
Stereo Vision and Terrain Modeling for Quadruped Robots

J. Zico Kolter†, Youngjun Kim§, and Andrew Y. Ng†
†Computer Science Department,§Aeronautics and Astronomics Department

Stanford University, Stanford, CA 94305
{kolter,youngjun,ang}@cs.stanford.edu

Abstract— Legged robots offer the potential to navigate highly
challenging terrain, and there has recently been much progress
in this area. However, a great deal of this recent work has
operated under the assumption that either the robot has complete
knowledge of its environment or that its environment is suitably
regular so as to be navigated with only minimal perception, an
unrealistic assumption in many real-world domains. In this paper
we present an integrated perception and control system for a
quadruped robot that allows it to perceive and traverse previously
unseen, rugged terrain that includes large, irregular obstacles. A
key element of the system is a novel terrain modeling algorithm,
used for filling in the occluded models resulting from on-board
vision systems. We apply our approach to the LittleDog robot,
and show that it allows the robot to walk over challenging terrain
using only on-board perception.

I. I NTRODUCTION

Legged robots offer the potential to navigate challenging,ir-
regular terrain that is inaccessible to wheeled vehicles. Inspired
by this potential, in recent years there has been much progress
in the field of legged locomotion and quadruped robots in
particular. However, in many cases these works have assumed
that either 1) the robot has an apriori model of the terrain or
that 2) the terrain is simple enough to be overcome using very
minimal sensing and/or clever open-loop mechanisms.

Our main contribution in this paper is an integrated percep-
tion and control system for a quadruped robot that allows it
to perceive and walk over previously unseen, rugged terrain
that includes large, irregular obstacles; this is accomplished
using only on-board sensors on the robot. While there has
been a great deal of past work on vision techniques for legged
robots — we discuss these in much greater detail shortly
— our system represents a significant step forward in terms
of fully autonomous, real-time locomotion on challenging
terrains that require careful and deliberate planning of the
footsteps. We implement our approach on the “LittleDog”
robot, designed and built by Boston Dynamics, and shown in
Figure 1. Although there has been a great deal of recent work
on this robot for navigating rough terrain [1, 2, 3, 4], nearly all
this work has assumed a known model of the environment, and
near-perfect state estimation using a motion capture system.
Therefore, the methods we present here serve as a means of
extending this past work to the more realistic setting whereall
perception and localization must be achieved using on-board
sensors only.

Briefly, our system consists of three components, shown in
Figure 2. First, theperception component uses stereo vision
and a point-cloud matching algorithm known as Iterative

Fig. 1. The LittleDog robot, designed and built by Boston Dynamics, Inc.

Perception

Build a model of the terrain in front of

the robot using stereo vision.

Terrain Modeling

Fill in missing / occluded portions of

the terrain.

Planning / Control

Plan footsteps across nearby terrain and

move joints to achieve these steps.

Fig. 2. Overview of the perception and control architecturefor the quadruped.

Closest Point (ICP) to build and align a single coherent model
of the terrain as the robot walks over it, while simultaneously
localizing the robot in this model. This builds upon similar
past work [5, 6], but applying these techniques to the real-time
quadruped vision task is highly non-trivial, and we highlight
some of the challenges and solutions specific to our setting.
However, even in ideal settings, using this technique alone
is insufficient, because the camera cannot see the rear side of
obstacles, and hence will always produce an incomplete model
of the terrain. But in rocky, unstructured environments, we
cannot simply ignore these occlusions, as they may represent
pitfalls that the robot should avoid; indeed, all the planning
and control methods for the LittleDog referenced above require
complete knowledge of the terrain. Therefore, a key elementof
our approach is the second component of our system, aterrain

Fig. 3. (left) LittleDog robot equipped with a Tyzx DeepSea stereo camera.
(right) Closer view of the camera.

modeling algorithm that “fills-in” the missing portion of the
terrain with a reasonable guess of its structure. Specifically,
we propose a novel non-parametric algorithm, based on texture
synthesis methods, that allows us to sample from a distribution
over the missing terrains portions, subject to the geometric
constraints imposed by the camera. Finally, given this model
of the terrain theplanning and control component plans nearby
footsteps and executes joint commands so as to achieve these
footsteps. This piece of the system is virtually identical to that
described in [4] — indeed, we developed the perception and
terrain model-ling elements precisely so that these previous
techniques could work with minimal modification. However,
there are some cases where the perception system necessitated
changes in the planning and control, and we highlight these
situations below.

