
Learning Sound Location from a Single Microphone

Ashutosh Saxena and Andrew Y. Ng

Computer Science Department,

Stanford University, Stanford, CA 94305, USA.

{asaxena,ang}cs.stanford.edu

Abstract—We consider the problem of estimating the in-
cident angle of a sound, using only a single microphone.
The ability to perform monaural (single-ear) localization is
important to many animals; indeed, monaural cues are also

the primary method by which humans decide if a sound comes
from the front or back, as well as estimate its elevation. Such
monaural localization is made possible by the structure of
the pinna (outer ear), which modifies sound in a way that
is dependent on its incident angle. In this paper, we propose
a machine learning approach to monaural localization, using
only a single microphone and an “artificial pinna” (that distorts
sound in a direction-dependent way). Our approach models
the typical distribution of natural and artificial sounds, as well
as the direction-dependent changes to sounds induced by the
pinna. Our experimental results also show that the algorithm is
able to fairly accurately localize a wide range of sounds, such
as human speech, dog barking, waterfall, thunder, and so on.
In contrast to microphone arrays, this approach also offers the
potential of significantly more compact, as well as lower cost
and power, devices for sounds localization.

I. INTRODUCTION

The ability to perform sound localization—i.e., to estimate

the direction of a sound source—is important to many

biological organisms, where sound can serve as a warning

of danger, or be used to locate prey [11]. Further, sound

localization has many important engineering applications,

ranging from estimating the position of a speaker, to auto-

matically deciding where to steer a directional microphone

(or beamformer) or camera.

Typically, sound localization in artificial systems is per-

formed by using two (or more) microphones. By using the

difference of arrival times of a sound at the two microphones,

one can mathematically estimate the direction of the sound

source. However, the accuracy which which an array of

microphones can localize a sound (using interaural time

difference) is fundamentally limited by the physical size

of the array [6], [5]. If the array is too small, then the

microphones are spaced too closely together so that they all

record essentially the same sound (with interaural time dif-

ferences near zero), making it extremely difficult to estimate

the orientation. Thus, it is not uncommon for microphone

arrays to range from 10’s of centimeters in length (for

desktop applications) to many 10’s of meters in length (for

underwater localization). However, microphone arrays of this

size then become impractical to use on small robots [24],

[19]; even for large robots, such microphone arrays can

be cumbersome to mount and to maneuver. In contrast,

the ability to localize sound using a single microphone

(which can be made extremely small) holds the potential

of significantly more compact, as well as lower cost and

power, devices for localization. Being able to do so is also

an interesting and enlightening problem in its own right.

In biological organisms such as humans, “interaural time

difference” is also used as a cue for sound localization; on

organisms with two ears (or microphones), this is called

the biaural time difference or the biaural cue. However,

in humans the biaural cue cannot be used to estimate the

elevation of the sound, nor can it be used to distinguish a

sound coming from the front vs. one from the back. For

example, if a sound source is directly in front of us, then

the interaural time difference will be zero, regardless of

the source’s height. This cue in isolation also suffers from

front/back ambiguity.

Humans can localize the full 3d direction of a sound

with reasonably high accuracy, including both elevation and

whether it is from the front or back. Indeed, humans can

perform this task using even a single ear; this is known as

monaural localization. They can perform this task because

the sound measured in the inner ear changes as a function

of the source’s direction. Specifically, reflections from the

ear pinna (the outer ear part of ear, also called the auricle)

and the head changes the perceived sound in a way that is

dependent on its source’s direction. This allows humans and

other organisms to perform monaural localization (including

estimating the elevation of a sound source).

Monaural localization, however, is a challenging problem

for artificial systems, because it requires prior knowledge

of the possible sounds. Indeed, the ability of humans to

estimate the direction of a sound monaurally is contingent

on their familiarity with it. Specifically, even though sounds

are modified by the ear depending on its incident angle,

we note that in a narrow mathematical sense, it is actually

impossible to determine a sound’s direction from a monaural

recording alone, because it is impossible to know whether a

sound appears different because it is coming from a certain

direction (and thus modified in a certain way by the pinna), or

if it was originally like that. However, typical sounds found

in our environments (and in natural environments) are not

random—they have certain structure. Thus, it is by using

our prior knowledge (perhaps gained through our years of

experience with sound) about what sounds are likely that we



Fig. 1: Diagram of human ear. The outer ear (pinna) changes the
spectral response of the sound depending on the direction it was
coming from. (Image credit: [12])

can estimate its most likely direction. Psychological studies

have also found that monaural localization is somewhat poor

in infants as compared to adults; one of many possible

explanations for this could be that they have not yet had

sufficient exposure to natural sounds to have built a good

prior for what typical sounds are like [22].

