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Abstract— We propose a system for improving grasping using
fingertip optical proximity sensors that allows us to perform
online grasp adjustments to an initial grasp point without
requiring premature object contact or regrasping strategies.
We present novel optical proximity sensors that fit inside
the fingertips of a Barrett Hand, and demonstrate their use
alongside a probabilistic model for robustly combining sensor
readings and a hierarchical reactive controller for improving
grasps online. This system can be used to complement existing
grasp planning algorithms, or be used in more interactive
settings where a human indicates the location of objects. Finally,
we perform a series of experiments using a Barrett hand
equipped with our sensors to grasp a variety of common objects
with mixed geometries and surface textures.

I. INTRODUCTION

Grasping is a basic and important problem in robotic
manipulation. For robots to reliably grasp novel objects,
they must be able to sense the object geometry sufficiently
accurately to choose a good grasp. In this paper, we develop
an optical proximity sensor, embedded in the fingers of the
robot (see Fig. 1), and show how it can be used to estimate
local object geometries and perform better reactive grasps.

Conventional grasp planning strategies rely heavily on
long range vision sensors (such as cameras, LIDAR, and IR
range finders) to detect and model objects, and to determine
grasp configurations (e.g., [11], [15], [17]). While this has
led to a number of successful robot systems, errors and
uncertainty ranging from small deviations in the object’s
location to occluded surfaces have significantly limited the
reliability of these open-loop grasping strategies. Indeed,
in [15], we found that approximately 65% of the grasp
failures were because we used only long range sensors and
lacked a reactive controller with sufficient local surface pose
information.

Tactile sensing has been employed as a means to augment
the initial grasp and manipulation strategies by addressing
inconsistencies in the contact forces during object contact
and manipulation [20]. However, tactile sensors have to ac-
tually touch the object in order to provide useful information.
Because current sensor technologies are not sensitive enough
to detect finger contacts before causing significant object
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Fig. 1: Three-fingered Barrett Hand with our optical proximity
sensors mounted on the finger tips.

motion, their use is limited to either minor adjustments of
contact forces at pre-computed grasp configurations, or to
planning algorithms that require iterative re-grasping of the
object in order to grasp successfully [8], [19], [3]. While
the latter approach has shown substantial improvements in
grasp reliability, it requires a significant amount of time and
frequently causes lighter objects to be knocked over during
the repeated grasp attempts.

The limitations of tactile-sensing-augmented grasp plan-
ning can be overcome by ’pre-touch’ sensing. This modality
has recently become a popular means of bridging the gap
in performance between long range vision and tactile sen-
sors. In pre-touch sensing, gripper-mounted, short-range (0-
4cm) proximity sensors are used to estimate the absolute
distance and orientation (collectively called surface pose)
of a desired contact location without requiring the robot
to touch the object [18]. The vast majority of these pre-
touch proximity sensors use optical methods because of
their high precision [1], [7], [21], [9], [10]. Optical sensors,
however, are highly sensitive to surface reflection properties.
Alternatively, capacitive-based proximity sensors have also
been used [22]. While invariant to surface properties, these
capacitive-based sensors have difficulty detecting materials
with low dielectric contrast, such as fabrics and thin plastics.
Unfortunately, in both cases, present sensor calibration and
modeling techniques have yet to produce pose estimates
that are robust enough to be useful across the range of
surface textures, materials, and geometries encountered in
unstructured environments. Furthermore, the finger tips of
typical robotic grippers are too small to accommodate the
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Fig. 2: Normalized Voltage Output vs. Distance for a TCND5000
emitter-detector pair.

sensors used in previous work.

This paper presents an integrated approach that combines
sensor design, probabilistic data modeling, and a reactive
controller into a system that allows for on-line grasp adjust-
ments to an initial grasp configuration without the need for
premature object contact or re-grasping strategies. Specif-
ically, a design for a low cost, pose-estimating proximity
sensor is presented that meets the small form factor con-
straints of a typical robotic gripper.

