A Control Architecture for Quadruped
Locomotion Over Rough Terrain

J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng
Computer Science Department, Stanford University, StanfoAd 94305

Abstract— Legged robots have the potential to navigate a
much larger variety of terrain than their wheeled counterparts.
In this paper we present a hierarchical control architecture tha
enables a quadruped, the “LittleDog” robot, to walk over rough
terrain. The controller consists of a high-level planner that plans
a set of footsteps across the terrain, a low-level planner that
plans trajectories for the robot's feet and center of gravity
(COG), and a low-level controller that tracks these desired
trajectories using a set of closed-loop mechanisms. We conduct
extensive experiments to verify that the controller is able to
robustly cross a wide variety of challenging terrains, climbing
over obstacles nearly as tall as the robot's legs. In addition,
we highlight several elements of the controller that we found
to be particularly crucial for robust locomotion, and which are
applicable to quadruped robots in general. In such cases we

conduct empirical evaluations to test the usefulness of these
elements. Fig. 1. The LittleDog robot, designed and built by Boston Bsnics, Inc.

The rest of this paper is organized as follows. In Section
Il we discuss related work. In Section Il we present the

Although wheeled robots are very fuel efficient, they ardull hierarchical control system for quadruped locomotion
extremely limited in the types of terrain that they can falja Finally, in Section IV we present experimental results, and
navigate. Legged robots, in contrast, offer the potential tconclude the paper in Section V.
navigate a much wider variety of terrain, as evidenced by the
fact that biological legged animals are capable of accgssin
nearly all of the earth’s land surface. This potential has While a complete survey of all quadruped locomotion
sparked a great deal of research on legged locomotion literature is beyond the scope of this paper, we present a
recent years, both for quadruped and biped robots. Howevérpad overview of the general themes present in this relsearc
despite a great number of advances in the field, legged rob@se of the fundamental distinctions in this literature is
still lag far behind the capabilities of their biologicalusins. betweenstatic and dynamic gaits. Static gaits, such as a

In this paper we consider the task of quadruped locomotiomalk (or “crawl”), maintain static stability, which in the
over challenging, irregular terrain, with obstacles ne@$ ideal setting means that the robot's center of mass is always
tall as the robot’'s legs. We present a full control systemwithin the polygon formed by its supporting legs. Dynamic
that enables a quadruped robot known as “LittleDog,” showgaits, such as a trot or gallop, do not have this requirement;
in Figure 1, to robustly navigate a wide variety of difficultalthough this allows for much faster locomotion, it comes
terrains using a static walk. This work extends previouat the cost of a much more difficult balancing task. Due to
research by considering terrain that is significantly moréhe challenges present in navigating highly irregularaierr
challenging (relative to the size of the robot) than anyith obstacles nearly the size of the robots legs, we focus in
previously published work of which we are aware. this paper on statically stable gaits.

While the overall performance of our system naturally Statically stable gaits were first considered in the rolsotic
depends on several factors (including some, such as therature by McGhee and Frank [1]. Since then, there have
mechanical design of the robot, that are out of our controlpeen a large number of proposed approaches to static gaits,
throughout our work we have found that a few key element®], [3], [4], including many which are capable of walking
of the controller and planner have a large impact on perfopn irregular terrain [5], [6], [7], though in these works the
mance. In particular, the specific method for planning theizes of the irregularities in the terrain are typically ruc
robot’s center of gravity (COG) trajectory and the use ofmaller than the size of the legs. Lee et al. [8] present a
closed-loop recovery and stabilization drastically inye@ static gait capable of navigating over large obstaclesjgho
performance of our system. These elements are applicableitothat work the obstacles considered were all box-shaped,
guadruped locomotion in general, and we therefore descrilse the robot is able to step entirely on flat surfaces.
them in detail and experimentally document their usefidnes Another vein of research has focused on dynamic gaits

I. INTRODUCTION

Il. BACKGROUND AND RELATED WORK

High-Level Planner

- 1. Generate collision and
Terrain Feature Body Path e Footstep height maps from a 3D
Extraction Planner — 7| Planner]
model of the terrain.
. J
(* N\

Low-Level Planner

COG Trajectory Moving Foot 2. Around each point in the
Planner Trajectory Planner height map, create local
L J maps of different sizes,
p * ~ and compute features
Low-Level Controller (e.g., slope, max height).
PD Control Body Stabilization
3. Form the foot cost as a
Stability Detection / Closed-loop linear combination of the
Recovery Foot Placement features and collision
- Y map information.

