are equal to the size of the fingertips. The fatur
4The features are unstable in the case that the distribusionuitimodal ~ &reé computed by counting the total number of points in the

(patches are at corners). To solve this, we tried the ideasifgutop two
gradients but this idea only slightly improved the results, ® simplify 5We do not need complete 3D models to do this, only the front fdce o
the description we only use only one gradient. objects with surrounding environment is enough.



that finding good hard-coded rules is usually difficult even
with a lot of tweaking. A better way is to use learning
algorithms to learn these grasping concepts from data.

B. Performance metric and learning method

50 100 180 @00 In this section, we will discuss an accuracy metric and
a learning method that are probably more relevant to the
grasping task than previous work.

] The proposed methods in [1], [2] employ a classifier to
// learn to classify a grasp point to be “Good” or “Bad”, yet
\\Aw ] at prediction time the classifier is usedrank grasp points
5 5 FTS 5o and then pick top points to grasp. There are two issues with

this approach. First, if we would like to compare two sets

Fig. 8. Pixel intensity variation features: we can use thanges in the  of grasping results, we cannot use classification accuracy
pixel intensity as a feature. Top row: a bad pair and corredpm change '

in pixel intensity taken from the connecting line (magen@yttom row: ~ Pecause the robot only considers top pairs to grasp. This

a better pair and corresponding change in pixel intensigtidé that the leads to the second issue: optimizing classification acgura

pixel intensities change more in the bad pair than in the gaad Note that 5 g hoptimal because the learner has to make sure that all

there are more points in the x-axis of this figure than the previfigure . -~ .

because of missing depth readings. pairs are classified correctly even though top pairs are what
matters.

point cloud inside the two spheres. The spheres that hawe zer We will take a full advantage of some recent developments

point inside will potentially have no collision. Howeveri@l in learning to rank and information retrieval. In such fields

to noise in sensory data, there might be some points insidesearch engine has to rank search results and return top

the spheres despite being good pairs. So we can only use tHgcuments. In this particular setting, classification aacy

as a feature in a learning algorithm such that the algorithi$ not a meaningful measure and other ranking metrics are

can figure out a good threshold. used to compare and optimize rankers. It has been shown

For example, the learner will learn that the case in Figurthat it is better to employ measures such as AUC (Area under

9 is not graspable because the total number of points insifROC), Precision@k [28], or NDCG (Normalized Discounted

the two spheres is too high and there must be collision whégumulative Gains) [29], [30], [31]. In this paper, we coreid

the fingers get there. a ranking method that optimizes NDCG (first described in
[31]). Here, we briefly survey the metric and the learning
algorithm. Interested readers should refer to [31] for a

detailed treatment.
’ Suppose we have a training sét,;,g,} Whereq =

1,...,n indexes the scenes in the training sef. is a vector
describing the features for theth pair corresponding to
scenegq. gq; is the numerical grade assigned to that pair
(Bad=0/Good=1/Very Good=2).

Now, assume that for each scene we havg =

(Tq1,...,2qm,) Which contains all features for grasping
Fig. 9.  Sphere feature: we can implement a simple form of cotiisi pairs of sceng. Also suppose that our ranker outputs ranking
detection in the early stage of predicting. The sphere featare the number Yq (a permutation OVEI{l, o ,mq}) where Ygi = T which

of points inside the two spheres (in the depth map, but we lsughe _th ir h ke
spheres only in 2D). In this case, the number of points indiédéft sphere meansi-th pair has rank:.

is zero and the number of points inside the right sphere is avaundred. The NDCG score for scengis defined as [29]
The green crosses are the contact points. .
1
E. Other features NDCG(y,q) = i ZD(yiVI’(gqi% (3)
In our algorithm, we also consider other features such as 1 i=1

raw depth data, raw image pixel data. These features onfyhere D is called the discount functio(r) =

1
slightly improve the algorithm. log(1+r)’

®(g) =29 — 1 and N, is a normalization constant such that

the optimal ranking based on the valuegygf has score 1%

is called a truncation level (in the case of search engire

10). Intuitively the NDCG is a ranking evaluation criterion

that puts strong emphasis at the topmost items, and between
As can be seen from the previous section, all of outhese items, there is a small decaying factor.

features are powerful but not perfect. To combine infororati  As an example, suppose if we have 100 pairs on the scene

provided by different features, one might consider to hartb grasp and if we misclassify top 5 pairs, we might just

code rules to weight different features. In practice, we finénd up with a classifier with5% classification accuracy;

V. LEARNING WITH RANKING SUPPORTVECTOR
MACHINES

A. Why learning?



whereas, if we use NDCG as the measure with= 10, for most pixels in the image. This sensor, however, suffers
i.e., we care only about top0 pairs, becauseéb has an from problems such as occlusions and noisy readings at the
exponential component, any misranking of the top pairs wikdges or shiny objects. Figure 2 shows data captured by the
result in a bigger loss foV DCG1g. camera and the active triangulation system.