The rest of this paper is organized as follows. In Sections II,
III, and IV we describe the perception, terrain model-ling,and
planning and control components of our system respectively.
In Section V we present empirical results, demonstrating the
ability of the complete system to cross terrains of varying
difficulty; we also demonstrate the benefit of the terrain model-
ling algorithm. Finally, in Section VI we review relevant
related work, and conclude in Section VII.

II. PERCEPTION USINGSTEREOV ISION

As mentioned, the goal of the perception component is to
build a model of the terrain and localize the robot relative to
this model, using an on-board stereo camera. Figure 3 shows
the mechanical setup of the stereo camera attached to the
LittleDog robot. The system operates as follows: as the robot
walks across the terrain, the perception system periodically (in
our implementation, twice a second) takes a picture from the
stereo camera, and converts this into a mesh of the currently
visible portion of the terrain. The system then applies an
algorithm called Iterative Closest Point (ICP) in order to align
the most recently created mesh with the previous meshes.1 By

1The ICP algorithm [7, 8] is a method finding a full 6-DOF transformation
that will align two overlapping mesh models. Briefly, the ICP algorithm works
by first choosing a set of corresponding points on the two meshes, then
applying a 6-DOF transform to reduce some error metric, and iterating this
process until convergence. For our implementation we used thepoint-to-plane
error metric, given by

E =
X

i

((Rpi + T − qi) · ni)
2

repeating this process, we both build a single, coherent model
of the terrain and can estimate the position of the robot relative
to the terrain (since the camera is rigidly attached to the robot
body). Similar approaches have been previously considered
in the robotics literature [5, 6], though we are unaware of
any previous application of such techniques to quadrupeds in
particular. In the remainder of this section we briefly highlight
some specific challenges and solutions that came up in the
quadruped setting.

In order to assure real-time convergence of the ICP algo-
rithm, we found it was important to align subsequent meshes
using a coarse model of the terrain. That is, we uniformly
sample from the stereo image at a relatively low resolution and
use this sparse point cloud to form the meshes for alignment.
However, this coarse model cannot be used for the actual
planning and control system, as it has the effect of filling
in many the small gaps which can trap the robot if it steps
in them. For this reason, we found it critical to maintaintwo
separate mesh models of the terrain, one sampled at a low
resolution for use in the ICP alignment, and one sampled at
a higher resolution that is passed to the terrain modeling and
planning/control elements.

In order to prevent the ICP algorithm from getting trapped in
a local minima (a common problem for the ICP algorithm), we
need to provide it with a good initial guess of the position and
orientation of each new mesh. Fortunately, the control system
is able to provide a very reasonable initial guess simply by
using dead reckoning along the desired trajectory of the robot
(which we update whenever the ICP algorithm produces a new
estimate of the robot’s true state). Furthermore, we found that
this initial state estimate is much more reliable if the picture
of the terrain was taken at a point when the robot’s body was
relatively stable. Therefore, in our final version of the system,
the controller actually instructs the perception system about
when to take a picture. Without initializing the ICP matching
in this manner, we found that the resulting meshes would
frequently be inaccurate, and useless for localization.

III. N ON-PARAMETRIC TERRAIN MODELING

When we build a terrain model using this stereo system
described above, there will be many missing portions. This
is not simply an artifact of the stereo camera being unable
to find correspondences in its pair of images, but rather an
inevitable effect of occlusions in the camera’s line of sight:
since the camera is located on the robot, there will necessarily
be rear sides of objects that cannot be seen. Figure 4 shows an
example terrain as well as the height map formed when using
an on-board camera to scan the terrain (the pictures shown here
are gathered in simulation, and so represent the presence of
holes even with an “ideal” camera). In this section we present
a method for filling in the missing portions of the height map,
using a non-parametric terrain modeling algorithm.

The method we present here is inspired by texture syn-
thesis approaches from the computer graphics community, in

wherepi andqi are corresponding points,ni is the normal corresponding to
pi, R is a rotation matrix, andT is a translation.

