A Probabilistic Approach to Mixed Open-loop and Closed-loop Cotrol,
with Application to Extreme Autonomous Driving

J. Zico Kolter, Christian Plagemann, David T. Jackson, Andvewg, Sebastian Thrun

Abstract— We consider the task of accurately controlling a is often remarkably deterministic over short periods ofetjm
complex system, such as autonomously sliding a car sideways given a fixed sequence of control inputs, even if it is very
into a parking spot. Although certain regions of this domain hard to model how the system would respond to different

are extremely hard to model (i.e., the dynamics of the car . ts: h b d this behavior i ¢ h
while skidding), we observe that in practice such systems are INputs; we have observe IS behavior In Systéms such as

often remarkably deterministic over short periods of time, the sideways-sliding car, quadruped robots, and helicepte
even in difficult-to-model regions. Motivated by this intuition, Intuitively, this observation motivates an alternatinghtcol

we develop a probabilistic method for combining closed-loop strategy, where we would want to actively control the system
control in the well-modeled regions and open-loop control \ging classical methods in well-modeled regimes, but eeecu
in the difficult-to-model regions. In particular, we show that . L . .

by combining 1) an inaccurate model of the system and 2) open-loop trajector|e§ in poorly modgled reglons,.prodlde

a demonstration of the desired behavior, our approach can We€ have seen a previous demonstration of the desired behav-
accurately and robustly control highly challenging systems, ior. Indeed, as we will discuss shortly, such strategieehav
without the need to explicitly model the dynamics in the previously been used to control a variety of systems, though
most complex regions and without the need to hand-tune the hage have mostly relied on hand-tuned switching rules to

switching control law. We apply our approach to the task of . .
autonomous sideways sliding into a parking spot, and show that determine when to execute the different types of control.

we can repeatedly and accurately control the system, placing In this paper, we make two contributions. First, we develop
the car within about 2 feet of the desired location; to the best a probabilistic approach to mixed open-loop and closed-
of our knowledge, this represents the state of the art in terms |oop control that achieves performance far superior to each
of accurately controlling a vehicle in such a maneuver. of these elements in isolation. In particular, we propose a
l. INTRODUCTION method for applying optimal control algorithms to a proba-
) . . bilistic combination of 1) a “simple” model of the systemtha
In this paper, we consider control strategies that employan pe highly inaccurate in some regions and 2) a dynamics
a mixture of closed-loopcontrol (actively controlling the mde| that describes the expected system evolution when
system based on state feedback) avmkn-loop control eyecuting a previously-observed trajectory. By usingarze
(executing a fixed sequence of control inputs without ankstimates of these different models, our method probébilis
feedback). To motivate such strategies, we focus on the tagkjly interpolates between open-loop and closed-looprobnt
of sliding a car sideways into a parking spot — that iSyys producing mixed controllers without any hand-tuning.
accelerating a car to 25 mph, then slamming on the brakesr second contribution is that we apply this algorithm ®@ th
while turning the steering wheel, skidding the car sidewaygsorementioned task of autonomously sliding a car sideways
into a narrow desired location; this is a highly challengingniq 4 parking spot, and show that we can repeatedly and
control task, and therefore an excellent testbed for legrni accurately control the car, without any need to model the
and control algorithms. One feature of this and many othgfynamics in the sliding regime. To the best of our knowledge,
control tasks is that the system operates in multiple distiny;s js the first autonomous demonstration of such behavior

regimes that can be either easy or hard to model: for insfancs, a car, representing the state of the art in accurate dontro
a “normal driving” regime, where the dynamics of the caty, g ch types of maneuvers.

are well understood and easily modeled, and a “sideways
sliding” regime, where the dynamics are extremely difficult
to model due to time-delay or non-Markovian effects.

