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Abstract—We propose a learning algorithm for estimating
the 3-D orientation of objects. Orientation learning is a difficult
problem because the space of orientations is non-Euclidean,
and in some cases (such as quaternions) the representation is
ambiguous, in that multiple representations exist for the same
physical orientation. Learning is further complicated by the
fact that most man-made objects exhibit symmetry, so that
there are multiple “correct” orientations. In this paper, we
propose a new representation for orientations—and a class of
learning and inference algorithms using this representation—
that allows us to learn orientations for symmetric or asymmetric
objects as a function of a single image. We extensively evaluate
our algorithm for learning orientations of objects from six
categories.1

I. INTRODUCTION

We consider the problem of learning the 3-D orientation

of objects, such as a mug or a martini glass (Fig. 1),

from an image. The ability to estimate orientation has many

applications in vision and robotics. For example, the task of

perception (object recognition) is considerably easier if an

object’s orientation is known. In other applications such as

active vision/tracking, knowing the pose of a self-propelled

object (e.g., an airplane) will also help to estimate its 3-

D direction of motion. In robotics, estimating the pose of

surrounding cars is also useful for autonomous driving, and

knowledge of the 3-D orientation of an object is necessary

to enable a robot to grasp it.

Unfortunately, the problem of estimating orientations is

difficult because the space of orientations is non-Euclidean

and non-linear. This property of orientations manifests in

all methods of its representation [11]. In Section III, we

describe a number of representations for orientation, the

problems associated with them, and explain why a naive

attempt to learn using each of them would fare poorly.

Symmetries in the object, which cause it to appear identical

for multiple different orientations, cause further problems; in

particular, the orientation is now ambiguous, in that there are

multiple “correct” orientations. E.g., the box in Fig. 1 has

identical faces, which makes it impossible to tell which side

is the front. In Section IV, we describe a representation that

addresses this problem.

In most prior work on estimating orientation, the orienta-

tions were assumed to lie within a small range of angles. In

these cases, the problem is significantly easier because the

1This work was first presented in NIPS workshop on Robotic Challenges
for Machine Learning in 2007. [26]

(a) (b) (c)

Fig. 1. Images of some objects in different orientations.

orientations can be safely linearized (e.g., using Euler angles)

around some “mean value,” [19], [30] and discontinuities in

the representation and ambiguities arising from symmetry do

not have to be explicitly addressed.

In this paper, we propose a new representation, together

with learning and inference algorithms, that allows us to

estimate 3-D orientations as a function of features. Our

representation and algorithms apply even in the presence

of symmetries. We apply the algorithm to two tasks: (i)

recognizing the pose of a new object (drawn from a known

object class), and (ii) choosing at what orientation to orient

a robotic arm/hand in order to grasp an object. In the latter

case, the test object can be drawn from a previously-unknown

object class.

II. RELATED WORK

There is a large body of related work on “circular statis-

tics,” which deals with the cyclic nature of such data. For

example, the Matrix-Fischer distribution [8], [13], [22], [11]

is a Gaussian model restricted to a manifold. This literature

considers a variety of representations for a fixed probability

distribution over orientations y, but not the learning problem
of estimating the conditional distribution of an orientation y
given a set of features x; i.e., of estimating an orientation

y as a function of x. (Because of the non-linearities and

symmetries in the space of orientations and the disconti-

nuities in the representations, they cannot be directly used

with most standard learning algorithms.) One exception is

the work on Spherical regression [5], [9], [31]; however

this addresses a very special case—regressing orientations

y against other orientations x. So if y ∈ [−180◦, 180◦) is an
angle, then Spherical regression can use only a single feature

x ∈ [−180◦, 180◦) (and similarly if y is a quarternion, then x



must be also). None of this prior work considers symmetries,

and neither have these ideas be developed for images.

Most work on learning on such non-Euclidean manifolds

has focused on unsupervised learning of manifolds that are

isometric to a subset of Euclidean space, e.g., [24], [32].