Fig. 4. (top) 3D model of sample terrain.(middle) Corresponding height
map of the terrain, where the color intensity indicates height. (bottom) Height
map of the model acquired by an on-board camera when crossing theterrain
left to right (in simulation); red regions denote missing/occluded areas.

particular the method presented in [9], so we begin by briefly
describing this method. The algorithm maintains a “library” of
known images (in our case, this would correspond to known
height maps of terrain). To fill in a missing entries in an
image, the algorithm looks in this library to find a patch
that closely resembles the visible areas nearby the missing
value; it then uses the corresponding pixel from the patch to
fill in the missing value. This process is repeated pixel by
pixel, until the image is completed. Fundamentally, this can
be viewed as an non-parametric method for sampling from the
posterior distribution over the missing pixels. But the implicit
assumption of this approach is that the unobserved data is
missing at random (that is, it assumes that the probability of
a value being unobserved does not depend on its value or its
neighbors values).

However, in our setting, where the missing values stem from
occlusions in the camera’s line of sight, there is additional
information that we can leverage. Even when a region of
the height map is missing, this does not mean we have no

Fig. 5. Visualization of the line of sight constraints imposed by the geometry
of the terrain and camera. The middle figure shows a possible completion
that violates the line of sight constraint (and would be rejected by step 3 of
the algorithm), while the bottom figure shows a completion thatobeys the
constraint.

information about the height. Rather, we know that all oc-
cluded terrain must lie below the camera’s line of sight, which
connects the last visible region to the next visible region.An
illustration of this constraint is shown in Figure 5. What we
want, therefore, is to sample from the posterior distribution
over the missing regionsubject to the geometric constraints
imposed by the positions the camera and terrain. We therefore
adapt the non-parametric texture synthesis method discussed
above to directly handle such geometric constraints.

A formal description of our algorithm is given in Figure
6, though the basic intuition is quite simple. For each missing
x, y value in the height map, we consider a patch of sizew×w,
centered around that missing value; this is done in step 1 of
the algorithm. In step 2, we then drawn randomw×w patches
from our library, and compute 1) how much the library patch
violates the height constraints and 2) the difference (measured
as a weighted sum of squared errors on the visible portions)
between the library patch and the height map patch. We add
the bias termb here, so that the algorithm only looks at the
relative heights in the patch, not the global heights. Finally, in
step 3 we find the library patch obeying the height constraints
that is most similar to the height map patch, and use this to

Algorithm Fill-Terrain (w, n,W,H, H̄,L)
Parameters:

w ∈ N: window size (assumed to be odd)
n ∈ N: number of samples to draw from library
W ∈ R

w×w: weighting matrix
H ∈ R

p×r: height map with missing height values
H̄ ∈ R

p×r: map of maximum heights determined by
geometric line-of-sight constraints
L: library of fully known terrain heights

For x = 1, . . . , p, y = 1, . . . , r, if Hxy missing:
1. DefineA, Ā,B,G,∈ R

w×w, m ∈ R

Aij = Hx−w+1

2
+i,y−w+1

2
+j

Āij = H̄x−w+1

2
+i,y−w+1

2
+j

Bij =

{

1 Aij known
0 otherwise

m =
∑w

i,j=1
Bij

2. For k = 1, . . . , n,
- Draw a random patchC ∈ R

w×w from library.
- Compute bias term and middle height

b = 1

m

∑w

i,j=1
Bij(Aij − Cij)

hk = Cw+1

2
, w+1

2

+ b

- Compute weighted patch similarity toA
sk =

∑w

i,j=1
WijBij(Cij − Aij + b)2

- Compute patch constraint violation
vk =

∑w

i,j=1
max{Bij(Cij − Āij + b)2, 0}

3. Set height using best match,Hxy = hk⋆ , where

k⋆ =

{

arg mink∈K sk |K| > 0
arg mink vk otherwise

K = {k : vk = 0}
Return H.

Fig. 6. The Fill-Terrain algorithm for filling in missing portions of a height
map subject to geometric constraints

fill in the missing height. This process is repeated until allthe
heights are filled in.

Figure 7 shows the results of applying this algorithm to the
terrain shown in Figure 4, with the regions that were missing
in the original image outlined in blue. Notice that when we
do not include the geometry constraints, the occluded areas
are frequently modeled as flat continuation of the previous
terrain. This is due to the fact that in our sample library,
flat terrain is more common than sudden drop-offs, so the
missing portions are typically estimated to be flat. Of course,
this is an unrealistic estimate because if the terrain were flat
then we would not have the missing regions to begin with. In
contrast, notice that when we include the geometric constraints
the terrain drops off in the occluded regions, much like the
true terrain. Also notice that these drop-offs are typically
more drastic that the drop-offs in the geometric constraints
themselves. This is due to the fact that sudden drop-offs
are more common in our terrain library than gradual slopes.
By employing the non-parametric modeling algorithm, we
automatically generate terrain with features similar to that in

our training set. We stress the fact that the filled in terrain
is not contained in the terrain library, but rather the library
contains a set of terrains generated by the same random
process (described in Section V).