The data from these sensors is interpreted using empiri-
cally derived models and a robust, belief-state-based surface
pose estimation algorithm. The resulting pose estimates are
provided to a reactive grasp closure controller that regulates
contact distances even in the absence of reliable surface
estimates. This allows the robot to move the finger tip
sensors safely into configurations where sensor data for the
belief-state update can be gathered. Simultaneously, the pose
estimates of the sensor interpretation approach can provide
the necessary information to adjust the grasp configuration
to match the orientation of the object surface, increasing the
likelihood of a stable grasp.

We perform a series of grasping experiments to validate
the system using a dexterous robot consisting of a 7-DOF
Barrett arm and multi-fingered hand. In these tests, we
assume that an approximate location of the object to be
grasped has already been determined either from long range
vision sensors [14], or through human interaction [5]. From
the initial grasp positions, the system exhibits improved
grasping on a variety of household objects with varying
materials, surface properties, and geometries.

II. OPTICAL SENSOR HARDWARE

The purpose of the optical sensor hardware is to provide
data that can be used by the modeling algorithm to construct
pose estimates of nearby surfaces. The design is driven by
a series of constraints, including size, sensor response, and
field of view, which are detailed in the following section.

A basic optical sensor consists of an emitter, photo-
receiver, and signal processing circuitry. The light from the
emitter is reflected by nearby surfaces and received by the
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Fig. 3: Possible fingertip sensor configurations.

photo-receiver. The amplitude and phase of the light vary as
a function of the distance to the surface, its orientation, and
other properties of the surface material (reflectance, texture,
etc.) [1]. In amplitude-modulated proximity sensor design,
the most commonly preferred method, these variations in
amplitude can be converted into pose estimates by measuring
the response from constellations of at least three receivers
focused at the same point on the target surface [1], [12],
[21].

Although conceptually simple, modeling the pose of un-
known surfaces is difficult because of the non-monotonic
behavior of the proximity sensor receivers. The response of
a single sensor is a function of the distance to the target
surface and the baseline between the emitter and receiver, as
shown in Fig. 2. While the response in the far-field varies
as the inverse square of the distance [6], the response of the
sensor in the near field is far more complex. The decrease
in received light energy in the near field is governed not
only by the reflective properties of the surface, but also
by the geometric baseline between the emitter and receiver.
As distance approaches zero in the near field, the amount
of energy that can be reflected between the emitter and
receiver decreases because the overlap between the emitter
and receiver cones decreases. This results in a sharp drop-
off of received light intensity. To avoid complications in
modeling the sensor data, most approaches, including ours,
offset the sensors from the surface of the gripper to maximize
the far field sensor response. Although this sacrifices the
higher sensitivity of the near field, the longer range of the
far field is better suited to grasping applications [1].

The selection of specific sensor hardware and signal
processing electronics is severely constrained by the limited
space in typical robotic fingers (for instance, our Barrett
fingers have a lem x 2cm x lem cavity volume). Bonen and
Walker used optical fibers to achieve the desired geometric
arrangement of emitters and receivers in their respective
sensors. However, the bend radius and large terminations of
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Fig. 4: Front view of sensor constellation. Hatches show the
crosstalk between adjacent sensor pairs.

the fibers violate the space constraints in this application.
Instead, our design uses four low-cost, off-the-shelf infrared
emitter/receiver pairs (Vishay TCND50000) on each finger.
The small size (6 x 3.7 x 3.7 mm) meets the volume
requirements of the design and the range (2-40mm) is ideal
for pre-touch sensing.