Fig. 2. Overview of the planning and control architecture.
4. Form body cost map by

where the robot “bounces” on compliant legs [9], [10], [11], aggregating foot costs,
[12]. While these gaits are capable of achieving very fast and plan body path using
motion, they are highly limited in terms of the terrains they dynamic programming.

can reliably cross. There has also been work on adaptive gai
(both dynamic and static), that make use of a biologically
inspired “central pattern general” to traverse rough terra
[13], [14], [15], [16], though again the terrain here tygiga
has only very small irregularities compared to the size ef th
robot. L
The work by Pongas et al. [17] and Rebula et al. [18]
bears the most similarity to the current work. These both Fig. 3. Overview of the high-level planner.
present systems for control of the LittleDog robot that shar
many similarities to the system we present here. We builahake use of a hierarchical decomposition. Specifically, we
upon this previous work in two ways. First, in this paper weseparate the system into three components: 1) a high-level
consider terrain that is substantially more challengingnth planner, which plans a series of footsteps across theterrai
the terrain previously considered, at equal or faster spee@) a low-level planner, which plans trajectories for the COG
Although this is somewhat of an unfair comparison (sinc@&nd feet so as to achieve the upcoming footsteps, and 3)
these groups have more recently applied these techniquesatdow-level controller, which provides control inputs that
more challenging terrain) based on the most recent publichieve the desired COG and feet trajectories in the face of
evaluations at the time of the original paper submissioglisturbances. This architecture is shown in Figure 2. We now
(September, 2007) our results reflect performance that wegscribe each element in detail, highlighting the diffeesn
on par with the very best that had been achieved by arfietween it and past approaches.
group working with the LittleDog robot. Second, although
previous controllers have many elements similar to our owd. The High-Level Planner
the past work has only demonstrated performance for the the goal of the high-level planner is to determine a set
entire system. In contrast, in this paper we conduct detailgyt feasible footsteps across the terrain, ideally one that i
experiments evaluating the empirical advantage of seeéral ;oh,st to minor deviations and slips of the robot. Given
these elements individually. this objective, some foot locations are clearly superior to
others; for example, stepping on flat surfaces or in small
concavities is better than stepping on highly sloped sagac
Therefore, the first step in the high-level planning is tddui
The full planning and control problem for a quadrupech “foot cost map” that indicates the desirability of stempin
robot is to plan a sequence of joint angles that moves tla any given point in the terrain. The footstep planning task
robot to its desired position while maintaining stabiliiyen is then to find the minimum cost set of footsteps across the
apply control inputs (i.e., torques) to achieve this dekireterrain. However, due to the high-dimensionality of thecgpa
trajectory. However, due to the complexity of this task, wesven this search problem is difficult, so we again employ a

5. Plan footsteps along
desired body path by

receding horizon search.