In this paper, we will describe a machine learning ap-

proach to estimating the direction of a sound source, given

only a single microphone (at a fixed position) and an “artifi-

cial pinna.” We will present a generative model and evaluate

it extensively with single microphone sound localization with

different pinna designs on a variety sound sources, including

noise, human speech, dog barking, and many natural sounds.

II. MONAURAL CUES: BIOLOGICAL MOTIVATION

The sound appears different depending on what direction

it is coming from, because of the pinna (Fig. 1). The

pinna’s convoluted structure causes sound waves, as they are

gathered and funneled toward the ear canal, to experience

overlapping, cancellation and reverberation influences. These

influences change the spectral shape of the sounds in a

direction-dependent way. This change provides the monaural

information necessary for determining where a sound is

coming from. However, this brings forth a curious fact: for

one to perceive a changing sound as coming from the same

source and maintaining a consistent acoustical quality, one

must have a baseline familiarity with it. Indeed, [34] reports

that our experience of a sound and our ability to locate it

is contingent upon our familiarity with it. They suggest that

we are attuned to the acoustic patterns as they are created by

our own pinna, and that we must be familiar with a sound

to begin with so that we know that it is being modified

[11]. In other words, we must have a reference pattern of

the sound from which to evaluate its acoustical qualities as

it is experienced in different locations in space.

(a) Spectrogram of various sounds

Fig. 2: (a) Spectrogram log S2

t (f) of some typical sounds.

Even beyond the effects of the pinna, in humans there are

other direction-dependent effects such as sounds reflecting

off one’s shoulder, and sounds being attenuated through

passing around the head to reach the distal ear. In our

approach (described in Section 3), we will model the overall

effect of these direction-dependent modifications using a

direction-dependent transfer function hθ .

In the psychology literature, it is somewhat agreed on that

binaural cues in humans are used primarily for determining

azimuth (i.e., left-right direction) while monaural cues are,

for the most part, used for determining elevation (up-down

direction) [7], [20], [37]. Some researchers [8], however,

believe that monaural cues are more important than binaural

cues even for determining azimuth. As discussed earlier,

when a sound is presented on the medial vertical plane (i.e.,

equidistant from the two ears), binaural differential hearing

is impossible. Therefore, the determination of where a sound

is located on that plane relies upon monaural pinna cues. [14]

In biological systems, estimating the location of sound

source, and understanding the content of the sound, often

represent two conflicting requirements. I.e., to understand

the content of the sound, one would want to have minimum

distortion; however, to localize the sound, one would want

the sound to be different for different incidence angles. Dif-

ferent species have evolved ears to meet these requirements.

For example, bats and owls [16], [21] which have to perform

echo-localization have ears that affect the sound in a highly

direction-dependent way, while the ears of pigs have only a

mild direction-dependency.

III. MODEL

Here, we will formally describe our model. Let s(t) be

the sound source, and let hθ(t) be the direction dependent

transfer function (analogous to the direction dependent trans-

fer function of the ear pinna). Then, the signal recorded by

the microphone y(t) is given as

y(t) = hθ(t) ∗ s(t) + w(t) (1)

where “∗” denotes convolution, and w(t) ∈ N (0, σ2
w
) is

additive white Gaussian noise.



Fig. 3: Illustration of our recording system, showing the micro-
phone (M), the speaker (S), and the angle (θ).

The direction-dependent response hθ is time-invariant,1

and we have approximated the microphone-pinna system as

a linear system. Thus, we can represent hθ(t) in the Fourier
(frequency) domain [23] as Hθ(f) = F [hθ(t)]. Informally,
the Fourier transform F [·] gives a representation of hθ(t) in
terms of the amount by which it amplifies or attenuates the

audio source at different frequencies f . With some abuse of

notation, we will sometimes also write Hθ(f) as a vector Hθ.

Finally, we applied standard noise excitation methods [18]

to estimate Hθ for different directions θ, on our specific

microphone-pinna setup (described in Section IV). This thus

gives us a fairly accurate model of our system’s direction

dependent response to different audio sources.

We now describe our model for the audio source s(t).
Various properties of typical sounds s(t) change as function
of time. For example, when we speak a word such as “hello,”

the acoustics are extremely different for the “h”, “e”, “l”

and “oo” parts of the word. A similar effect holds true to

other natural sounds as well. To capture these time-dependent

effects, we will apply the Short-term-Fourier-Transforms

(STFT) (with a Hann window centered at time t, see [23]

for details) to compute the frequency-domain representation

St(f) of the signal at time t. The squared magnitude of

this representation, S2
t
(f), is called the spectrogram. We will

also write S2
t to denote a vector containing all of S2

t (f)’s
components.