Although it may appear that controlling the system in There is a great deal of work within both the machine
these hard-to-model regimes is nearly impossible, if wehaYeaming and control communities that is relevant to the
previously observed a trajectory demonstrating the desirgyork we have presented here. As mentioned, previously, the
behavior from the current or nearby state, then we coulghixed use of open-loop and closed-loop control is a common
gxecute this same behavior in ho_pes of ending up in a Slml|§frategy in robotics and control (e.g., [3], [10], [23])ptigh
final state. It may seem surprising that such a method h@gically these involve hand-tuning the regions of closed-
any chance of success, due to the stochasticity of the worl@op/open-loop control. The work of Hansen et al., [9] also
However, we repeatedly observe in practice that the worlgbnsiders a mixture of open-loop and closed-loop control,

)) though here the impetus for such control comes from a

All authors are with the Computer Science Department, Stenfor tt . ti tf difficulty of deli th
University, Stanford CA, 9430%kolter, plagem, dtj, ang, cost 1o sensing actions, not irom diificulty or moaeling the
thrun }@cs.stanford.edu system, and thus the algorithms are very different.

Il. BACKGROUND AND RELATED WORK

Our work also relates to work on multiple models forwhat we describe here, or includes only simulation results.
controls tasks [14]. However, with few exceptions the ternWe are also aware of another group at Stanford working
“multiple models” is typically synonymous with “local mod- independently on control at the limits of handling [8], but
els,” building or learning a collection of models that arethis work revolves more around physics-based techniques fo
each accurate in a different portion of the state space stabilizing the system in an unstable “sliding” equilibriy
for example,locally linear models [18], [5], [24] or non- rather than executing maneuvers with high accuracy.
parametric models such as Gaussian Processes [13]. While
our algorithm can be generally interpreted as an applisatio))) i
of a particular type of local models, the basic intuitionineh ~ We consider a discrete-time, continuous state, and con-
the way we combine models is different: as we will discusdinuous action environment, where the state at some time
we aren’t seeking to necessarily learn a better model, nériS denoted asg; € R™ and the control as;; € R™. The
is each model always tailored to a specific region along tHéynamics of the system are governed by some unknown (and
trajectory; rather the models we will use capture differen0isy) dynamics
elements — an inaccurate model of the whole system, and
a model of the trajectory that provides no information at))
all about state or control derivatives. Doya et al., [7] als§here f : R x R™ — R" gives the mean state ang is
propose a model-based reinforcement learning algorithfPM€ Zero-mean noise term. _ _
based on multiple models, but again these models are localThe control task we consider is that of following a desired
in nature. trajectory on the system{s ,,ud. ;7 +.1 More formally,

From the control literature, our work perhaps most closej¥& want to choose controls that will minimize the expected

resembles the work on multiple model adaptive control [15£0St
[19]. Like our work, this line of research takes motivation {Hl
t=

Ill. PRELIMINARIES

sey1 = f(se,ut) + €,

from the fact that different models can capture the system J =E (58tTQ5St + 5“335%) + 057 Q0sH
dynamics with different degrees of uncertainty, but again
like the previous work in machine learning, this research
has typically focused on learning or adapting multiple loca
models of the system to achieve better performance. where §s; = s, — st and du; = u; — u} denote the state

Our work also relates somewhat more loosely to a varieind control error, and wher® ¢ R"*" and R € R™*™

of other research in reinforcement learning. For instanceye symmetric positive semidefinite matrices that detezmin
the notion of “trajectories” or “trajectory libraries” h&een how the cost function trades off errors in different state
explored for reinforcement learning and robotics [20],][21 and control variables. Even when the desired trajectory
but this work has primarily focused on the trajectories as g “realizable” on the true system — for example, if it
means for speeding uplanningin a difficult task. Abbeel comes from an expert demonstration on the real system —
et al., [1] consider the problem of reinforcement learningninimizing this cost function can be highly non-trivial: u
using inaccurate models, but their approach still relies ofy the stochasticity of the world, the system will naturally
the inaccurate model having accurate derivatives, ancethdedeviate from the intended path, and we will need to execute

the pure LQRapproach we employ is very similar to their controls to steer the system back to its intended path.
algorithm provided we linearize around a trajectory frora th i i
real system. A. Linear Quadratic Regulator control