I11. PLANNING AND CONTROL FORQUADRUPED
LOCOMOTION

hierarchical decomposition. In particular, we averageftloe The algorithm we use to learn the coefficients is called
costs around the default foot locations to form a “body codtlierarchical Apprenticeship Learning (HAL), and it allows
map,” then use dynamic programming to find the minimuma “teacher” to demonstrate good actions at multiple levéls o
cost path. Finally, we plan a set of footsteps that approxthe control hierarchy [19]. Very briefly, the HAL algorithm
mately follows this path using a receding horizon search. Arequires that user specify good footsteps at a few key and
overview of this entire process is show in Figure 3 and wgood approximate paths for the body over the terrain. It then
now describe each of these steps in greater detalil. uses information from both these levels to learn a the wsight
1. Generate height and collision maps of the terrain. of a cost function which can be used both for the body path
The terrain is described natively as a set of 3D tri-meshemd footstep planning levels. In practice, we have found tha
along with their positions and orientations, so we begidlemonstrating good behavior in this way is far easier than
the planning process by sampling the heights in a grid teand-coding a set of rules that induces the behavior.
produce a discrete height map. In addition, a crucial aspect4. Form body cost map and plan body pathTo form the
of planning good footsteps is to ensure that they do not caubedy cost map, we aggregate the foot cost maps in a square
excessive collision with the terrain. For example, if thbob around the default foot location for each of the four feet.
attempts to place a rear foot directly in front of a large step/Vhile this is only an approximation, since the robot's feet
this will most likely cause the knee to collide with the stepcould be in many other locations given the body position,
knocking the robot off its desired trajectory. To ensure that nonetheless does capture the “expected” cost incurred fo
this does not occur, we precompute approximate collisioa given body position, and therefore serves as a mechanism
maps; in simulation, we place the robot’s feet at each poirfibr planning the desired path for the robot’s body. Given
in the height map, and determine whether the “default” posehis body cost map, we then use value iteration, a dynamic
will cause the legs to collide with the terrain. programming algorithm, to plan a minimum-cost path across
2. Generate local features of the terrain At each point the terrain. Note that this body path is merely a tool for
in the grid, we consider local height maps of different sizemiting the search space for our footstep planner; the low-
(squares of 5, 7, 11, and 21 grid cells around the currefdvel planner itself only looks at the footsteps and does not
point), and generate five features for each of these maps:attempt to follow the body path exactly.

1) standard deviation of the heights 5. Plan footsteps along the desired body pathGiven

2) average slope in the direction a desired path for the robot’s body, the final step of the
3) average slope in thg direction planning process is to plan a set of footsteps that (roughly)
4) maximum height relative to the center point follow this path. We plan the footsteps sequentially —
5) minimum height relative to the center point moving first the back-right foot, then front-right, then kac

We do this for each of the four local map sizes, leading to &ft, then front-left — following the standard biologicahig
total of 20 features that describe local characteristicthef pattern for static walking [1]. Starting at the robot's ialt
terrain at different spatial scales. In addition, we alsdide location, we move the robot's center some distance along
a boolean feature that indicates whether or not the givdhe desired body path, then look for low-cost foot place-
position causes a collision, as specified by the collisiop manent around the default foot location of the moving foot.
described above, and a constant offset. This leads to a toBgcause this “greedy” placement might lead to suboptimal
of 22 features, which we represent by the veeitr) € R?2 foot placements in the future, we use a receding horizon
(note that for a given point on the terrain we actually formPranching search to find the placement that leads to a low
four feature vectors, one corresponding to each foot, withum of the foot costs for several steps in advance. We require
local features properly reflected to account for symmetry dhat each footstep obey kinematic feasibility and that it no
the robot). cause collisions with the terrain.

3. Generate foot cost mapsGiven a set of features The primary goal of the hierarchical decomposition for
describing each point of the terrain, we take a linear combthe quadruped task is to speed up planning time, and there
nation of these features to form a cost map representing thas been previous work that uses beam-search [8] or an A*
desirability of that location for each foot (i.e., the co$tao Variant [20] to accomplish similar goals. The advantage of
point = becomesu™ ¢(x) for some weight vectow € R??). the hierarchical decomposition we propose is that it both

Of course, a crucial element to this system is choosingorks well in practice, and allows us to apply the previously
a weight vectorw that produces the proper costs. A goodnentioned method for hierarchical apprenticeship legnin
choice of w has to trade off several features, and it isB T

. The Low-

highly non-trivial to simply tune the coefficients by hand. Level Planner

The goal of the low-level planner is to plan a desired

1The high-level planner frequently uses the notion afefault location trajectory for the robot's COG and moving feet so as to
for the feet, or (equivalently) a default pose for the rofdtis is simply a

(z,y, z) location for the foot relative to the body that is “good” ireteense achl_e_ve the upcoming foo_tsteps while maintaining static
that it gives the robot a stable pose while still allowing #ofair amount of ~ stability. For reasons that will soon be apparent, we algtual

kinematic reachability. While this is often an apprOXimatimC(ause,_fOr plan a trajectory for the upcom”rtglo footstepS, Startlng with
example, whether or not the foot collides with the terrain given location

can depend on the precise pose of the robot), it nonethesggsres the one of the hind feet. Note that this pl?-n for the COG is not _the
“expected” behavior in many cases, and greatly reduces ceriqut same as the “body path plan” mentioned above in the high-