IV. PLANNING AND CONTROL

The aim of the planning and control component is to plan
a set of nearby footsteps and move the robot’s joint so as
to achieve these steps. As we mentioned in the Introduction,
this element of the system is virtually identical to the planning
and control system we have developed for the LittleDog robot,
assuming full knowledge of the terrain [4]. Therefore, we give
here only a very high-level description of the system.

From a high level, the planning system first creates acost
map, which indicates the desirability of different points on
the terrain. Following this, we use receding horizon search
to plan a set of nearby low-cost footsteps. Next, we plan
trajectories for the robot’s COG and feet in order to achieve
the footsteps while maintaining static stability of the robot.
Finally, we apply PD control using inverse kinematics to move
the joints so as to achieve the directories. As mentioned, a
much more thorough description is given in [4], but we want
to highlight two elements here that are particularly important
for understanding how perception integrates with the planning
and control.

First, we want to stress the intimate connection between the
model of the terrain and the quality of the resulting footstep
plans. The cost map for footstep planning is generated directly
from the height map, using local features — such as slope,
height differential, smoothness — that describe the terrain in
patches around each point. Therefore, the cost for a given
point on the terrain depends not only on the height at that
point, but also on the height of nearby points. Therefore, even
if we want to step only in locations seen observed by the
perception system, we still need the terrain modeling element
of our system, so that we can achieve an accurate estimate of
the cost at points that may just border on unobserved regions;
indeed, we demonstrate in the next section that using our
terrain modeling algorithm significantly improves our estimate
of the cost function, even on the observed portions of the
terrain.

Second, one significant and unavoidable change that our on-
board perception system necessitates is the fact that we canno
longer plan complete paths across the entire terrain. Whereas
our system in [4] plans a complete set of footsteps from a start
to a goal location before ever moving the robot, this is not
possible using on-board vision, because we cannot perceive
all the terrain until we actually start to move across cross it.
Therefore, one significant change in our planning approach for
this work is that we plan footsteps for the robot only for the
nearby terrain, and continually update this plan as we perceive
more and more.

V. EXPERIMENTS

In this section we present experimental results for our
system and algorithms. The chief result of this paper is

Fig. 7. (top left) Height map of the sample terrain.(top right) Known upper bound on the terrain height found via geometric constraint. (bottom left)
Reconstructed height map using our proposed algorithm.(bottom right) Reconstructed height map using texture synthesis without geometric constraints. In
all cases the blue outline shows the occluded area (see Figure 4) that the algorithms are filling in.

a successful application of these techniques to the task of
quadruped locomotion over challenging terrain, using only
on-board vision and sensing systems. A video of the robot
navigating over this terrain is included with the submission.

A. Evaluation of the Terrain Modeling

Due to the relatively limited amount of real terrain for
which we have a complete 3D scan, we perform the primary
quantitative evaluation of the terrain modeling algorithmusing
artificially generated terrain in order to run enough experi-
ments to determine statistical significance. Our experimental
setup was as follows: we generated ten 1m x 1m pieces of
terrain to for use in the terrain library and 10 more 1m x 1m
pieces for evaluation.2 In a simulated environment, we walked
the dog over these evaluation terrains and simulated a perfect
range sensor with the same intrinsic and extrinsic parameters
as the Tyzx stereo camera. From these ideal range readings we
generated a sequence of meshes modeling the terrain, which
represents the “ideal” model of the terrain achievable by a

2The terrain generation was accomplished as follows. We generated 200
random convex bodies by sampling points from a three dimensional mul-
tivariate Gaussian distribution (with random covariance matrix) and finding
the convex hull of these points. Using the Open Dynamics Engine (ODE)
simulation environment, we dropped these bodies into a 1 meter square area
and simulated the environment until the objects came to rest. Wethen sampled
the height of this terrain at a resolution of 1mm, convolved theheight map
with a random 20x20 matrix to add noise, and scaled the heightsto lie in a
reasonable range for the quadruped. The end result is terrain that looks very
similar to natural rock formations, which is the chief type of terrain that we
want to navigate with the LittleDog robot. The terrain depicted in Figures 4
and 7 is an example of a terrain generated in this manner.

range sensor with the the same geometry of the true camera.
We created height maps using these meshes, and then applied
our terrain modeling algorithm to this height map to fill in any
of the missing areas produced by the occlusion of the terrain.