Even though the sound signal S2
t
(f) is stochastic and

its (first and second order) statistics change as a function

of time, many sounds in nature can be modeled as having

time-invariant statistics when we consider only short time

windows. E.g., each of the parts of the “hello” signal (each

phoneme) can be accurately modeled as being wide-sense

stationary (i.e., for a phoneme the mean and covariance

remain relatively constant), even though the entire word

as a whole is not. Following common practice in audio

signal processing [26], [32], we will therefore model the

S2
t
(f) using a Hidden Markov Model (HMM) [27]. We use

an observation model P (S2
t |zt) = N (S2

t ; µzt
, Σzt

), where
zt ∈ {1, ..., K} is the state of the HMM at time t. The HMM

transitions from one state zt to another state zt+1 according

to the model’s state transition probabilities P (zt+1|zt). We

trained an HMM model of typical sounds using the standard

1A time-invariant system is one for which a time shift or delay of input
sequence causes a corresponding shift in the output sequence.

EM (Baum-Welch), with the parameters initialized by using

K-means clustering to group the observations St in our

training set into different discrete states zt. The model was

trained using a variety of natural and artificial sounds (see

Section IV-A for details).

We can now express Eq. 1 in the frequency domain, where

the convolution operation becomes multiplication:

Yt(f) = Hθ(f)St(f) + Wt(f) (2)

Here, Wt is the Gaussian noise w expressed in the frequency

domain. This equation also sheds light on why monaural

localization is challenging, and why the direction of a sound

source is ambiguous given only one microphone recording.

Specifically, we have a noisy observation of the product

Yt of two unknown quantities Hθ (because θ is unknown)

and St; and, our goal is to decompose the product back

into the two original multiplicands. Clearly, there are many

possible choices for Hθ and St that would give rise to the

same product; thus, monaural localization in an inherently

ambiguous problem.

Fortunately, only certain sound signals St are likely. Thus,

using a model of typical sounds, we can attempt to find

the most probable decomposition of Yt into Hθ and St. For

example, St tends to be correlated in the frequency-domain;

e.g., if its value at a particular frequency is high, then the

values at the neighboring frequencies are also likely to be

higher. Our learned HMM model attempts to capture such

properties of typical sounds.

To infer the value of θ, we begin by computing the power
of the signal:

Y 2
t (f) = H2

θ (f)S2
t (f)+2Wt(f)Hθ(f)St(f)+W 2

t (f) (3)

We will compute the first and second-order moments of

Y 2
t

(f). We have that Σzt
(f1, f2) is the covariance between

S2
t
(f1) and S2

t
(f2) in the HMM’s observation probability

given state zt. Let σ2
zt

(f) = Σzt
(f, f) be the diagonal

elements of these covariance matrices. We now have:

E[Y 2
t (f)|zt] = H2

θ (f)µzt
(f) + σ2

w(f)

Var[Y 2
t

(f)|zt] = H4
θ
(f)σ2

zt
(f)+

4H2
θ (f)µzt

(f)σ2
w(f) + 2σ4

w(f)

Cov[Y 2
t

(f1), Y
2
t

(f2)|zt] = H2
θ
(f1)H

2
θ
(f2)Σzt

(f1, f2), f1 6= f2

(4)

Having computed the moments of Y 2
t

(conditioned on

zt), we will approximate P (Y 2
t |zt, θ) as a Gaussian

N (E(Y 2
t
|zt), Cov(Y 2

t
|zt)) with the corresponding mean

vector and covariance matrix.

Inference: Given an input Yt, we would like to infer the

most likely value for θ. We have:

θ̂ = arg max
θ

log P (Y 2
1 , . . . , Y 2

T |θ)

= arg max
θ

log
∑

{zt}

(

∏

t

P (Y 2
t
|zt, θ)

)

p(z1)

T
∏

t=2

p(zt|zt−1)

(5)



(a) Pinna A (b) Pinna B (c) Pinna C (d) Pinna D

(e) Transfer Function for A (f) Transfer Function for B (g) Transfer Function for C (h) Transfer Function for D

Fig. 4: Pictures of our sensors—a single microphone with different “artificial pinnas.” The bottom row shows their direction-related
transfer function Hθ as a function of orientation (vertical axis). Pinnas that have very different response for different orientations are
better for localization, e.g., pinna B and C. (Note the “wavy” effects.) Also note that Hθ has relatively small/subtle variations compared
to the sound sources, making it challenging to infer which parts of a recorded signal were due to Hθ, and which parts due to the original
acoustic signal. (Best viewed in color.)