The notion of learningmotor primitiveshas received a ~ While there are many possible methods for minimizing
great deal of attention recently (e.g. [16]), though such réhe cost function (1), one method that is particularly well-
search is generally orthogonal to what we present here eThegulited to this task is the Linear Quadratic Regulator (LQR)
motor primitives typically involve feedback policies thate algorithm (sometimes also referred to as the Linear Quiedrat
not model-based, and we imagine that similar techniqueégacker when the task is specifically to follow some target
to what we propose here could also be applied to leafdjectory) — there have been many recent successes with
how to switch between model-based and motor-primitivekQR-based control methods in the both the machine learning
based control. Indeed to some extent our work touches émd control communities [6], [22]. Space constraints pree!
the issue of model-based versus model-free reinforcemedtfull review of the algorithm, but for a more detailed
learning [4] where our open-loop controllers are simply glescription of such methods see e.g. [2]. Briefly, the LQR
very extreme example of model-free control, but we coul@lgorithm assumes that the (error) dynamics of the system
imagine applying similar algorithms to more general modelevolve according to éinear model
free policies. _

Finally, there has been a great deal of past work on Ose1 = Adds + Brduy + w, @
autonomous car control, for example [11]. Some of this work Note that in this formulation the trajectory includes botatesand con-
has even dealt with slight forays into control at the limits otrols and could be produced, for instance, by a human experbustrating
handling [12], but all such published work that we are awart@th;gs ntrol task. In cases whete the controls (or the desemediate

) arenot specified, we could use a variety of planning algorithms to

of demonstrates significantly less extreme situations thaetermine controls and desired states, though this is angsttal issue.

1)

Ser1 = f(se,ue) + Et:|

where A, € R™™™ and B; € R™ "™ are system matrices, approximate models are probabilistic, in that for a given
andw;, is a zero-mean noise term. Under this assumption, gtate and control they return a Gaussian distribution over
is well-known that the optimal policy for minimizing the next states, with meayf; (s, u;) and covariance; (s:, us),
qguadratic cost (1) is dinear policy — i.e., the optimal i.e.,

control is given bydu; = K;ds; for some matrixK, € p(st+1|M;) = N(fi(se,ut), Zi(se, u)).

R™*™ that can be computed using dynamic programming. . . .
P g dy prog gThe covariance terms; (s, u;) are interpreted as maximum

To apply LOQR to our control task, we of course need tQ.,, . . : :
specify the actuall; and B; matrices. Ideally, these matrices?'ke“hOOd covariance estimates, i.e., for true next statq,

would be the state and a_lction derivatives (of_ the true model)s; (s;, uy) = E [(si41 — fi(se,) (se51 — filse,ur))”]
evaluated along the trajectory. However, since we do not) _

have access to the true model, we typically determine theS8 the covariance terms capture two sources of error: 1) the
matrices using arapproximatemodel. More formally, we true stochasticity of the world (assumed small), and 2) the

suppose we have some approximate model of the form inaccuracy of the model. Thus, even if the world is largely
K deterministic, model variance still provides a suitablearmse

St11 = f(sg,ug) for combining multiple probabilistic models.

2 . To combine multiple probabilistic models of this form,
vvhere, as beforef : R" x R™ — R" predicts the next state we interpret each prediction as an independent observation
given the currerjt state apd control, and we setand 5, of the true next state, and can then compute the posterior
to be the Jacobians of this model, evaluated along the target. iv tion over the next state given both models by a

trajectory standard manipulation of Gaussian probabilities,
Ay = Dy f(s,u) By = Dy f(s,u) : P(ser| M, My) = N (f (st ue), (s, ue))

—s* u—ur* —o* u—u*
S=S8¢,U=Uyg S=S7,u=uy

Despite the fact that we now are approximating the originavhere

control problem in_ Fwo ways — sincg we use an gpprpximate $ (21_1 i 22—1)71 andf =7 (21_1f1 n 22_1f2)

model f and additionally make a linear approximations to

this function — the algorithm can work very well in practice,and where the dependence Qrandu; is omitted to simplify
provided the approximate model captures the derivatives #fie notation in this last line. In other words, the posterior
the true system welwhere we are intentionally somewhatdistribution over next states is a weighted average of tlee tw
vague in what we mean by “well”). When the approximatiorpredictions, where each model is weighted by its inverse
model is not accurate in this sense (for example, if icovariance. This combination is analogous to the Kalman
misspecifies the sign of certain elements in the derivativdiiter measurement update.