For non-isometric cases, algorithms such as locally smooth

manifold learning [7] can be applied. [36] applied semi-

supervised learning to multi-class classification. Notably,

[20] gives an elegant method for supervised learning on

non-linear manifolds such as a torus, using kernels with

Laplacian eigenmaps. However, these methods address the

problem of predicting a (discrete- or real-valued) target y,
as a function of features x that lie on a non-linear manifold,

such as a sphere or a torus. In contrast, our work addresses

a different problem of predicting/regressing labels y that lie

on a non-linear manifold (which can also be non-isometric).

More recently, [16] have modeled data lying on multiple

continuous manifolds, e.g., a torus, and have applied it to

track people from a video sequence. [28] infer depth and

orientation of planar surfaces from a single image, but their

method does not handle symmetries. Finally, multivalued

regression [1] can be used to model cases when the output

is multi-modal; however, it does not apply directly to the

non-linearities and the ambiguities in the target space.

In vision, there are a few approaches that apply when one

considers only 1-D orientations; for example, [4] gives a

method based on analyzing the Fourier spectrum of simple

line drawings. Multi-view object detection [33] is an ap-

proach in which objects are recognized at a few canonical

poses. One can envision running an object detector at dif-

ferent poses to estimate 3-D orientation; however, this is not

only a very indirect way to estimate orientations, but it would

also be directly affected by the accuracy of the classifier, and

would not apply to novel objects and objects from novel

classes (as in our robotics application in Section VI-B).

To our knowledge, work done in this literature, e.g., [33],

presents results only on object detection, but not on general

3-D orientation estimation, and typically uses datasets that

include views taken only from a circle around the object.

III. REPRESENTING ORIENTATIONS

Here we describe a few popular representations for ori-

entations, and explain why previous methods fail to learn

them when the orientations are not clustered closely around

a “mean value.”

Even in the case of planar 2-D objects, the representation

suffers from problems. Consider the line drawing of a hut in

Fig. 2a, which has a 1-D orientation that can be represented

by θ ∈ R, with θ + 360◦ = θ. Even if we restrict

θ ∈ [−180◦, 180◦), this representation still suffers from a

discontinuity at ±180◦. This makes naive learning of θ, such
as with linear regression, impossible or at best extremely

difficult. For example, if in the training/test set distribution,

the ground-truth orientations cluster around θ ≈ 180◦, then
most objects’ orientations will appear to be near either 180◦

or −180◦. This makes the learning difficult since E(θ) = 0,
instead of being +180◦ or −180◦. (E.g., 160◦ is closer

(a) (b)

Fig. 2. (a) A hut has a unique orientation with θ ∈ [−180o, 180o). (b)
A shape with 180o symmetry. Red arrow (not part of the object) indicates
an example of orientation θ = 90o, which is identical to θ = −90o.
Restricting θ to lie in a half-space, such as θ ∈ [0, 180) does not help—
this makes θ = 175◦ and θ = 5◦ very distant, even though they represent
two nearly identical physical orientations.

to −160◦ than to 90◦.) Wrapped Normal distribution [11]

addresses this problem by modeling the circular nature of θ
as P (θ|x, k; w) = 1

Z exp
(

−(θ − wT x − 2πk)2/2σ2
)

. Here,

k ∈ I is a latent random variable. This model can be trained

with EM [29].

For 3-D objects, the orientation can be described by 3

Euler angles [23]. However, learning using this representa-

tion is difficult because not only do each of the Euler angles

wrap around ±360◦, but further at specific orientations two
of the angles become degenerate. This discontinuity is called

Gimble Lock. Further, the 3 angles cannot simply be learned

separately using the wrapped Normal model, as they are

interdependent. In prior work, such as [19], authors learned

orientations but restricted to a small range (between 15◦-
20◦) for various applications, e.g., face pose [17]. For such
small ranges of angles that avoid Gimble lock, the angles

can be linearized around a “mean value”; however, this fails

for larger ranges of angles.