P (Y 2
t |zt, θ) is given by Eq. 4, and p(zt|zt−1) are given by

the HMM state transition probabilities.

We perform the optimization for computing arg max in

two steps. First, we discretize θ in steps of 15◦ and compute
the score for each of the values for θ ∈ {0, 15, 30, . . . , 345},
using the forward-backward algorithm [27] to compute the

HMM observation probability. In the next step, we do the

same inference in steps of 2 degrees in the local neighbor-

hood of the best angle found.

IV. EXPERIMENTS

A. Experimental Setup

In order to have a transfer function that depends on

direction of the sound, we designed a set of small partial

enclosures for the microphone, that serves as our “artificial

pinna.” They consist of a base plate with vertical walls of

various shapes. The first one in Fig. 4a consists of a smooth

pinna (made of a semi-cylindrical tube); the second one in

Fig. 4b contains a few “corners” in the pinna but is otherwise

smooth. In the third one (Fig. 4c), we use a plastic-cast that

has smooth grooves built on it in various directions. Finally,

in the fourth one in Fig. 4d, we use a surface that has sharp

discontinuities in it.

B. Results

To train our model, we used white Gaussian noise recorded

in our setup to estimate the direction related transfer function

Hθ(f) at angles θ = (0, 15, 30, ..., 345) and the values were

interpolated for finer angles. To train the HMM model for

P (St), we did not need to collect data by actually using our
setup. We used 50 states in our HMM, and simply trained

the HMM using various sounds available from publicly

available datasets—human speech (also from [2] but from

different speakers compared to the test set and in different

environments), animal sounds (cat, horse, puma, elephant)

and natural sounds (wind, river).

Our test data comprised a variety of different sound

sources: human speech (with a range of accents, [2]), animal

sounds such as a dog barking and growling, and other natural

sounds such as ocean waves, thunderstorm, waterfall, etc. We

recorded data by playing the sounds through a high-fidelity

speaker, playing the speaker at 26 locations, chosen randomly

in the range [0◦, 360◦). A total of about 5 minutes of data

was recorded at each angle θ. Our data was collected in

a normal office environment, which had some background

noise from sources such as air conditioning, computer fans,

vehicles on the roads outside the building, etc. While the

recordings were being made, sometimes there were people

talking and walking in the corridors outside, there was also

noise from people opening and shutting doors in nearby

offices, and so on. The signal to noise ratio 10 log10 Ps/Pn

was about 18 dB for the the office environment. In addition,

there was some room reverberation. Lastly, we also tested the

algorithm on a pure tone. Note that these sounds are quite

different from those in our training set.

In the various design choices for the pinna, Table I shows

the comparative results. The pinna with a smooth surface



Fig. 5: Log-likelihood for predicting the angle. From left, noise, dog barking, and a segment of speech for Pinna C.

(Pinna A, Fig. 4a) the transfer function varies very smoothly

as a function of the distance. I.e., the pinna does not modify

the sound spectrum in a way that is unique to direction-

dependency. The same change in transfer function could

come because of a different sound source. Pinna B that has

two sharp corners and also a few protruding notches produces

better direction predictions. Pinna C has a number of smooth

groves, and this produces a very unique spectral signature in

the transfer function. In Fig. 4g, note a recurring pattern

in the transfer function that changes as a function of the

direction. Finally, we tested with pinna D that has a number

of grooves and discontinuities; this however produced worse

results. We believe this is because pinna D, made of metal,

produces resonances in the columns.

Fig. 5 shows the log-likelihood estimated by our generative

model for different values of θ and under different types of

sounds. Our algorithm typically becomes confused when the

angle is in the range from 235◦ to 345◦. These angles corre-
spond to the microphone in our model receives comparatively

less reflections from the pinna (see Fig. 3). This results in

the amplitude of main sound signal overwhelm the effects

due to pinna. Better “pinna” designs that enclose the pinna

would perhaps further increase the accuracy further.