The arrangement of these sensors represents yet another
design tradeoff between field of view and pose estimation
accuracy. Large fields of view, both out from and in front
of the face of the fingertip, as shown in Fig. 3a, are
advantageous for detecting oncoming objects. Unfortunately,
the sensor spacing needed to achieve this reduces the overlap
between adjacent sensor pairs and lowers the signal to noise
ratio. Conversely, arranging the sensors to focus the emitters
and maximize crosstalk, as shown in Fig. 3b, improves local
pose estimation accuracy at the expense of broader range
data to nearby objects. The final configuration, shown in
Fig. 3c, consists of three sensors arranged in a triangle on
the face of the finger to estimate pose with a fourth sensor
at a 45° angle to the finger tip to increase the field of view.
Although surface area exists for placing additional sensors,
the quantity is limited to four by the available space in the
Barrett finger cavity for pre-amplifier circuitry. The sensors
are inset into the finger to minimize near-field effects, and
the aluminum housing is matte anodized to decrease internal
specular reflection. The crosstalk between adjacent sensors
is illustrated by the hatched area in Fig. 4.!

'While the crosstalk between sensors 1-3 can be useful when the
primary sensor values saturate, which occurs on many light-colored surfaces,
experimental testing showed the crosstalk to be below the noise floor on
many of the object surfaces we encountered. Since this work assumes that
the nature of the surface is unknown a priori, our current work ignores the
crosstalk and only uses the primary sensor values.

The complete proximity sensing suite consists of twelve
total emitter-detector pairs, four on each finger. The emitters
are pulsed in sequence by a PIC 18F4550 micro-controller
located on the wrist of the robot (as shown in Fig. 1) so
that 16 readings are generated for each finger on each cycle.
The collected sensor data is pre-amplified by circuitry in
the finger tip and then sampled by a 10-bit A/D converter
before streaming the data back to the robot over a serial link.
In spite of the 950nm operating frequency, raw sensor read-
ings remain sensitive to ambient light effects. Background
subtraction was used to remove this ambient component and
increase the signal to noise ratio.

III. SENSOR MODEL

Given a series of observations from the sensors on each
finger, our goal is to estimate the surface pose (distance and
orientation) of the surface in front of the finger.

More formally, let 0 = (01, 02,03) € R? be the readings
from the three sensors grouped in a triangle,” and s =
(d, Trot, 2rot) be the surface pose of the local surface (ap-
proximated as a plane). Here, d is the straight-line distance
from the center of the three sensors to the surface of the
object (along the vector pointing outwards from the finger
surface) sensors. x,.+ and z,..; are the relative orientations
of the surface around the finger’s x-axis (pitch) and z-axis
(roll) respectively, as shown in Fig. 4. (They are equal to 90°
when the object surface is parallel to the finger surface.)

One of the major challenges in the use of optical sensors is
that intrinsic surface properties (such as reflectivity, diffusiv-
ity, etc.) cause the relationship between the raw sensor signal
and the surface pose to vary significantly across different
surface types. For that reason, prior work using short-range
proximity sensors to find surface pose has focused on using
multiple direct models obtained by performing regression on
empirical data. This data is gathered by recording sensor
array readings for each relevant surface in turn, placed at a
comprehensive set of known surface poses [1]. In particular,
[171, [7], [21] both use a least-squares polynomial fit of data
taken for a known surface or group of similar surfaces
to directly estimate surface pose given sensor readings.
However, acquiring enough data to successfully model a
new surface is extremely time-consuming, and having to
do so for every potential surface that might be encountered
is prohibitive. In practical grasping scenarios, we need to
be able to deal with unknown and never-before-encountered
surfaces.

A. Calibration Data and Reference Forward Model

As opposed to fully characterizing every surface with a
separate model, we use a single reference model that is scaled
with an estimate of the object’s IR reflectivity parameter in

2Sensor 4, which is offset by 45° to increase the field of view, is
not included in this sensor model because it rarely focuses on the same
flat surface as the other three. As a stand-alone sensor, it is nevertheless
independently useful, particularly when the peak expected value (object
surface reflectivity) is known. For instance, it can be used to prevent
unexpected collisions with objects while moving, or even to move to a
fixed distance from a table or other surface with known orientation.



Fig. 6: Locally weighted linear regression on calibration data.
The plot shows energy values for one sensor at a fixed distance
and varying x and z orientation. Green points are recorded data;
red points show the interpolated and extrapolated estimates of the
model.

order to obtain an approximate forward model for the specific
object of interest. 3 By scaling with the estimated peak value,
the model becomes roughly invariant to surface brightness.