at some point along the trajectory), then the LQR algorithm We could now directly apply LQR to this joint model by

can perform very poorly. simply computingf (s, u}) and its derivatives at each point
along the trajectory — i.e., we could run LQR exactly as de-
IV.'A PROBABILISTIC FRAMEWORK FOR MIXED scribed in the previous section using the dynamics (2) where
CLOSED-LOOP AND OPENLOOP CONTROL A; and B; are the Jacobians of, evaluated at; and u},

In this section, we present the main algorithmic conand wherew, ~ N (0, X(s}, u})). However, combining these
tribution of the paper, a probabilistic method for mixedmodels in this manner will lead to poor performance. This
closed-loop and open-loop control. We first present a géneri& due to the fact that we would be computity (s}, u;)
method, called Multi-model LQR, for combining multiple and X2 (s}, u;) only at the desired location, which can give
probabilistic dynamics models with LQR — the modela very inaccurate estimate of each model’s true covariance.
combination approach uses estimates of model varianceer example, consider a learned model that is trained only
and methods for combining Gaussian predictions, but son@ the desired trajectory; such a model would have very low
modifications are necessary to integrate fully with LQRvariance at the actual desired point on the trajectory, but
Then, we present a simple model for capturing the dynami¢guch higher variance when predicting nearby points. Thus,
of executing open-loop trajectories, and show that when wahat we really want to compute is treveragecovariance
combine this with an inaccurate model using Multi-modepf each model, in the region where we expect the system
LQR, the resulting algorithm naturally trades off betweerio be. We achieve this effect by maintainingdestribution
actively controlling the system in well-modeled regimasja D; over the expected state (errors) at timeGiven such a
executing trajectories in unmodelled portions where weehawistribution, we can approximate the average covariance
previously observed the desired behavior. 55(Ds) = Bsa, suimny [Si(sT + 651, 0l + dug)]

via sampling or other methods.

Suppose we are given two approximate models of a The last remaining element we need is a method for com-
dynamical systemM; and M, — the generalization to puting the state error distributiorI3;. Fortunately, given the
more models is straightforward and we consider two judinear model assumptions that we already employ for LOR,
for simplicity of presentation. We also suppose that thessomputing this distribution analytically is straightfcavd. In

A. LQR with multiple probabilistic models

Algorithm 1 only on the state and control error and which captures the

Multi-model LQR(Do.x, My, Ma, 85,515 Ug.py—15 Qs R) covariance of the model as a function of how far away
Input: we are from the desired trajectory. This model captures the
Do.p: initial state error distributions following intuition: if we are close to a previously obsedve
M, Ms: probabilistic dynamics models trajectory, then we expect the next error state to be similar

sh. s uh. 1+ desired trajectory with a variance that increases the more we deviate from the

previously observed states and actions.
To see how this model naturally leads to trading off
between actively controlling the system and largely folloyv

@, R: LQR cost matrices
Repeat until convergence:

1. Fort=0,...,H — 1, compute dynamics models known trajectory controls, we consider a situation where
¢ 3 (Dy) < Ess, sus~bD, [Zi(sF + dse,uf + duy)], we run the Multi-model LQR algorithm with an inaccurate
i=1,2 (computed via sampling) modef M; and this described trajectory modélf,. Con-

= -1 1 -1 sider a situation where our state distributién is tightly
¢ E_t %7(21 (lDt) + 2 (Dtl)) peaked around the desired state, but whiepredicts the
o f Xy (71 (De)f1 + 351 (Dy) f2) next state very poorly. In this case, the maximum likelihood
o A, — Dsf(s,u)] covariance:; (D;) will be large, becaus@/; predicts poorly,

. but 35 (D;) will be much smaller, since we are still close to
oBt<—Duf(5,u)| 2(Dy)