A quaternion [23] (q ∈ R
4, ||q||2 = 1) can also be used to

represent 3-D orientation. However, quaternions suffer from

the problem of anti-podal symmetry. I.e., q and −q represent
the same rotation. This means that for two identical orien-

tations, we may end up with completely opposite values for

their quaternion representations; this makes them impossible

to learn using straightforward learning algorithms.2 Rotation

matrices R, which are orthogonal matrices (RT R = RRT =
I) with det(R) = 1, have a non-ambiguous representation.
However, since all the elements are interdependent due to

the orthogonality restriction, learning them is hard. [10]

IV. SYMMETRY INVARIANT REPRESENTATION

Symmetries in the object, which cause it to appear identi-

cal for multiple different orientations, cause further prob-

lems. In particular, the orientation is now ambiguous, in

that there are multiple “correct” orientations for each object.

Consider the shape shown in Fig. 2b, which exhibits 180◦

rotational symmetry. For any orientation θ and θ + 180, the
object appears exactly the same. Thus, any representation of

its orientation will have two opposite values that correspond

2To remove antipodal symmetry, one can consider the quaternions q =
[qx, qy, qz, qw] lying in a half-space qw > 0. However, this still does
not solve the problem because similar orientations will still be far in the
representation. (see Section VI and Fig. 5).



to the same visual appearance. This problem is exacerbated

in 3-D. Most objects found in household and office environ-

ments exhibit some kind of symmetry. (See [12], [34] for a

detailed description of symmetries.)

We first present our representation M for orientation that

deals with these issues. To learn M , the representation

should satisfy several criterion. First, M should be invariant

to ambiguities arising from symmetries. Second, the repre-

sentation should be continuous, i.e., two orientations that

are physically close should be close in the representation.

Finally, the representation should be unique, in that all

orientations that look identical should have the same value.3

Given a representation u for the orientation for a 2-D

(planar), 3-D or more generally an n-D object, we will define

a new representation M(u), which our learning algorithm

will estimate as a function of image features.

In 2-D, the orientation of an object (e.g., Fig. 2) can be

completely described by a unit 2-vector u = [sin θ, cos θ] ∈
R

2, where θ is the angle of rotation. In 3-D, an orientation

can be completely described by two unit 3-vectors. E.g., the

orientation of a mug (Fig. 1b) can be described by a unit

vector representing the up direction of the mug, and a second

one in the direction of the handle. (The third direction is

redundant and can be obtained as a cross product of the first

two.) However, for an object such as a martini glass that has

only one distinguishable direction (pointing towards the top

of the glass; Fig 1a), only one unit 3-vector is required to

describe its orientation.

In the general case of n-D objects, an orientation can be

completely described by p ≤ (n − 1) orthogonal unit n-
vectors, where p is the number of distinguishable directions

of the object in n-dimensions. More formally, the object’s

orientation can be described by a matrix U ∈ R
n×p with

UT U = I; here, U ’s columns are ui ∈ R
n. The space of

all such matrices U is called the Stiefel I-manifold [10]. For

p = n − 1, we can get a complete matrix Ũ by appending

an orthogonal column such that det(U) > 0. In 3-D, Ũ =
[u1, u2, u3] ∈ R

3×3 is a rotation matrix.

A. Representation for n-D objects

In this section, we define our representation for the general

case of symmetries in n dimensional objects. We will de-

scribe, as examples, specialized cases for the representations

for 2-D and 3-D objects in Section IV-B and IV-C. For this

general case, our representation M will be a higher order

tensor. Space constraints preclude a lengthy discussion on

tensors and group theory, but interested readers may refer to

tutorial texts such as [18] and [35].

Below, we will let χ ∈ R
m×1 be a representation of an

orientation in n-D. Some representations are non-ambiguous.