We evaluated the system based on three metrics. By far
the most important of these was how well the system could
determine costs for visible portions of the terrain. Recallfrom
the previous section that planning footsteps well relies entirely
on building a good cost function, which in turn requires a good
estimate of the entire terrain, even if we never plan footsteps
directly in unobserved areas. Therefore, the most natural way
of evaluating the quality of the terrain model-ling algorithm
is to see how accurately it recreates the true costs — i.e.,
the cost map built using the complete model of the terrain.
In addition, we also evaluated how well the system predicted
costs and heights of theunseen portions of the terrain, though
these metrics are less important, because in typical situations
the we can avoid planning footsteps in these areas.

In addition to our algorithm for terrain modeling, we also
evaluated the performance of several other methods. First,
for computing the cost atvisible locations in the terrain,
we compared to a method that computes features by simply
ignoring the value of any missing heights (for example, one
of the terrain features happens to be the standard deviation
of heights within a local neighborhood of the point; if a
nearby point is unseen, we simply ignore its value for the
purposes of computing the standard deviation). Second, we
compare the method to what would occur if we treated the
geometric constraints on the heights as the heights themselves,

Algorithm
RMSE of Cost RMSE of Cost RMSE of Heights

at Visible Points at Occluded Points at Occluded Points
Our method 0.1005 0.2122 0.0201m

Ignore missing heights 0.1686 — —
Constraints as Heights 0.1231 0.2148 0.0202 m

Texture synthesis w/o geometric constraints 0.1407 0.2380 0.0264 m
Optimal constant value 0.2472 0.2261 0.0364 m

TABLE I

ROOT MEAN SQUARED ERROR BETWEEN THE TRUE HEIGHT OR COST AS MEASURED BY FULL HEIGHT MAP AND THE PREDICTION OF THE DIFFERENT

METHODS DESCRIBED IN THE MAIN TEXT. ALL RESULTS ARE AVERAGED OVER10 TESTING TERRAINS.

and used their values to compute the features. Finally, we
also compared to the texture synthesis methodwithout the
geometric constraints and to the best constant value for the
unknown costs and heights.

Table I shows the results of our algorithm and the others
evaluated on the criteria described above. In all cases we
compute costs or heights and then compare these to the true
costs and/or heights generated by the full height map and
computed the root mean squared error between our prediction
and the true value. On all the metrics, our proposed method
outperforms the other methods. On the most important metric,
the error between the estimated cost and the true cost at
visible points on the terrain, our algorithm outperforms the
next best method (using constraints as heights), with ap-value
of p = 9.2 × 10−5 using a pairwise t-test. Furthermore, in a
qualitative sense, as exemplified in Figure 7, the predictions
output by the our approach typically look much more natural
than any of the other methods.

B. Evaluation of the Complete System

In this section we present a successful application of the
methods presented here on the LittleDog quadruped robot. In
particular, we use the system presented here to successfully
navigate over two terrains of varying difficulty, without any
prior models of the terrain or use of the motion capture system.
This result is also shown in the video accompanying our
submission.

The two terrains used for evaluation are shown in Figure 8.
The first terrain is a milled model of several flat rocks stacked
together, with a maximum height differential up of about
6cm. The second terrain is a model of several less structured,
more jagged rocks, with a maximum height differential of
about 12cm; successful navigation over this terrain requires
extremely accurate placements of the feet. To the best of our
knowledge, crossing this harder terrain with the LittleDog
robot requires perception of some kind; despite numerous
efforts we have been unable to cross this terrain without careful
planning of the footsteps — without such planning the feet of
the robot are virtually guaranteed to slip into a crack, causing
the robot to fall. Indeed, through many discussions with other
researchers working on the LittleDog, we feel that this terrain
is difficult to cross evenwith perception. Therefore, crossing
this terrain using only on-board vision represents a significant
achievement for the LittleDog.