Table I shows that for wide-band noise-like signals, the

average error for pinna C was 4.3◦ (8.8◦ for B). Our error
was somewhat higher (18.3◦ for C and 14.2◦ for B) for

natural sounds with sharp onsets and transients (e.g., dog

bark) that occur only for a very short duration in the test

set. Because of the short time that these transients occur in,

our algorithm is unable to accumulate sufficiently accurate

statistics of the sound to make good predictions. However,

for other “smoother” natural sounds that have less sharp

transients, the errors are generally lower. For example, for

ocean/waterfall sounds, it was 9.3◦ for C and 11.8◦ for B.
The speech data was also particularly challenging, since it

comprised multiple individuals speaking, often with their

voices overlapping. Even then, our algorithm was able to pre-

dict directions with an error of 19.3◦ and 7.7◦ respectively.
Overall, our pinna C works best with an overall average error

of 13.5◦. By way of comparison, [1] reports that monaural

(single ear) localization error in humans ranges from 12◦ to

40◦.2

We also tested our algorithm on pure tone (where all

the acoustic energy is in one frequency component, such

as the sound generated by a tuning fork), where there is no

spectral shaping that happens because of the pinna. Thus, it

is impossible to infer the direction of the sound. Indeed, psy-

chological studies have shown that humans cannot localize

pure tones [7], and our algorithm similarly fares poorly on

it. (We believe that it performs slightly better than random

because of the static noise in the speaker.)

V. RELATED WORK

There is a long and distinguished history of work on sound

localization from multiple microphones (e.g., microphone

arrays). It is impossible to do justice to this literature, but

[36], [15] offer detailed reviews. Examples of this work in-

clude Ben-Reuven and Singer [4], who used a discriminative

classifier for binaural sound localization, and Thrun [35],

who localized a set of microphones using unknown sounds

emitted from unknown locations. Roman and Wang [29]

used binaural cues to track multiple sources. They [28] also

used inter-aural time and level differences to perform source

separation. Fischer [10] used binaural cues and a head-related

transfer function together to explain localization in owls.

Pearlmutter and Zador [25] used an overcomplete dic-

tionary as their model of “natural sounds,” and used L1

sparse approximation to separate individual sounds from a

mixture when the individual sounds were spatially separated.

Zakarauskas and Cynader [38] used Head-Related-Transfer-

Function (HRTFs) to localize broadband noise-like sounds;

but their method would not apply to more generic sounds.

Kristjansson et al. [17] separated sound from a male speaker

and a female speaker recorded using a single microphone.

There is also a large body of work in audio understanding

applications other than localization, such as speech recogni-

tion and speech reconstruction [30], [3]. Chau and Duda [9]

combined monaural and binaural cues for localizing noise-

like sounds. Machine learning algorithms have also been

2Infants have worse accuracies in localizing sounds using monaural cues
[22].



TABLE I: Average error for sound localization in degrees of the Generative model. In this test, the possible values for the angle was
θ ∈ [0◦, 360◦).

PINNA A B C D

RANDOM ESTIMATE 90.0◦ 90.0◦ 90◦ 90◦

WIDEBAND NOISE (E.G., RADIO STATIC) 42.6◦ 8.8◦ 4.3◦ 22.3◦

MIXED SPEECH 67.8◦ 19.3◦ 7.7◦ 21.35◦

NATURAL (DOG) 55.7◦ 14.2◦ 18.3◦ 60.28◦

NATURAL (E.G., OCEAN, WATERFALL) 42.1◦ 11.8◦ 9.3◦ 42.7◦

NATURAL (SHARP NOISES: THUNDER) 48.7◦ 21.6◦ 18.8◦ 39.6◦

PURE TONE 88.7◦ 89.1◦ 86.4◦ 82.6◦

developed for addressing other ill-posed problems such as

inferring depth from a single still image [31], [33].

Harris, Pu and Principe [13] were also able to infer the

direction of sound from a single microphone by built a

hardware circuit to detect the difference in arrival time of a

pulse (which is a signal that is non-zero only at one instant

in time) and its reflection. However, their method only works

for pulses and in relatively noise free environments.

VI. CONCLUSION

Monaural localization is an ability for many biologi-

cal organisms, but represents a difficult estimation prob-

lem because the sound’s incidence angle is intrinsically

ambiguous—an acoustic signal may sound a certain way

because it had arrived from a direction that caused it to be

modified by the pinna in a specific way, or it may have

originally sounded like that. The ability to localize sounds

using a single microphone also holds the potential of much

smaller (and less expensive) devices for sound localization

than the large microphone arrays that are typically used to-

day. In this paper, we presented a machine learning approach

to monaural localization, using a single microphone and an

artificial pinna. Our method models the prior distributions of

sounds as well as the direction dependent transfer function

of the pinna. These algorithms were able to estimate the

orientation of a wide range of natural and artificial sounds

fairly accurately.
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