For this work, the calibration data was taken using a Kodak
grey card, which is a surface often used to adjust white
balance in photography. The data consists of 1904 samples
of o taken at distance values ranging from 0.5 cm to 3.4
cm, T, values ranging from 30° to 110°, and z,,; values
ranging from 40° to 140°. Fig. 5 shows the calibration data.

B. Direct Model Using Polynomial Fit

We first tried using a least-squares polynomial fit on the
calibration data to estimate s given o, as in [1]. While the
resulting polynomial function was a reasonable fit to the
calibration data, its performance on estimating s on different
surfaces was extremely poor. This is because even small
changes in the true underlying function (caused by different
brightness or reflection properties) results in large shifts in
estimates for s for the same o, making the direct model
very brittle in the context of different, unknown objects, and
limiting its applicability to contexts where the precise object
characteristics are known a priori.

C. Belief State Model

In order to address the sensitivity of the direct model
to the object surface characteristics, we use an empirical
forward sensor model and a probabilistic estimation process
to derive the current best estimate for s. In our setting, as
our robot hand is executing a grasp trajectory, we take many

3Estimation of the surface reflectivity value is not particularly onerous
to collect, as a single grasp of the object, particularly with the use of raw
values to attempt to align at least one finger with the surface of the object,
is sufficient to collect the required value. Alternatively, an estimate of the
peak value could be obtained by observing the object with an IR camera or
with a laser rangefinder that provides IR intensity values.

sensor readings with fingers at different (known) locations,
and use the sensor readings, the finger positions, and our
empirical sensor model to update a belief state (a probability
distribution over possible values of s) at each time step.

Here, we assume that the object is static during a grasp.
This is a reasonable assumption due to the fact that because
we are using proximity or ‘pre-touch’ sensors, the actual
grasp and sensing procedure does not make contact with the
object prior to complete closure of the grasp and thus does
not actively cause any object displacements. In addition, we
assume that the surface seen under each finger is locally
planar throughout the entire grasp process.*

For each finger, let S be the set of all possible states s, and
let sy, o, and a; be the state, sensor readings (observation),
and hand pose (actions) at time t, respectively. At all times,
we will track the belief state b; := P(sglo1...0t, a1...a),
the probability distribution over all possible surface poses
in S seen at the first time step, given all observations and
hand poses since. We assume that our sensor observations
at different times are conditionally independent given the
surface pose:

P(sploy...or,a;...ar) = HP(so|ot,at) @)
t=1

D. Observation Model

An essential part of finding the most likely surface pose
is having a model for how likely it is that we could have
seen the current sensor readings if that pose were true.
Specifically, the quantity we are looking for is P(o|as, st),
the probability of seeing the sensor readings we obtained
at time t (o;) given the current hand configuration (a;)
and a particular surface pose (s;). For this, we need a
function mapping states to observations, C(s) = 0. We use
locally weighted linear regression on our scaled calibration
data set to estimate o given s. An example of the values
obtained using locally weighted linear regression is shown
in Fig. 6, where the green points are actual data and the
red points are estimated values. Each estimated point uses
a plane derived from only the 8 closest actual data points.
Also, because extrapolation using locally weighted linear
regression is extremely poor, the estimated point is clipped
to be no greater than the highest of those 8 values, and no
less than the lowest.

We then assume that the estimated model values are
correct (for a given s;, we expect to see the model-estimated
o¢), and that any deviations we see in the actual sensor
readings, ¢ = o, — C(s;), are due to Gaussian noise, € ~
N(0,02). This assumption is wildly inaccurate, as the errors
are in fact systematic, but this assumption nonetheless allows
one to find the closest alignment of the observed o points to
the scaled calibration model without any assumptions about
surface characteristics. For our experiments, sensor readings

4Even when the surface under the finger changes and the old data becomes
erroneous, the estimates would get progressively better as more data from
the new surface is observed. It is also simple to place a higher weight on
new data, to make the adjustment faster.
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Fig. 5: Calibration Data. (Top row) plots xrot vs. energy for all three sensors, with binned distances represented by different colors
(distance bin centers in mm: green=5, blue=9, cyan=13, magenta=19, yellow=24, black=29, burlywood=34). (Bottom row) shows zrot vs.

energy for all three sensors.

were scaled to vary from 1 to 100, and o was set to be
25, since we expect significant deviations from our model
values.