3Our representation will actually satisfy a stronger set of criteria of
[14]: (i) Uniform stretch, The mapping should carry implicitly information
about the distances in the original space and scales linearly with the angle
between two hyper planes ||δM(u)|| = c||δu|| for ||u|| = constant. (ii)
Polar separability: ||M(u)|| is constant and carries no information about
orientation; and (iii)Uniqueness: M(u) has only one value for a given
orientation. These condition ensure that the representation is non-distorting,
in that all orientations have isomorphic mappings (manifold tangent spaces)
in the representation.

E.g., if R ∈ R
n×n is a rotational matrix (RRT = RT R = I ,

det(R) = 1) representing an orientation in n dimensions,

we can define χ to be the vectorized form of R, i.e., χ =
R(:) ∈ R

n2×1. Alternatively, some representations can be

ambiguous, e.g., a quaternion for 3-D orientations in which

q and −q represent the same orientation. (This is called a

double cover of SO(3).) Therefore, for χ = q, we also have

that χ′ = −q represents the same orientation. In general, for

a point χ representing an orientation in n-D, there could be

other points χ′ that represent the same orientation. The set

of all points that represent the same orientation as χ is called

the cut-loci of χ.
For a given orientation χ, let ψ(χ) denote the set of all

representations χ′ that result in the object appearing identical

to χ, either because of cut-loci (where multiple values of χ
correspond to the same physical orientation) or because of

symmetries (so that multiple physical orientations correspond

to the same appearance). E.g., if χ is a quaternion and the

object considered is asymmetric, then ψ(χ) = {χ,−χ}.
Similarly, if χθ represents the 1-D orientation θ of a pla-

nar object that exhibits 3-fold (120◦) rotational symmetry,
then ψ(χθ) = {χθ, χθ+120, χθ+240}. Now, we define our

representation M(χ) that allows learning even in presence

of cut-loci and symmetries as:

M(χ) = −
∑

{χ1,...χc}∈Permutations{ψ(χ)} Tprod(χ1, ..., χc)

where, Tprod(.) is the tensor (or outer) product of the

vectors, and c = card(ψ(χ)). The summation is over all

permutations of cut-loci and symmetries; this ensures that

M(χ) gives the same value for all different cut-loci and

symmetries of χ, and still satisfies the criterion of [14] (see
footnote 3).

Although Riemannian manifolds, in general, could have

cut-loci with an uncountable number of points, orientations

can always be represented with only a finite number of

points in their cut-loci.4 For example, we can represent n-D

rotations as the special orthogonal group SO(n) with no cut-

loci, and quaternions in 3-D with one point in the cut-loci.

The special Euclidean group SE(n) which jointly represents

location and orientation also has no cut-loci.

B. Representation for 2-D objects

All symmetries in 2-D that have the same appearance for

different orientations can be expressed as a N-fold rotational

symmetry, e.g., a hexagon has 6-fold rotational symmetry.

We define our representation as MN (θ) = [cosNθ, sin Nθ],
which has the same value for symmetric orientations. E.g.,

MN (θ+180/N) = [cos(Nθ+360), sin(Nθ+360)] = MN(θ).
In [27], authors used this representation, but it can be shown

that this is a special case of the general form in the present

paper. Specifically, for 2-fold rotational symmetry, we have

χ1 = [cos θ, sin θ] and χ2 = [cos(θ + 180), sin(θ + 180)].
Now, M(χ1) = −Tprod(χ1, χ2) − Tprod(χ2, χ1) =
[2 cos2 θ, 2 cos θ sin θ; 2 cos θ sin θ, 2 sin2 θ] =

4For example, if we represent 1-D orientations directly as θ ∈ R, the
cut-loci would be the points θ ± n180◦, n = 1, 2, 3.... However, the
representation [cos θ, sin θ] has no cut-loci.



Fig. 3. Various symmetries.

[1+ cos 2θ, sin 2θ; sin 2θ, 1− cos 2θ]. I.e., up to an additive

constant, MN(θ) is same as our M(χ).5

C. Representation for 3-D objects

Most objects belong to one of the symmetry classes shown

in Fig. 3. We will describe, as examples, our representation

M(u1, u2, u3) given in Section IV-A, specialized to each of
these cases.