Back—Le.ft Front-Left

(Travel
Direction)

Back—Rightu Front-Right
a. Initial setup of the robot b. Support triangle c. Support triangle d. Double support triangle, e. Desired trajectory
and desired footsteps for the first step for the second step stable during both steps for the robot's COG

Fig. 4. Planning of the COG trajectory for a sequence of tvepst

level planner: the body path plan is just an approximate path
for the robot over the terrain, used to speed up the footstep
search, while the COG trajectory is the actual path that the
COG should follow in order to maintain static stability.

Consider the robot pose shown in Figure 4(a), where the
filled circles represent the current locations of the rabot’
feet, and the open circles represent the desired footsteps f
the back-right and front-right feet. We begin by moving the
back-right foot. When moving this foot, the robot will be Fig. 5. Desired trajectory for moving feet over obstacles.

statically stable if the COG is in the support triangle fotme o hever move the COG backwards. These two effects allow
by the other three feet, as shown in Figure 4(b) — W, ta5t jocomotion, even over very challenging terrain.
take a standard approach, and inset the support triangle bYye getermine the height and pitch of the robot's body by
some fixed margin, to be more robust to slight deviations Qpe pejght of the four feet. Given four foot locations, we set
maccuramgs in the state estlma}t|on. lee_W|se, when NPV q the height to be the average height of these four foot
tgggc}gt'\;%:‘itnfct’ﬁg it:seezost,)l?;gz)lﬂ ?r?af]tg;iltelci:‘lﬁhsetatbr:?etgenevly?catiOns' plus a constant amount. We determine the pitch
] M ~'by the average height of the front two feet relative to the
supporting legs, as shown in Figure 4(c). A key observationyerage height of the back two feet. While moving a foot
noted in [1] among others, is that the supporting trianglege interpolate between the height and pitch defined by the
for these two steps overlap, so that if the COG is mOVefyia| foot location and the height and pitch defined by the
properly, it is often possible to start lifting the front 00 41 oot location.
as soon as the back foot touches the ground. In contrast,ginay to plan the desired trajectories for the movingt fee
when transitioning between moving the front.-rllg'ht foot an(é/ve take a very simple approach, and move the feet in a box
the_back-lgft foot, the support trl_ar?gles aré d|510|r_1t, sme Ipattern, where the height of the box is determined to lie some
period of time must be spent shifting the COG with all four 5 4in anove the tallest obstacle crossed by the foot. This
feet on the ground. approach is shown in Figure 5. While this is not the shortest
The guiding principle behind the our COG planningpossible path, an advantage of this approach is that we do
method is that we want to minimize the distance travelled bgot need to adjust the foot trajectory based wimere the
the COG while the robot is not moving its feet. To achieveallest obstacle is relative to the foot's path.
this, we first compute the intersection of the two supporting Previous work on quadruped locomaotion has often focused
triangles for each step, which we refer to as ttmible on periodic patterns (for example, sinusoidal trajec&rie
supporting triangle, shown in Figure 4(d). We then projector COG movement, with a fixedluty factor (percentage
the current COG into this double support triangle, and mowvef time spent moving the feet versus merely shifting the
it to this point. Because the robot's COG is not yet in theCOG) [21], [2]. While such trajectories can be very efficient
double support triangle during this “shifting” phase, iist for fixed walking patterns, and have desirable properties
able to lift either foot and must instead keep all four feet osuch as smoothness (i.e., being twice differentiable) ey
the ground. Finally, we move the COG from this projecteadnuch more difficult to maintain given the irregular footsep
location to its final location inside the double supportrigke required to navigate difficult terrain. Recently, researsh
(which is the projection of the robot's effective centere th have proposed a technique for online modification of peciodi
average of its four feet after taking the two footsteps, int€OG trajectories that maintains the smooth nature of these
the double support triangle). During this phase the robot carajectories while adjusting for the current position o€ th
lift either foot, as the COG is in the support triangle forfeet, and applied this to the LittleDog robot [17]. However,
both moving feet; in our approach we move the COG halh their implementation, the robot's COG still moves slight
the distance while moving the back foot, then the remainingackwards for a short time period during each step. As we
distance while moving the front foot. As mentioned, thewill show in the next section, our system is able to achieve
advantage of this method is that we minimize the time spenery robust performance on challenging terrain even with
moving the COG while the robot is not moving its feet, andur non-smooth COG trajectories, and we therefore prefer to