—a%* —_— %
s=s},u=uj

s=s{ u=uy the desired trajectory. Therefofewill be extremely close to
2. Run LQR to find optimal controllers; the trajectory model,, and so will lead to system matrices
o Ko.y—1 + LQR(Ao.y—1, Bo.rr—1,Q, R) A_t ~ pl gndBt ~0 (thg derivatives of the trajectory model).
Since this model predicts that no control can affect theestat

3. Fort=0,...,H — 1, update state distributions very much, LQR will choose controlsu, ~ 0 — i.e.,

o Tii1 < (A¢ + BiKi)Te(Ar + B:Ki)" +2(Di) execute controls very close tg, as this will minimize the

o Dy + {ds; ~ N(0,T), duy ~N(0, K, T K])} expected cost function. In contrast, if we are far away from

the desired trajectory, or if the modél; is very accurate,

then we would expect to largely follow this model, as it

would have lower variance than the naive trajectory model.

In practice, the system will smoothly interpolate between
se two extremes based on the variances of each model.

particular, we first assume that our initial state distridut
Dy is a zero-mean Gaussian with mean zero and covaria
T'g. Then, since our state dynamics evolve according to the
linear model (2), at each time step the covariance is updated Estimating Variances
b
Y _ Until now, we have assumed that the covariance terms
Tyt = (A + BK)Dy (A + BiKy)" + S(Dy). (s, u;) have been given, though in practice these will need

Of course, since we average the different models accordifg Pe estimated from data. Recall that the variances we want
to the X;(D;), changingD; will therefore also changet, IO learn are ML estimates of the form

andB;. Thus, we iteratively compute all these quantities until _ T
convergence. A formal description of the algorithm is given Bi(se, w) = E [(se41 = filse,) (5041 = filse, w))"]

in Algorithm 1. so we could use any number of estimation methods to learn
B. A dynamics model for open-loop trajectories these covariances, and our algorithm is intentionally atioo

Here we propose a simple probabilistic model that predicf%bou.t how these covarlances are obtained. Some model!ng
how the state will evolve when executing a previouslya gorithms, such as Gaussian Processes, naturally provide

observed sequence of control actions. While generally oﬁséjch. estimates, but for oj[her approaches_ we neeql to use
; . ._additional methods to estimate the covariances. Since we

would want to select from any number of possible trajectoneem loy different methods for estimating the variance in the

to execute, for the simplified algorithm in this section wet opse);s of experiments below. we defegr a description of the

consider only the question of executing the control aCtionr%,]Vethods to thgse sections beI’ow P

of the ideal trajectoryuy. ;. '

To allow our model to be as general as possible, we assume
a very simple probabilistic description of how the states
evolve when executing these fixed sequences of actions.in this section we present experimental results, first on a
In particular, we assume that the error dynamics evolveimple simulated cart-pole domain, and then on our main
according to application task for the algorithm, the task of autonomous
08141 = pdsy + wy sideways sliding into a parking spot.

V. EXPERIMENTS

wherep € R (typically ~ 1) indicates the stability of taking o o)

h traiect ti d wh is a zero-mean Gaus- For the purposes of this discussion it does not matter dw is
S.UC ra}jec ory ac.|0ns, an. wheug | z) US- gptained, and could be built, for example, from first prinefplor learned
sian noise term with covariance(ds;, du.), which depends from data, as we do for the car in Section V.

LQR, inaccurate Model

LQR, GP Model

| Hand-tuned switching controller

< a0F |
I Multi-model LQR

101 F/J T

Method Avg. Total Cost
LQR (true model) 18.03+ 1.61

LQR (inaccurate model) 96,191+ 21,327

LQR (GP model) 96,712+ 21,315

Open Loop 67,664+ 13,585
Multi-model LQR 33.51+ 4.38
T S T T N Hand-tuned Switching Control 73.91+ 13.74

Fig. 1. (top) Trajectory followed by the cart-pole under ngeop control Fig 2. Average total cost, with 95% confidence intervals, diferent
(middle) LQR control with an inaccurate model and (bottom) Muodbdel cart-pole control methods.
LQR with both the open loop trajectory and inaccurate model.