1. No symmetry. If the object is completely asymmetric,

then {u1, u2, u3} completely specify the orientation of the

object without ambiguity. Thus, we can safely choose our

representation to be M(u1, u2, u3) = [u1; u2; u3] ∈ R
9×1.

2. Plane reflection symmetry. Some objects exhibit plane

reflection symmetry about one or more planes. For reflection

around a single plane perpendicular to u1 (Fig. 3a), we will

have that u1 and −u1 are identical, while the other directions

u2 and u3 will be non-ambiguous. We therefore define M ∈
R

6×1 × R
3×3 to be the tuple ([u2; u3], u1u

T
1 ). This repre-

sentation6 has the same value for the symmetric orientations

u1 and −u1. Similarly, for dual plane reflection symmetry

(Fig. 3b), we defineM = (u3, [u1; u2][u1; u2]
T ) ∈ {R

3×1×
R

6×6}. For triple plane reflection symmetry (Fig. 3c), we

define M = [u1; u2; u3][u1; u2; u3]
T ∈ R

9×9. (Only the 3x3

block diagonal elements are more relevant in this case.)

3. Rotational symmetry. These symmetries exist when an

object is symmetric about an axis, e.g., the rectangular box

in Fig. 1c will appear the same after a 180◦ rotation. For 2-
fold rotational symmetry in 3-D along the axis u1, we define

M(u1, u2, u3) = {u1, [u2; u3][u2; u3]
T } ∈ {R

3×1 ×R
6×6},

which is invariant to this symmetry.

4. Axial spherical symmetry. Consider rotationally sym-

metric objects such as a martini glass (Fig. 1a) or a cylinder

(Fig. 3e). We need only one vector u1, lying along that

axis, to fully describe its orientation. A martini glass has

standard axial symmetry (the two directions u1 and −u1 are

distinct); therefore we define M(u1) = u1. A cylinder has

5Similarly, for N-fold symmetry, one can see that the tensor product would
result in Nth order terms in cos θ and sin θ, which after summing over
permutations of symmetries result in cos Nθ and sin Nθ terms.

6M would be a grade 2 element in the Clifford algebra [21]. I.e., it
consists of two parts: a vector in R

6, and a matrix in R
3×3.

Fig. 4. The feature vector for an object, showing the 4 quadrants, each
having four radial segments.

plane reflection axial symmetry (u1 and −u1 are identical);

therefore we define M(u1) = u1u
T
1 .

5. Spherical Symmetry. Spherical symmetry (Fig. 3f) is

trivially learned, and we define M = 1.

V. LEARNING

M gives a symmetry-invariant, continuous, and unique

representation for orientation. In most cases, M = y1 or

M = (y1, y2) where each yi is either a vector or a rank-

1 matrix. We will use a learning algorithm to separately

estimate each of the components yi as a function of image

features xi, and apply an inference algorithm to recover an

orientation from this estimate.

A. Features

Standard image features such as in [33] would fare poorly

for learning orientation, so we designed features better suited

to the task. We start by partitioning the image into four

quadrants and four radial segments, (Fig. 4), by fitting an

ellipse to the edge-image of the object. This gives a total of

4 ∗ 4 = 16 regions. For each region, our features will be the

angles θ ∈ [0, 360) of the local edges.
However, the raw angles θ do not correlate well to the

target values y that we need to predict. Therefore, we map

our basic angles θ into the same form as the target y.
For 3-D objects, y is made of a combination of circular

functions of the form sinα and cosα for asymmetrical

objects, and pairwise products sin α cosα, sin2 α, etc. for
symmetrical objects. Therefore, our features will also be the

corresponding circular functions of θ, and have the same

dimension as y. For a given target angle, the edges are often
distributed around that angle, e.g., a pencil at 400 will have

edges between 300 and 500. Since E[sin(x)] 6= sin(E[x]), to
capture the distribution of edges, we also use harmonics of

the functions, i.e. sin(kθ). Finally, we obtain our full feature
vector X by concatenating the histogram of the features

for each of these 16 regions. Note that each individual

feature has the dimension as the target y, and so the overall

feature vector X is a concatenation of many such features.