E. Inference

At each time step, we wish to compute an estimate $; of
the current state. The states, S, are discretized to a uniform
grid. We can represent b, as a grid of probabilities that sum
to 1, and update the belief state probabilities at each time
step using our actions and observations as we would any
Bayesian filter.

More specifically, the belief state update is performed as
follows:

by =P(sg|o1...0¢,a1...a¢)
_ P(ot|ag, at, s0)P(solo1...0t—1,a1...at—1)
P(o)

P(og)ag, s¢)bi—1

= Plo) )

We assume a uniform prior on the sensor readings, and thus
the denominator can be normalized out. We then find the
expected value of the state sg as follows:

S0 = E(so) = ZP(50|01...0t, aj...at)So 3)
50
We can compute §; from §y using the hand kinematics and
the known hand positions a; and ag.
The advantage of combining observations in this manner
is that, while the actual sensor readings we expect to see
vary greatly from surface to surface, readings across different

sensors in the array vary in a similar way with respect
to orientation changes for all surfaces. Thus, a number of
observations over a wide range of different values of s can
be used to align a new set of observations with a model that
is not quite right. The s with expected (model) observations
that align best with the actual observations is generally the
one with the highest likelihood, even with large model error.

IV. REACTIVE GRASP CLOSURE CONTROLLER

To verify the usefulness of our ‘pre-grasp’ proximity
sensors, a reactive grasp closure controller was designed
and implemented that uses the proximity data to move the
fingers such that: 1) they do not collide with the object,
and 2) they close simultaneously, forming a symmetric grasp
configuration around a pre-specified grasp point. This ability
is aimed at achieving successful grasps even in the presence
of significant uncertainty about the object geometry, and at
allowing the sensor interpretation approach to safely collect
data to improve the surface estimates.

The hierarchical control architecture used here composes
two reactive control elements that run asynchronously and
that control separate aspects of the grasp closure process.
At the bottom level, a finger distance controller controls
the fingers to maintain approximately equal distances to the
object surface. On top of this control element, a kinematic
conditioning controller controls the arm to center the object
within the hand and to cause the fingers to be parallel to the
surface.



Fig. 7: A sequence showing the grasp trajectory chosen by our algorithm. Initially, the fingers are completely open; as more data comes,
the estimates get better, and the hand turns and closes the finger in such a way that all the fingers touch the object at the same time.

A. Finger Distance Controller

At the bottom level, the finger distance controller moves
just the fingers in an attempt to keep all fingers at a given
distance from the object surface while closing them around
the initial grasp pose. To avoid collisions even in the initial
stages of grasping, the finger distance controller starts out
using just raw proximity sensor values normalized for the
estimated object reflectivity (expected peak value). When
available, it switches to using distance information from
the belief estimation process. Either raw values or distance
estimates can be used to achieve and maintain a desired
proximity from the surface for all fingers, at the rate required
by the basic hand controller. This allows for the efficient
gathering of proximity sensor readings during the grasp,
which can be used to improve the surface pose belief state,
which in turn can improve the finger distance controller’s
ability to keep the fingers at a desired distance. Steadily
decreasing the desired surface distance allows one to close
the fingers such that they simultaneously touch the object
surface.

B. Kinematic Configuration Controller

Given the current grasp pose and finger configuration, the
kinematic configuration controller moves the arm and hand to
optimize the available kinematic workspace and contact force
capabilities of the grasping system. To achieve this, it selects
actions that locally minimize a kinematic configuration error

function, €x = i izl €%, by descending the gradient, %ET’;

of this metric with respect to the hand frame pose parameters
x; that determine the position and orientation of the hand.
€k, 1s the kinematic error for finger i, which is a measure
of the distance from the preferred kinematic configuration
(which in our case is the middle of the finger joint range).