Because NDCG focuses on ranking for top pairs, it is The whole system (arm, camera, laser) is calibrated by
extensively used to measure and compare the performanaas recently proposed algorithm for joint calibration [33]
of rankers or search engines. Methods that optimize thihe average calibration errors of the entire system aranofte
measure tend to perform well in practice. less than 5mm.

The method in [31] optimizes the following objective VIIL. EXPERIMENTS

min éwTw + qu We consider three sets of experiments. The first set of
wa 2 q experiments is performed offline on a hold out test set with
S.t.Yq, Yy # g, wT\p(wq, Yq) — qu,(xq, y) > A, (y) — & Fhe purpose of verifying the performance metric aqd compar-

) ing different methods. In the second set of experiments, we
whereA,(y) = 1-NDCG(y, q), ¥(zq,y,) i the features compare our method and method in [2] when grasping novel
we have just described, and is the parameter vector that gpiacts. In the third set of experiments, we demonstrate the
we need to learn. This optimization objective is convex angd,;r method is effective for the task of cleaning up a table.
thus can be so!ved efficiently vi_a cutt_ing plgne and Hungaria |, our experiments, we consider graspinigles only, this
Marriage algorithms (software is available in [32]). Nd@t, means there are three contact points per candidate. The main

at prediction time, the scores for all pairs are computed gg,50n is that our robot hand (Barrett) has three fingers.
w'¥(z,,y,), then a sort operation is sufficient to obtain

ranking results. A. Offline test

To recapitulate, we will use NDCG as the "offline’ perfor-  Our dataset contains 8 scenes and 420 grasping candidates.
mance metric to compare different learners. In addition, weve split the dataset to 6 scenes with 336 candidates for
will optimize NDCG measure because it usually gives bettéfaining and 2 scenes with 84 for a hold-out test set. The
ranking for the top pairs. We will show that optimizing suchtraining set is further split to training and validation et
measures substantially improves the outcome of graspingmodel selection. All the data are collected with real olgject

V1. MULTIPLE CONTACT GRASPING simple wooden blocks and boxes (see Figure 10).

For the ease of presentation, we illustrate most main
concepts and features in the case of grasping with two cbntac
points. In practice, it is usually more stable to grasp disjec
with more than two-finger. For example, for a Barrett hand,
grasping with three fingers are much more stable than with
two fingers.

The method described above can be applied to the case of l |}
grasping with multiple contact points. For example, for the ‘ .
gradient angle feature, instead of having one angle for two LN,
contact points, we can have one angle for any pair of contact - . .
point in the case of grasping with three contact points.
Likewise, for the distance feature, instead of having one ) ) o ) )
distance feature, we will have three distance featuresh eac This test is entirely offline, i.e. without robot execution.
corresponds to the distance between every pair of contabf€ goal is to determine the capability of the software
points. As a result, we will have more features and rely on thgomponent. We also would like to compare the generalization
learning algorithm to learn the right combination of featsir POWer of our method against previous approach. For this test
that give the most stable grasping. we will use NDCG as the performance measure. All methods

In fact, all of the experiments in the next section aréie trained with linear models.

performed with a robot with 3 fingers (i.e., three contact 10 make the two systems comparable, we label the grasp-
points). ing triples densely and any one-point result returned by

[2] will query a motion planner to find three corresponding
VII. DESCRIPTIONS OF THE ROBOT contact points. If the three contact points are close to any
We performed our experiment on the STanford Al Robothree contact points given by the label, we consider that as
(STAIR2). This robot has a 7-DOF arm (WAM, Barretta successful triple.

Technologies) and a three-fingered 4-DOF hand. In the first experiment, we would like to make sure that
To capture depth data, the robot uses an active triangaptimizing NDCG in the training set can give good perfor-
lation sensor which contains a laser projector and a camem@ance in the test set. Table | shows that optimizing NDCG
[24]. The camera returns a 640x480 gray scale image. Tledeed gives a big improvement in ranking performance
active triangulation sensor returns a very dense depth m&% increase in NDCG). Note that, although classification

Fig. 10. Training object examples.



accuracy gets worse when optimizing NDCG, this is notakes the problem harder for our algorithm. We reported

a big problem because classification accuracy consideise average success rates in Table Ill.

suboptimal triples which are never used in the graspingoAls As can be seen from the table, our method significantly

note that NDCG 0f88.52 is considered to be very good outperforms method in [2] for 8 out of 9 objects. The reason

(informally, every time we issue a que88% of the ranking for the improvement is that our approach gives more stable

results are good). grasps than [2] does.
In the second experiment, we would like to confirm that

grasping with multiple contact points improves grasping

results compared to [2]. The results of the experimenFERFORMANCE OF OUR METHOD AND PREVIOUS METHOR2] FOR THE

(shown in Table I1) show that it is indeed the case. This is TASK OF GRASPING NOVEL OBJECTS

TABLE Il

because grasping with multiple contact points can give MOre Object [ Previous method [2]_Our method |
discriminative features compared to grasping with one poin [Football 50% 70%
and that combining multiple stages in [2] removes erfors. | Cup 70% 85%
Mug 30% 90%
. ooden robot arm lin 0% 80%
ADVANTAGES OF USING RANKINGSVMS: OPTIMIZING NDCG WiILL Foam (deformable) 0% 85%
RESULT IN BETTER RANKING PERFORMANCE Nerf gun 50% 75%
Helmet 90% 75%
Measure | Optimize classification| Optimize NDCG [ Mean/std [ 69.37 £ 13.74% | 8187 £ 8.42% |
accuracy - - - -
Accuracy 93.67% 91.43%
NDCGio 83.27% 88.52%
TABLE || ®

PERFORMANCE OF OUR METHOD AND PREVIOUS METHORP2].