model and the trajectory. As can be seen, both pure open-

A. Cart-pole Task loop and LQR with the inaccurate model fail to control the
To easily convey the intuition of our algorithm, andsystem, but Multi-model LQR is able to reliably accomplish
also to provide a publicly available implementation, wehe control task. Figure 2 similarly shows the average total
evaluated our algorithm on a simple cart-pole task (whereosts achieved by each of the methods, averaged over 100

the pole is allowed to freely swing entirely around theuns. Although open loop and inaccurate LQR fail at différen
cart). The cart-pole is a well-studied dynamical systenpoints, they are never able to successfully swing and balanc
and in particular we consider the control task of balancinthe pole, while Multi-model LQR performs comparably to
an upright cart-pole system, swinging the pole around BQR using the actual model of the system dynamics by
complete revolution while moving the cart, and then balnaturally interpolating between the two methods in order
ancing upright once more. Although the intuition behindo best control the system. In the figure we also show
this example is simple, there are indeed quite a few inthe error of a hand-tuned switching policy that switches
plementation details, and due to space constraints we defstween purely model-based and open-loop control; despite
most of this discussion to the source code, available atxhaustive search to find the optimal switch points, the
http://ai.stanford.edu/"kolter/icral0 method still performs worse here than Multi-model LQR.

The basic idea of the cart-pole task for our setting is as In Figure 2, we also compare to a Gaussian Process
follows. First, we provide our algorithm with an inaccurate(GP) model (see, e.g. [17] for detailed information about
model of the dynamical system; the model uses a line&@aussian Processes) that attempted to learn a better dyggami
function of state features and control to predict the neatest model by treating the inaccurate model as the “prior” and
but the features are insufficient to fully predict the castep updating this model using state transitions from the ddsire
dynamics. As a result the model is fairly accurate in thérajectory. However, the resulting model performs no bette
upright cart-pole regions, but much less accurate durieg thhan LQR with the inaccurate model. We emphasize that
swing phase. In addition, we provide our algorithm with ave arenot suggesting that Gaussian processes cannot model
single desired trajectory (the target states and a sequeribes dynamical system — they can indeed do so quite easily
of controls that will realize this trajectory under a zemise given the proper training data. Rather, this shows that the
system). Because we are focused on evaluating the algorithttesired trajectory alone is not sufficient to improve a GP
without consideration for the method used to estimate th@odel, whereas the Multi-model LQR algorithm can perform
variances, for this domain we estimate the variances gxactivell using only these two inputs; this is an intuitive result
using the true simulation model and sampling. since observing only a single trajectory says very littlewth

Figure 1 shows the system performance using three diffethe state and contralerivativesalong the trajectory, which
ent methods: 1) fully “open loop” control, which just reptay are ultimately necessary for good fully LQR-based control.
the entire sequence of controls in the desired trajectgry, .lhdeed, we have been unable to develop any other controller
running LQR using only the inaccurate model, and 3) usinbased only on the inaccurate model and the desired trajector
the Multi-model LQR algorithm with both the inaccuratethat performs as well as Multi-model LQR.

Fig. 3. Snapshots of the car attempting to slide into the pgrkpot using (top) open-loop control, (middle) pure LQR oan@and (bottom) Multi-model
LQR control. The desired trajectory in all cases is to slidéétween the cones.

- Desired Trajectory - Desired Trajectory
- Open Loop - LQR, inaccurate model

Fig. 4. Plots of the desired and actual trajectories folldbwg the car under (left) open-loop control, (middle) pure L@#trol, and (bottom) Multi-model
LQR control. Bottom plots show a zoomed-in view of the finaldtien.