minimize the length of these trajectories as much as passiblve multiply the commanded positions of the supporting feet
thereby increasing the speed of locomotion. by a transformation that will move the robot's COG from its
The COG trajectory planning used in [18] bears a greaturrent position and orientation to its desired positiom an
deal of similarity to our own, though they do not explicitly orientation (assuming the supporting feet are fixed to the
consider the double supporting triangle. When executinground).
the irregular footstep patterns required to navigate large More formally, letT,., be the4 x4 homogeneous transfor-
obstacles, we have found that often times the projection ofiation matrix specifying thdesired position and orientation
the current COG into the first supporting triangle actuaétg | of the robot relative to the world frame, and similarly Tet,..
ahead of the projection of the final center into the seconde the homogeneous transformation specifying dtveent
supporting triangle. By explicitly considering the doubleposition and orientation of the robot relative to the world
support triangle, we guarantee that we never need to moframe. In addition, letfeet denote the default commanded
the COG backwards. In addition, the system presented positions of the supporting feet expressed in the robatiné
[18] occasionally opts to move the COG into tbenter of of reference, based on the desired trajectory for the COG. If
the current supporting triangle for a greater stability giar we transform the commanded positions for the feet by
While this technique can increase stability we found that 1
for our system, moving the COG into the center of the TyesTeur feet

supporting triangle actually oftemcreased the chance of hen (assuming the supporting feet remain fixed) this would
falling over. We discuss this effect further in Section IV. nove the COG to its desired position and orientation. How-
ever, when coupled with PD control, this typically leads to

large oscillations, so instead we employ a common interpo-

Given the desired trajectories for the COG and movingytion scheme and command the supporting feet according
feet, we use inverse kinematics to convert these to joipt

trajectories, then use a PD controller to apply torques that
move the robot along these trajectories. However, due to the
challenging nature of the terrains we consider, this apgroafor some0 < « < 1 (in our experiments we found = 0.1
alone is highly unreliable. Regardless of how well we planto be a good value). This causes the robot's COG to move
and regardless of how well the individual joints track theigradually to track the desired trajectory, even if the robot
desired trajectories, it is almost inevitable that at somiatp slips slightly. In addition, we project the desired positio
the robot will slip slightly and deviate from its desiredT,.s into the current (double) supporting triangle, thereby
trajectory. Therefore, a critical element of our system is aorking to stabilize the robot even if the initially compdte
set of closed-loop control mechanisms that detect failurdsajectory becomes unstable due to the feet slipping. @Qurin
and either stabilize the robot along its desired trajectory our development we found this approach to be slightly
re-plan entirely. In particular, we found three elements tonore robust than attempting to move the supporting feet
be especially crucial: 1) stability detection and recoy@)y individually to stabilize the body, as our method keepsdnta
body stabilization, and 3) closed-loop foot placement. Wehe relative positions of the supporting feet, leading todie
now describe each of these in greater detail. unstable configurations. While the stabilization does lead t
Stability Detection and Recovery.Recall that (ignoring kinematic infeasibilites on occasion, we find that usually
friction effects, which do not appear to have a major effact iin such cases the robot is about to fall, and the recovery
the terrain we consider) the robot is statically stable ahly procedure shortly replans (feasible) footsteps.
the projection of the COG onto the ground plane lies within Closed-loop Foot PlacementFinally, we want to ensure
the triangle formed by the supporting feet (also projectethat the moving foot tracks its desired trajectory as clpssl
onto the ground plane). If the robot slips while following it possible, even if the body deviates from its desired path. To
trajectory, the COG can move outside the supporting trgnglaccomplish this, at each time step we compute the desired
causing the robot to tip over. To counteract this effect, weocation of the foot along its (global) trajectory, and use
compute the current (double) support triangle at each tinmeverse kinematics based on therrent pose of the robot’s
step, based on the current locations of the feet as detedmingody to find a set of joint angles that achieves the desired foo
by state estimation. If the COG lies outside this triandient location. This is particularly important in cases where the
we re-run the low-level planner (planning only one step ifobot slips downward. If the robot’s body is below its degire
the robot falls while moving a front foot). This has the effec position and we merely execute an open loop trajectory for
of lowering all the robot’s feet to the ground, then re-shit the moving foot, then the foot can punch into the ground,
the COG back into the inset support triangle. knocking the robot over faster than we can stabilize it.
Body Stabilization. While sometimes the recovery proce-Computing a closed-loop trajectory for the foot in the manne
dure in unavoidable, as much as possible we would like tdescribed above avoids this situation.
ensure that the COG do@st move outside the supporting It may seem as if there are also cases where closed-loop
triangle, even in light of minor slips. To accomplish thisg w foot placement could actually hinder the robot rather than
adjust the commanded positions of the supporting feet so help. For example, if the robot is falling, then it may be
to direct the COG toward its desired trajectory. In partieul best to simply put its foot down, rather than attempt to keep