For the Barrett hand, the result of descending this gradient
is a hand/arm configuration in which all fingers are bent to
the same degree and the hand is centered over the current
contact configuration as determined by the finger distance
controller. When used in combination with the finger distance
controller, the result is that the two fingers on the same
side of the hand end up parallel to the surface under them
(assuming they see the same or a similar surface), and the
hand ends up centered around the object. For a completely
novel object, these two controllers together can be used to
perform an initial grasp to collect data identifying the object’s
reflectivity parameters, since the peak sensor value is only
seen when the finger is parallel to the object surface.

TABLE I: Model Test Experiment Error

DIST(CM) | Zrot(®) | 2rot(®)
BROWN WOOD BowL .35 4.4 13.5
BEIGE PLASTIC BOWL .34 4.4 23.0
BLACK PLASTIC BOX 49 10.3 16.5
BLUE PLASTIC BOX .59 5.3 21.7
CARDBOARD BOX .20 3.8 14.4
YELLOW Box 43 3.6 17.3
AVERAGE .40 5.3 17.7

Given a correctly chosen initial grasp point, this two-
element controller hierarchy provides robustness to the grasp-
ing process and can significantly increase the success rate
for grasping tasks. However, it still relies heavily on a good
choice of initial grasp pose. To alleviate this and to fully
utilize the capabilities of the sensors, the presented reactive
grasp closure hierarchy could be augmented with a reactive
grasp configuration controller that uses the surface normal
estimates provided by the sensors’ belief state estimation
system. Having normal estimates would allow such a con-
troller to adjust the grasp configuration to optimize the local
grasp geometry. In particular, one could add a reactive local
control component based on wrench residuals [2] to the grasp
closure controller using a hierarchical control composition
approach [4]. Such a component would use the local surface
normal information to optimize the contact configuration,
allowing one to achieve reliable force and moment closure
grasps of objects even when no two fingers see the same
planar face [13], [2].

V. EXPERIMENTS

We will first evaluate the ability of our algorithm to model
sensor data in Section V-B. Then we will use the model to
perform grasping experiments in Section V-C.

A. Robot Hand

The sensors described in Section I were mounted onto the
finger tips of a Barrett hand. This manipulator has a total of
4 degrees of freedom (three fingers each with one degree of
freedom, and a finger “spread”). The hand was attached to a
7-dof arm (WAM, by Barrett Technologies) mounted on the
STAIR (STanford AI Robot) platform.

B. Prediction Model

As a test of our estimation method, we placed the Barrett
hand at known positions relative to a number of commonly



Fig. 8: Different objects on which we present our analysis of the model predictions. See Section V-B for details.

found objects of various materials. (See Fig. 8 for their pic-
tures.) Our test data consisted of three different orientations
for each object: parallel to the fingers, +10° rotation, and
—20° rotation. The fingers were then made to close slowly
around the object until each finger nearly touched the surface.
Sets of 100 raw sensor readings were taken every 1.2 degrees
of finger base joint bend, and for every 1.2 degrees of finger
spread (up to at most 17 degrees) and averaged. Results
showing errors in the final estimates of (d, Z,ot, 2rot) are
in Table I.

Table I shows that our model is able to predict the
distances with an average error of 0.4cm. We are also able
to estimate x,,; reasonably accurately, with an average error
of 5.3°. The high error in z,,; in the case of the black
plastic box can be attributed to the fact that the first finger
in one run did not see the same surface the entire time,
which is a requirement for reasonable predictions with our
model. Note that these objects have significantly different
surface properties, and other than the peak sensor value, no
other surface characteristics were assumed. High-reflectance
surfaces tended to do worse than matte surfaces due to sig-
nificant deviation from the calibration model. Nonetheless,
our experiments show that we are able to make reasonable
predictions by the time the fingers touch the surface.