So if Y ∈ R
m, then X ∈ R

m×k; if Y ∈ R
m×m, then

X ∈ R
m×m×k is a tensor.



B. Probabilistic Model

We estimate M as a function of the image features.

Depending on the type of symmetry, M could be a vector,

matrix, tensor or their combination; therefore, we will use the

corresponding/appropriate form of the Gaussian distribution

to model it. For Y ∈ R
m (the vector part) and Y ∈ R

m×m

(the matrix part),7 we have:

P (Y |X ;W, K) = |2πK−1|−n/2 exp
(

−
1

2
Tr(K(Y − XW )T (Y − XW ))

)

(1)

Here, X are the features of the image, W are the parameters

of the model, and K−1 is the shared covariance matrix.

Note that this is a deficient model [3], since it allows

positive probability even for invalid configurations. More

formally, yT y = 1 for the vector part, and Y = uuT is

symmetric positive definite and of rank 1 for the matrix part.

Choosing symmetric features allows us keep our estimate

of M symmetric, but this model allows Y to take values

where rank(Y ) 6= 1. We learn the parameters W and K
of the Gaussian model by maximizing the conditional log

likelihood log
∏

i P (Mi|Xi; W, K) using the training data.

Inference: Given an image with features X and a

learned model with parameters K and W , we now de-

scribe an inference procedure for computing the MAP

estimate of an object’s orientation under the model.

First, consider the case where y ∈ R
m×1 is the vec-

tor part of M . Since yT y = 1, our MAP estimate

for y is given by argmaxy:yT y=1 log P (y|X ; W, K) =
arg maxy:yT y=1 TrKyT XW . The closed form solution of

this is y = XW/||XW ||2.

Next, we consider the case where Y = uuT is the matrix

part of M . Note that the conditions Y ∈ R
m×m is positive

definite, symmetric and of rank 1 are sufficient to ensure

that Y is of the form Y = uuT . For a new test image with

features X , the MAP estimate for Y is:

argmin
Y

−Tr(KY XW )

s.t. T r(Y ) = 1, Y ≥ 0, Rank(Y ) = 1 (2)

The optimization problem in Eq. 2 is non-convex. We solve

it approximately by taking a semi-definite relaxation [6],

thus dropping the rank constraint to obtain the convex

optimization problem in Eq. 2. Finally, u is obtained by

taking the eigenvector corresponding to highest eigenvalue of

Y . To get the full rotation matrix, we first form the rotation

matrix R̂ by rearranging the inferred u and then project R̂
into the orthogonal subspace as R = R̂(R̂T R̂)−1/2.8

7For the general case, we would use the tensor form of the Gaussian
model. [2]

8In our experiments, Y was almost always close to being rank 1, and

R̂ almost always close to being orthogonal. For the general case of other
symmetries, following similar steps, we would first drop the rank constraint,
infer the higher order tensor Y , and then perform a rank-one approximation
to the tensor. [37], [15]

Fig. 5. Test set error (blue) vs. range of angles. As the range of angles
considered is increased, performance of the half-space quaternion method
decreases rapidly. Error of a baseline that predicts the mean quaternion is
shown in green.

VI. EXPERIMENTS

We trained our supervised learning algorithm using syn-

thetic images of objects, and tested it on the tasks of inferring

3-D orientation from single images of different real objects

from the object class.

To apply our supervised learning algorithm, we required a

labeled training set, i.e., a set of images labeled with the

3-D orientation of the object. Since, collecting real data

is cumbersome and manual labeling is prone to errors, we

chose to learn from synthetic data generated using computer

graphics that is automatically labeled with the correct ori-

entations. In detail, we generated 9400 labeled examples

comprising objects from six object classes, with random

lighting conditions, camera position, object orientation, etc.