C. Low-Level Controller

1—«)feet + anl,Tcur eet
(des

TABLE |
THE FOUR TERRAINS USED FOR EVALUATION

Terrain # 1 2 3 4
Max Height

Picture

Heightmap

Fig. 6. Example of a typical setup for the robot and terrairo\gh here with Terrain #3).

its foot along the proper (global) trajectory. However, imro on each leg. A separate “host” computer performs nearly all
experience this nearly always occurs in situations whese tiprocessing, running a control loop at 100hz and relaying
recovery procedure mentioned previously will catch theotob servo commands to the robot once every 10ms over a
anyway, and this is borne out in the experimental results, agireless channel. The robot’s on-board hardware runs &join
we will discuss shortly. level PD servo controller at 500hz.

A motion capture (MOCAP) system estimates the position
and orientation of the robot’s body by tracking reflective

In this section we present experimental results for ouharkers attached to the robot. Joint encoders provide esti-
controller on a variety of challenging terrain. The chiefmates of the robot’s joint angles. Although we have exper-
result is that our system is able to reliably cross difficulimented extensively with the use of additional localizatio
terrain at relatively fast speeds. In order to better urtdats methods, such as Kalman filters, we found in general that the
the performance of the system, we perform experiments taw estimates provided by the MOCAP and joint encoders
analyze its behavior with and without several of the plagninwere sufficient for complete pose estimation. The robot
and control elements described above, thereby demomsfratialso contains an on-board IMU that can provide orientation
their usefulness. estimates, but we do not make use of this component in our

A video of the robot crossing the evaluation terrains igurrent system. Finally, the MOCAP also tracks markers on
included with the paper. A higher-resolution version ofthi the terrains; we combine this with 3D models of the terrain

IV. EXPERIMENTAL RESULTS

video is available at to estimate the state of the entire environment.

http://cs.stanford.edu/ kolter/icra08videos/ We evaluated the performance of our system on four
) different terrains of varying difficulty, two that were piided

A. Experimental Setup by the official LittleDog program and two that we built

The LittleDog robot, shown in Figure 1, was designedurselves. Pictures of the terrains and their correspgndin
and built by Boston Dynamics, Inc. It is a quadruped robotheightmaps are shown in Table I. For all the terrains we
about 30 cm long, whose legs lie 12 cm below its bodgonsidered all four crossing directions, and planned five
when fully extended; the robot weights about 3kg. Theeparate paths across each direction by varying the initial
robot has 12 independently actuated electric motors, thrgesition of the robot. This lead to a total of 20 paths across

TABLE I
SUCCESS PROBABILITIES OUT ORRO RUNS ACROSS DIFFERENT
TERRAINS FOR THE CONTROLLER WITH AND WITHOUT RECOVERY
BODY STABILIZATION, AND CLOSED-LOOP FOOT PLACEMENT