3

Measure | Previous method [2]] Our method
Accuracy 76.21% 91.43% g
NDCG; o 72.04% 88.52%

B. Grasping novel objects with the STAIR2 robot

Fig. 12. Performance of two methods in bar chart.

For some objects, we were unable to match the perfor-
mance reported in [2]. There are several possible reasans fo
this mismatch. The first reason is that although the objects
have the same name, they look quite different and harder to
grasp than those in [2]. Furthermore, in our experiments, th
Fig. 11. Examples of objects we used in grasping-novel-ebjeperiment.  objects are placed in rather difficult locations and unléss t
Note that for some objects, it is hard to separate the objewn fthe predictor makes a very good prediction, the grasp is going to
background. fail. Finally, unlike [2], we performed 20 trials per objeeind

In this test, we are interested in the task of grasping novéhis makes the statistics more stable than their experignent
objects, the objects that never appear in the training $et. TFor some objects, the performance of their method is higher
objects we consider in our experiment are slightly hardethan reported in [2] because our sensor has higher resplutio
than objects used in [2]. For each object, we extensively In the introduction, we already elucidated the main intu-
performed 20 trials, and compared our method with methoiion why grasps produced by [2] are unstable. This basic
in [2]. Each trial is considered as success if the hand cantuition indeed translated to their failure cases in the ex
grasp the object and move it to the bin. To speed up thgeriments. The main problem is that despite trying to learn
method in [2], we hard coded the table height for theifeatures for power grasps, some of the features do not work
method such that the motion planner does not need to spewdll because the first stage gives bad pinch grasp predsction
time looking at random locations on the desk. However, foFheir method thus has to depend on motion planning to make
our system, we did not hard-code the table height, whicthe choice of finger placements. As explained earlier, this i

problematic because the motion planning does not consider
6Note that, for method in [2] we optimized both NDCG and clasatfan force stability.

accuracy and found out that optimizing NDCG gives better irmiNDCG . .
score for the test set. The results reported in Table Il armioéd by lnteres“ngly’ the method in [2] OUtperforms our method

optimizing NDCG in the training set. in the case of helmets. In general, our method works for




observable triples: the triples that can be captured by a ACKNOWLEDGMENT

camera. Most of observable triples in the case of helmets are\yg thank John Duong Dang, Morgan Quigley, Josh Taylor,
e.ither too fa_lr apart or l_mstable to grasp. The method in [3]awson Wong and STAIR teams for the help with the project
simply queries the motion planner and luckily most answergnq the paper. Support from the Office of Naval Research

given by the motion planner are good. In this direction, Wenger MURI N000140710747 is gratefully acknowledged.

are considering a hybrid approach where both methods can
play a role in the prediction.

Except from the helmets, most of our failures are mostly[1]
related to missing sensor readings due to occlusions (the
camera cannot see the laser beam). A smaller faction
failures is due to the fact that sometimes the hand canngg]
hold the object strongly even though the predictions arelgoo
There are also a few cases where the raw predictions are ba{é]

C. Cleaning up desks with the STAIR2 robot [6]

Finally, we apply our method to clean desks that contain”]
a few objects. In this setting, we use the counts of sucg
cess/failure of the first attempt per object and use this as
the performance metric. Unlike [2] where only an object is [°]
grasped from a cluttered scene, we would like to grasp qﬂo]
objects in a table. The results reported will be the average
success rates for all objects. (11]

We performed experiments with at tables with increasingtz]
difficulties: number of objects (ranging from 2 to 8) and
different textures on tables. Figure 13 shows an examplédl
scene. Again, we would like to compare our method with 4

the method in [2].
[15]

[16]

[17]

(18]

[19]

[20]

[21]
Fig. 13. An example scene which our STAIR2 robot tries to clean

[22]

To make the comparison formal, we use similar desk sef2—3]
ups for the competitive methods. For each algorithm, we
performed 10 trials. And the rate of success of our algorithri24]
is around’0% vs. 70% for the method in [2]. These statistics
agree closely with the average performance reported in thgs
previous section.

We also conducted several experiments with our algorithr[ﬁﬁl
only counting failures if the objects are moved out of thgz7
robot’s vision. In this setting, our robot can autonomously
clean up tables with 5 to 10 objects completely. We not&®
that in our experiments, the objects are lying very close tpg)
and sometimes touching each other (see attached video).

In the attached video, we show some example cases that
the robot cleans the table using our algorithm. More fuljzy
length video sequences will be uploaded in the STAIR
website http://stair.stanford.edu . (32]

(33]
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