Figure 9 shows several snapshots of the robot autonomously

Fig. 8. Pictures and height maps of the two terrains on which wedemonstrate
the system.

crossing these two terrains using the system described in this
paper. Figure 10 shows the model of the terrain generated by
the system as well as the estimated path of the robot over the
terrain. The RMSE between the mesh generated by the stereo
vision and the scanned model of the terrain is only 1.809mm.
Discontinuities in the path correspond to locations where the
dead reckoning estimate is updated by the ICP position. As
can be seen, although the position estimate almost always need
to be corrected somewhat, the error is typically not excessive,
implying that the state estimate produced by dead reckoningin
between the ICP updates remains relatively accurate. Finally,
although the preceding section provides a more quantitative
evaluation of the terrain modeling algorithm, the benefit is
apparent on the real system as well. After numerous trials,
the system will invariably fail if we do not use the terrain
modeling component of the system.

VI. RELATED WORK

There has been a vast amount of previous work on legged
locomotion and quadruped locomotion in particular, so we
provide here only a brief overview. We have already discussed
much related work on the LittleDog robot [2, 1, 4]. There has
also been work by Chitta et. al in proprioceptive localization
for the LittleDog [10], where the robot must localize itself
using only internal sensors, but this differs from the our own
work in that they still assume a known model of the terrain.
Lastly, there has also been work on running the LittleDog in

Fig. 9. Snapshots of the robots crossing the two terrains used for evaluation.

Fig. 10. Model of the terrain and estimated position of the robot as it crosses
the harder of the two rock terrains.

unknown environments using on-board vision [11]. However,
this work is quite different from what we propose here, as it
focuses just on monocular vision, where the goal is to navigate
across fairly flat, regular terrain, with colored markings rather
than the rugged, highly irregular terrain we consider here.

Other research in quadruped locomotion has focused on us-
ing “central pattern generators” (or CPGs), which use networks
of biologically inspired neural controllers to achieve periodic
locomotion [12, 13, 14]. Some of these robots have been able
to walk outdoors in unstructured environments, but the size
of the irregularities is typically very small. In contrast,in
this work we are concerned with autonomous navigation over
highly challenging terrain, with steps equal to the size of the
robot’s clearance from the ground. There has also much work
on dynamic gaits for quadrupeds, both for large robots [15, 16]
and small [17, 18]. While such motion is typically much faster
than the static walking gait we consider in this work, it is also
much less stable, making a static gait more suitable for the
challenging terrain we consider. Finally, there are also many
“bio-inspired” robots such as RHex [19], RiSE [20] and many

others, which are capable of navigating extremely challenging
terrain, but do so through the use of clever mechanical design
rather than the precise external perception that we focus on
here.

Lastly, while much of the current research on legged lo-
comotion has largely ignored the issue of visual perception,
there a few notable exceptions in this area. One of the first
such robots was the Ambler robot [21], which used a laser
range-finder, a simple point-matching algorithm, and dead
reckoning to build a map of the surrounding terrain. The
Dante II robot [22] also made use of a laser range scanner
to map its surrounding terrain, and used this for planning or
for teleoperation if the robot determined that the terrain was
too challenging. However, our work differs substantially from
these projects in many areas: we focus on real-time creation
of terrain models using stereo vision as the robot walks, we
use a much smaller robot platform, and we explicitly deal with
the problem of occluded terrain from an on-board sensor.

Finally, there has been work in the graphics, vision, and
robotics communities on texture synthesis, back-face filling,
terrain modeling, and other related topics. As mentioned
previously, our method for modeling the terrain is based
on the texture synthesis algorithm in [9]. There has also
been recent work in robotics on terrain modeling [23] in
particular. Like our method, this work uses a non-parametric
model to represent the terrain, though they do so by using a
Gaussian Process, where the key challenge is representing both
the smooth and discontinuous properties of standard terrain.
However, they do not consider the line-of-sight constraints that
are central to our approach.

VII. C ONCLUSION

In this paper we presented an integrated perception and
control system for a quadruped robot, based upon on-board
stereo vision. One particularly important part of the system
is a terrain modeling algorithm, that fills in occluded areas
of the terrain. This algorithm is specifically intended for the
partially occluded models that arise due to the line-of-sight
constraints of on-board robot sensors, such stereo cameras
or laser scanners. We apply our method to the LittleDog
robot, and show that it enables the LittleDog to walk over

challenging, rugged terrain. This represents a significantstep
forward in terms of on-board vision for legged robots that
require careful planning of the footsteps.