B. Extreme Autonomous Driving sideways sliding maneuver; the human driver was making no
Finally, in this section we present our chief applied resu@{t€Mpt to place the car accurately, but rather simply pgiti

of the paper, an application of the algorithm to the taskhe_ car into an e_xtreme slide and seeing where it Wou_nd up.
of extreme autonomous driving: accurately sliding a ca his demonstration was f[hen treatgd as the target trajector
sideways into a narrow parking space. Concurrent to thid the goal of the various algorithms was to accurately
work, we have spent a great deal of time developing an LQF§Q||OW the same trajectory, with cones placed on the ground

based controller for “normal” driving on the car, based orl® Mark the supposed location of nearby cars.
a non-linear model of the car learned entirely from data: For this domain, we learned domain parameters needed by

this controller is capable of robust, accurate forwardidgv the Multi-model LQR algorithm (in particular, the covarian

at speeds up to 70 mph, and in reverse at speeds upt%ms for the inaccurate and open-loop models, plus the

30 mph. However, despite significant effort we were unablé €M) from data. To reduce the complexity of learning
to successfully apply the fully LQR-based approach to th@e model variances, we estimated the covariance terms

task of autonomous sliding, which was one of the maifS follows: for the inaccurate model we estimated a time-
motivations for this current work. varying (but state and control independent) estimate of the

Briefly, our experimental process for the car sliding task@"ance by computing the error of the model's predictions

was as follows. We provided to the system two elementf0" €ach point along the trajectory, i.e.,

first we learned a driving model for “normal” driving, leadhe e = (sar — FilseuNSrar — Fi(se.uT

with linear regression and feature selection, built usingua 0= (e = Alsew)) (e = Ailse w))

2 minutes of driving data. In addition, we provided thethen averaged these (rank-one) matrices over a small time
algorithm a single example of a human driver executing window to compute the covariance for timeFor the open-

loop trajectory model, we learned a state and control deupported by an NSF Graduate Research Fellowship.

pendent (but not time dependent) estimate of the covariance
of the form Sa(se,uy) = (wi|duel|® + wal|ds¢||? + ws) I,

where we learned the parametess, wo, ws > 0 via least- [1]
squares; this model captures the intuition that the vaearic
the open-loop model increases for points that are fartioen fr [2]

the desired trajectory. Finally we selected= 1 due to the
fact that the system rarely demonstrates extremely urgstab
behavior, even during the slide.

Figure 3 shows snapshots of the car attempting to executiél
the maneuver under the three methods of control: open-loop,
pure LQR, and our Multi-model LQR approach integrating [s]
both the inaccurate model and the trajectory. Videos of the
different slides are included in the video accompanying thi
paper. It is easy to understand why each of the methods
perform as they did. Purely open-loop control actually does
perform a reasonable slide, but since it takes some distan
for the car to build up enough speed to slide, the trajectory
diverges significantly from the desired trajectory durihgst [8]
time, and the slide slams into the cones. Pure LQR control[,9
on the other hand, is able to accurately track the trajectory
during the backward driving phase, but is hopeless whei0]
the car begins sliding: in this regime, the LQR model iill
extremely poor, to the point that the car executes complete
different behavior while trying to “correct” small errors
during the slide. In contrast, the Multi-model LQR algonith [12]
is able to capture the best features of both approaches,
resulting in an algorithm that can accurately slide the oty i
the desired location. In particular, while the car operates (13
the “normal” driving regime, Multi-model LQR is able to use
its simple dynamics model to accurately control the carglon
the trajectory, even in the presence of slight stochaﬁticit[m]
or a poor initial state. However, when the car transitions
to the sliding regime, the algorithm realizes that the sampl{15]
dynamics model is no longer accurate, and since it is still
very close to the target trajectory, it largely executes thge
open-loop slides controls, thereby accurately followihg t
desired slide. Figure 4 shows another visualization of the-
car for the different methods. As this figure emphasizes, the
Multi-model LQR algorithm is both accurate and repeatabl&38]
on this task: in the trajectories shown in the figure, the fineHg]
car location is about two feet from its desired location.

g

VI. CONCLUSION [20]

In this paper we presented a control algorithm that prob-
abilistically combines multiple models in order to inteigra 21]
knowledge both from inaccurate models of the system and
from observed trajectories. The resulting controllersiradly
trade off between closed-loop and open-loop control in apo)
optimal manner, without the need to hand-tune a switching
controller. We applied the algorithm to the challengingktas
of autonomously sliding a car sideways into a parkin§23]
spot, and show that we can reliably achieve state-of-the-ar
performance in terms of accurately controlling such a vehic [24]
in this extreme maneuver.