We quantitatively evaluated the algorithm on real data. For

this, we built a custom setup to collect ground-truth labeled

data using the markers while capturing the images. The

algorithm was used to predict the 3-D orientation from these

images (with the markers cropped out).

Definition of Error: We report errors in rotation angle—

the angle by which the predicted orientation must be ro-

tated to get to the actual orientation. In higher dimensions,

however, this error can be quite non-intuitive. E.g., for an

asymmetric object in 3-D, the mean error given by an

algorithm predicting random orientations would be 1200 (not

900). Presence of symmetries make this measure even more

non-intuitive. Therefore, we define a more informative error

metric, “Fraction-error”, to be the fraction of orientations

(sampled uniformly from all orientations) that are better than

the prediction. (It is 0.0 for exactly correct, 0.5 for random,

and 1.0 for maximally incorrect predictions.)

A. Results on Objects

We provide extensive evaluation of our algorithm on a

test set comprising real images of objects, from 6 classes:

(i) Long cylindrical objects: pen, hex-driver, spoon, etc.,

(ii) Wine glasses: martini glasses, goblet shaped glass, etc.,

(iii) Mugs: different sizes/shapes, (iv) Tea cups: different

shapes/sizes, (v) Boxes: white board erasers, wooden blocks,

etc., (vi) Staplers: different examples.



Mugs Wine Glasses Long objects Cups Boxes Staplers

Fig. 6. Typical examples of predicted orientations (solid lines) for some real test objects, and their ground-truth orientations (dashed). (Best viewed in
color.)

We used 10-20 images of each of the 3-5 objects from

each object class. (Some examples of the objects tested on

are shown in Fig. 6.) In addition, we also test our algorithm

on about 400 synthetic images for each object class. We

perform comparisons of the following algorithms:

(a) Wrapped Normal (1-D): Angles learned using the

Wrapped Normal distribution.

(b) Half-space quaternions: Learn quaternions, restricted to

a half-space q1 ≥ 0.
(c) No features: Learning our representation using our

method, but without any image features. This effectively

predicts the “mean” orientation, and therefore is a baseline

for comparison.

(d) Rotation matrices: Here, we learn the rotation matrices

directly by using linear regression, without considering sym-

metries in image features and in the object.

(e) Our model with naive inference: In this model, we show

the results by directly taking Y = XW , i.e., without using

the SDP inference method proposed.

(f) Our full model: Using our full algorithm.

We first show that the error increases significantly when

the training and test sets contain a large range of orientations,

and not only a small range of orientations clustered around

some “mean value.” Fig. 5 shows the 3-D rotation angle error

as a function of the maximum angle away from the mean

value, using half-space quaternion method. Table I shows

that when we consider the full space of 3-D orientations,

approaches that use the most straightforward representations

of orientation, such as the rotation matrices, do not perform

well.

Table 1 presents the rotation angle error and fraction error

for the different algorithms on a variety of objects. We

report results on learning both 1-D orientation (for axially

symmetric objects, where the task is to predict u1 projected

into the image plane) and 3-D orientation. In all cases, our

algorithm significantly outperforms simpler methods.

When the axis of rotation is in the image plane, our

algorithm cannot distinguish whether the compression (e.g.,

change in length of a pen) is due to rotation or due to

the physical object being smaller. This is one of the major

sources of error in our algorithm. Indeed, the errors in

estimating the orientation projected into the image plane

(corresponding to a rotation around the axis normal to the

image plane) are usually quite low (e.g., 3.2◦ for long

cylindrical objects).

Our algorithm appears to generalize very well. After being

trained on synthetic images (from a known object class), it

is able to predict orientations of objects belonging to new

objects from the same class. For example, after being trained

on pencils, it predicted well on a knife; and after being

trained on martini glasses, it predicted well on wine glasses

as well. Some object instances were quite different in shape

than the synthetic examples trained on, e.g., the white tea

cup in Fig. 6.