REFERENCES

[1] D. Pongas, M. Mistry, and S. Schaal, “A robust quadruped walking gait
for traversing rough terrain,” inProceedings of the IEEE International
Conference on Robotics and Automation, 2007.

[2] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and J. E.
Pratt, “A controller for the littledog quadruped walking onrough terrain,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2007.

[3] M. Stolle, H. Tappenier, J. Chestnutt, and C. G. Atkeson,“Transfer of
policies based on trajectory libraries,” inProceedings of the International
Conference on Intelligent Robots and Systems, 2007.

[4] J. Z. Kolter, M. P. Rodger, and A. Y. Ng, “A complete controlarchi-
tecture for quadruped locomotion over irregular terrain,” in Proceedings
of the IEEE International Conference on Robotics and Automation (to
appear), 2008.

[5] J. Diebel, K. Reutersward, S. Thrun, J. Davis, and R. Gupta, “Si-
multaneous localization and mapping with active stereo vision,” in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2004.

[6] L.-F. Gao, Y.-X. Gai, and S. Fu, “Simultaneous localization and mapping
for autonomous mobile robots using binocular stereo vision system,” in
International Conference on Mechatronics and Automation, 2007.

[7] Y. Chen and G. Ḿedioni, “Object modeling by registration of multiple
range images,” inProceedings of the IEEE International Conference on
Robotics and Automation, 1991.

[8] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,”
in Proceedings of the Third International Conference on 3-D Digital
Imaging and Modeling, 2001.

[9] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proceedings of the IEEE International Conference on
Computer Vision, 1999.

[10] S. Chitta, P. Vernaza, and D. Lee, “Proprioceptive localization for
a quadrupedal robot on known terain,” inProceedings of the IEEE
International Conference on Robotics and Automation, 2007.

[11] M. N. Dille, “Free littledog!: Toward completely untethered operation
of the quadruped robot,” Carnegie Mellon, Tech. Rep. CMU-CS-07-148,
2007.

[12] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive dynamic walking
of a quadruped robot on irregular terrain based on biological concepts,”
The International Journal of Robotics Research, vol. 22, pp. 187–202,
2003.

[13] S. Peng, C. P. Lam, and G. R. Cole, “A biologically inspired four legged
walking robot,” inProceedings of the IEEE International Conference on
Robotics and Automation, 2003.

[14] H. Kimura, Y. Fukuoka, and A. H. Cohen, “Adaptive dynamic walking
of a quadruped robot on natural ground based on biological concepts,”
The International Journal of Robotics Research, vol. 26, no. 5, pp. 475–
490, 2007.

[15] M. H. Raibert,Legged Robots that Balance. MIT Press, 1986.
[16] J. G. Nichol, S. P. Singh, K. J. Waldron, L. R. P. III, and D. E.

Orin, “System design of a quadrupedal galloping machine,”International
Journal of Robotics Research, vol. 23, no. 10–11, pp. 1013–1027, 2004.

[17] B. Hengst, D. Ibbotson, S. B. Pham, and C. Sammut, “Omnidirectional
locomotion for quadruped robots,” inRoboCup 2001: Robot Soccer
World Cup V, 2002, pp. 368–373.

[18] N. Kohl and P. Stone, “Machine learning for fast quadrupedal locomo-
tion,” in Proceedings of AAAI, 2004, pp. 611–616.

[19] U. Saranli, M. Buehler, and D. Koditschek, “Rhex: A simple and highly
mobile hexapod robot,”Int. Journal of Robotics Research, vol. 20, pp.
616–631, 2001.

[20] A. Saunders, D. Goldman, R. Full, and M. Buehler, “The RiSE climbing
robot: Body and leg design,”Proc. SPIE Int. Soc. Opt. Eng., vol. 6230,
p. 623017, 2006.

[21] E. Krotkov and R. Simmons, “Perception, planning, and control for
autonomous walking with the ambler planetary rover,”Intl. Journal of
Robotics Research, vol. 15, no. 2, pp. 155–180, April 1996.

[22] J. Bares and D. Wettergreen, “Dante II: Technical description, re-
sults and lessons learned,”International Journal of Robotics Research,
vol. 18, no. 7, pp. 621–649, July 1999.

[23] T. Lang, C. Plagemann, and W. Burgard, “Adaptive non-stationary kernel
regression for terrain modeling,” inProceedings of Robotics: Science
and Systems, Atlanta, GA, USA, June 2007.