ACKNOWLEDGMENTS

We thank the Stanford Racing Team, Volkswagen ERL,
and Boeing for support with the car. J. Zico Kolter is

REFERENCES

Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Usingatcurate
models in reinforcement learning. Froceedings of the International
Conference on Machine Learning006.

Brian D. O. Anderson and John B. Moor@ptimal Control: Linear
Quadratic Methods Prentice-Hall, 1989.

Christoper G. Atkeson and Stefan Schaal. Learning thsks a single
demonstration. InProceedings of the International Conference on
Robotics and Automatiori997.

Christopher G. Atkeson and Juan Carlos Santamaria. A cosgra
of direct and model-based reinforcement learningPtoceedings of
the International Conference on Robotics and Automati397.
Stefan Schaal Christopher G. Atkeson, Andrew W. Moorecdlly
weighted learning for control Artificial Intelligence Review11:75—
113, 1997.

] Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Learningcfantrol

from muliple demonstrations. IfProceedings of the International
Conference on Machine Learning008.

Kenji Doya, Kazuyuki Samejima, Ken ichi Katagiri, and Mits
Kawato. Multiple model-based reinforcement learningNeural
Computation pages 1347-1369, 2002.

Chris Gerdes. Personal communication.

] Eric Hansen, Andrew Barto, and Shlomo Zilberstein. Retioément

learning for mixed open-loop and closed-loop control. Neural
Information Processing Systent996.

Jessica K. Hodgins and Marc H. Raibert. Biped gymnastit®rna-
tional Journal of Robotics Research(2):115-128, 1990.

Gabriel M. Hoffmann, Claire J. Tomlin, Michael Montemerland
Sebastian Thrun. Autonomous automobile trajectory trackangff-
road driving: Controller design, experimental validatiodaacing. In
Proceedings of the 26th American Control Conferer@07.
Yung-Hsiang Judy Hsu and J. Christian Gerdes. Stattitn of a
steer-by-wire vehicle at the limits of handling using feeckdin-
earization. InProceedings of the 2005 ASME International Mechanical
Engineering Congress and Expositja2005.

] Jonathan Ko, Daniel J. Klein, Dieter Fox, and Dirk Hhn&aussian

processes and reinforcement learning for identification @drol of
an autonomous blimp. IRroceedings of the International Conference
on Robotics and Automatip2007.

Roderick Murray-Smith and Tor Arne JohanserMultiple Model
Approaches to Modelling and ControTaylor and Francis, 1997.
Kumpati S. Narendra and Jeyendran Balakrishnan. Adamntrol
using multiple models. IEEE Transactions on Automatic Contyol
pages 171-187, 1997.

Jan Peters and Stefan Schaal. Learning motor primativitis w
reinforcement learning. IProceedings of the 11th Joint Symposium
on Neural Computation2004.

Carl Edward Rasmussen and Christopher K. |. Willian@aussian
Processes for Machine Learninghe MIT Press, 2006.

Stefan Schaal. Nonparametric regression for learnimd?roceedings
of the Conference on Adaptive Behavior and Learniti@d4.

Kevin D. Schott and B. Wayne Bequette. Multiple model @tolee
control. In Multiple Model Approaches to Modelling and Control
1997.

Martin Stolle and Christopher G. Atkeson. Policiesdzhsn trajectory
libraries. InProceedings of the International Conference on Robotics
and Automation2006.

Martin Stolle, Hanns Tappeiner, Joel Chestnutt, andis@dpher G.
Atkeson. Transfer of policies based on trajectory libmrie In
Proceedings of the International Conference on Intelligeobots and
Systems2007.

Yuval Tassa, Tom Erez, and Wiliam Smart. Receding lariz
differential dynamic programming. INeural Information Processing
Systems 202007.

Claire Tomlin. Maneuver design using reachability altions, with
applications to STARMAC flight. Presentation at RSS Worksho
Autonomous Flying vehicles - Fundamentals and Applications.
Sethu Vijayakumar, Aaron D’'Souza, and Stefan Schaatreimental
online learning in high dimensionsNeural Computation17:2602—
2634, 2005.