The higher errors in z,,, are a consequence of the
movements used during the data collection and estimation
process. Since the sensor interpretation approach uses belief
updates to determine the maximum likelihood orientation, the
quality of the resulting estimates depends on the proximity
data encountered along the fingers’ trajectories, with larger
variations in the local geometry resulting in more accurate
estimates. In the procedure used here to gather the test data,
a wide range of z,, angles was encountered within the
useful range of the sensors due to the strong curling of
the Barrett fingers. On the other hand, only a very limited
range of z,,; angles were correctly observed due to the
significantly smaller variation available using the hand’s
spread angle. Furthermore, most spread actions moved the
fingers to positions significantly further from the object, often
resulting in sensor readings that were no longer observable.
While this is a problem in the test data and illustrates the
advantage of active sensing strategies, its cause should be
largely alleviated when using the grasp closure controller to
establish the initial grasp, due to the ability of the finger
distance controller to maintain the fingers at a distance that
provides usable results throughout the finger spread opera-

tion. Additionally, the inclusion of arm motions through the
use of the kinematic conditioning controller should further
enhance the range of z,,; angles encountered during a grasp,
and thus allow for somewhat better z,,; estimates.

C. Grasping Experiments

Our goal was to focus on the final approach of grasping
using proximity sensors. Our system could be used in a
variety of settings, including the point-and-click approach
of [5], where a laser pointer is used to highlight an object
for a robot to pick it up, or combined with long range vision
sensors that select optimal grasp points [14].

In this experiment, we placed a variety of objects (weigh-
ing less than 3 pounds) in known locations on a table (see
Fig. 10), with some objects flush against each other. These
objects are of a variety of shapes, ranging from simple boxes
or bowls, to more complicated shapes such as a ski boot.

The robot moves the hand to the approximate center of the
object and executes a grasp strategy,’ using our controller
to move the hand and the fingers in response to estimated
distances from the sensors and the pose estimation algorithm.
The robot then picks up the object and moves it to verify
that the grasp is stable. (See Fig. 7 and Fig. 10 for some
images of the robot picking up the objects.)

Fig. 9: Failure cases: (a) Shiny can, (b) Transparent cup

Note that our objects are of a variety of shapes and made of
a variety of materials. Out of the 26 grasping trials performed
on 21 unique objects,® our grasping system failed three times.
Two of these failures were due to extreme surface types: a

5One could envision using better strategies, such as those based on vision-
based learning [15], [16], for moving the hand to a grasping point on the
object.

6 Procedure used to choose the objects: We asked a person not associated
with the project to bring objects larger than about 8 inches in length and
less than 3 pounds from our lab and different offices. No other selection
criterion was specified, and therefore we believe that our objects represented
a reasonably unbiased sample of commonly found objects.



Fig. 10: Snapshots of the robot picking up different objects.

transparent cup and a highly reflective aluminum can (Fig. 9).
To address these cases, our optical-based proximity sensors
could be combined with a capacitive-based system that is
good at detecting metallic or glass surfaces. The third object
was a ski-boot, for which our approach worked perfectly;
however, due to the object’s weight, our robot was unable to
lift it up.

A video of the grasp experiments is available at the
following url:

http://stair.stanford.edu/proximitygrasping/

In the video, the hand rotates the fingers in many cases to
be approximately parallel to the object surface and causes the
fingers to contact at nearly the same time, thereby improving
the grasp.

VI. CONCLUSION

In this paper, we presented a system that enables stable
grasping of common objects using pre-touch pose estimation.
We designed a novel low-cost optical proximity sensor to
meet the space constraints of typical robot grippers using
off-the-shelf components. We converted the data provided
by these sensors into pose estimates of nearby surfaces
by a probabilistic model that combines observations over a
wide range of finger/hand configurations. We also created
a hierarchical reactive controller to perform the grasp while
optimizing finger locations to maintain distance and improve
the estimation model. Finally, we validated the system by ex-
periments with a Barrett hand, which showed improvements
in reactive grasping.
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