B. Robotic Applications

We used this algorithm in the problem of grasping novel

objects using robotic arms [25], [27]. Specifically, we are

given an image of an object, which can be a previously-

unseen object, from a previously-unknown object class. Our

task is then to choose an orientation for the hand of our robot

arm so as to enable the robot to correctly grasp the object. For

example, given a picture of a long pencil lying on a table,

we should choose an orientation in which the robot’s two

fingers are perpendicular to the pencil’s main axis, rather than

parallel to it. Typically 30◦ accuracy is needed to successfully
grasp an object, which our algorithm almost always attains

(Table I, last column).



TABLE I

AVERAGE ABSOLUTE ROTATION ERROR (FRACTION ERROR) IN PREDICTING THE ORIENTATION FOR DIFFERENT OBJECTS. TRAINING ON SYNTHETIC

IMAGES OF OBJECTS, AND PREDICTION ON DIFFERENT TEST IMAGES.

TEST ON SYNTHETIC OBJECTS

TESTED ON MUGS WINE LONG TEA BOXES STAPLERS ROBOTIC
GLASS OBJECTS CUPS ARM

SYMMETRY 1-REFLECT AXIAL AXIAL, 1-REF 1-REFLECT 3-REFLECT 1-REFLECT 3-REFLECT

WRAPPED NORMAL (1-D) - 24.1 (.25) 7.5◦ (.08) - - - -
OUR ALGORITHM (1-D) - 4.5◦(.05) 2.6◦ (.03) - - - -

ROTATIONMATRICES (3-D) 74.3◦ (.74) 116.9◦ (.54) 68.8◦ (.65) 71.6◦ (.69) 69.9◦ (.67) 70.2◦ (.69) 66.2◦ (.64)
NO FEATURES (3-D) 48.7◦ (.45) 88.0◦ (.49) 51.7◦ (.44) 55.0◦ (.59) 44.4◦ (.42) 46.5◦ (.45) 46.4◦ (.45)
NAIVE INFERENCE (3-D) 42.3◦ (.45) 42.2◦ (.20) 18.1◦(.20) 39.8◦ (.37) 24.5◦ (.24) 31.2◦ (.29) 38.0◦ (.35)
OUR ALGORITHM (3-D) 18.4◦ (.17) 27.3◦ (.11) 11.9◦ (.04) 21.4◦ (.20) 12.8◦ (.11) 22.3◦ (.23) 22.2◦ (.20)

TEST ON REAL OBJECTS

WRAPPED NORMAL (1-D) - 28.9 (.29) 12.8◦ (.14) - - - -
OUR ALGORITHM (1-D) - 6.5◦ (.07) 3.2◦ (.04) - - - -

ROTATIONMATRICES (3-D) 66.9◦ (.62) 118.7◦ (.55) 66.0◦ (.62) 67.2◦ (.62) 71.7◦(.70) 64.2◦ (.59) 58.0◦ (.51)
NO FEATURES (3-D) 49.4◦ (.45) 91◦ (.51) 54.1◦ (.46) 50.0◦ (.48) 54.0◦ (.59) 47.7◦ (.46) 48.0◦ (.45)
OUR ALGORITHM (3-D) 26.8◦ (.24) 24.0◦ (.10) 16.7◦ (.06) 29.3◦ (.28) 13.1◦ (.14) 26.6◦ (.24) 26.0◦(.23)

VII. CONCLUSION

We presented an algorithm for learning 3-D orientation of

objects from a single image. Orientation learning is a difficult

problem because the space of orientations is non-Euclidean,

and in some cases (such as quaternions) the representation is

ambiguous, in that multiple representations exist for the same

physical orientation. We presented a symmetry invariant,

continuous, unique representation to address these problems,

together with efficient learning and inference algorithms

using this representation. We evaluated our algorithm on the

task of estimating the 3-D orientation of new objects from

six different object categories.
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