TABLE Il
SUCCESS PROBABILITIES AND AVERAGE SPEEIN CM/S) OF
SUCCESSFUL RUNS FOR OUREOG TRAJECTORY PLANNING METHOD
FOR KEEPING THECOG FIXED WHILE MOVING THE FEET, AND FOR
MOVING THE COGTO THE CENTER OF THE SUPPORTING TRIANGLE

Terrain All w/o Rec. | w/o Stab. | w/o CLF None
1 100% 100% 100% 100% 100% Terrain | Our Method Fixed COG Centered COG
2 100% 60% 95% 95% 55% 1 100% (3.67) | 100% (2.99) 100% (2.28)
3 95% 25% 55% 75% 35% 2 100% (3.31) 75% (2.61) 70% (2.22)
4 95% 0% 75% 85% 35% 3 95% (3.07) 60% (2.62) 35% (2.10)
Total | 97.5% | 46.25% | 81.25% | 88.75% | 56.25% 4 95% (3.01) 50% (2.45) 30 % (2.26)
Total 97.5% (3.28) | 71.25% (2.72)| 58.75% (2.23)

each terrain. A standard setup for the robot and terrain is _ _ _ _
shown in Figure 6. Figure 7 shows several snapshots of th@ticeably less stable during small slips, which sometimes
robot crossing Terrain #3. leads to falls that even the recovery routine cannot salvage

Without closed-loop foot placement, the feet can punch into
the ground during slips, occasionally flipping the roboteOn
Overall, the system we present is able to successfully crogseresting effect is that without recovery, the controlietu-
a wide variety of challenging terrains with a 97.5% successlly performsworse with body stabilization and closed loop
rate, at an average speed of 3.28 cm/sec. To put these resfdtst movement enabled, especially on the more challenging
in context, we note that at the most recent public test aérrains. This appears to be due to the fact that when the robo
the LittleDog systems (which had an overall setup virtuallyfalls significantly (and makes no attempt to recover) both th
identical to the one we use for our experiments, but whichody stabilization and closed-loop foot placement atteimpt
used a different terrain), the controller we describe irs thimake large changes to the joint angles, causing the robot
paper achieved a speed of 3.63 cm/s on its best run, whiah become less stable. However, with recovery enabled the
was the fastest time of any group across this terrain; th@bot never strays too far from its desired trajectory witho
next-fastest time on this test by another team was 2.85 cmé&ttempting to re-plan; in this case the advantage of usiag th
This result should be taken with some caution, since thetgdy stabilization and closed-loop foot placement is clear
are a very limited number of these tests, and not all teanfiibm the experiments above.
were optimizing for speed. Nonetheless, based on these testin our second set of experiments, we compare the perfor-
and personal communication with other researchers, we faelnce of the our COG trajectory planning method versus
justified in our claim that the system we present is on paseveral alternatives. In particular, we consider a planner
with the very best that had been achieved with the LittleDothat does not make use of the double support triangle, but
robot at the time of original submission (September, 2007)merely projects the COG into the current support triangle
In our first set of experiments, we analyze the performancand keeps it fixed in this location while moving the feet.
of the system with and without the low-level controllerSecond, we consider a planner that moves the COG into
elements described previously. For each of the 20 plannednter of the supporting triangle as done (for some steps)
paths across each of the four terrains, we evaluated thre[18]. Table Il shows the success percentages and speeds
performance of our system with and without the stabilitfor each of the different methods. Not surprisingly, keepin
detection and recovery, body stabilization, and closeg-lo the COG fixed or moving it to the center of the supporting
foot placement. In addition, we evaluated the performarice ¢riangle significantly lowers the speed of the the gait. More
the system with none of these elements enabled. As shownsuorprisingly, however, is the fact that for harder terrahrese
Table 11, the controller with all elements enabled subsédigt seeminglymore stable methods actually perform muehrse
outperforms the controller when disabling any of theseehran terms of success ratés.
elements. This effect becomes more pronounced as theBased on our observations, we feel this performance is
terrains become more difficult: Terrain #1 is easy enougtue to the fact that in challenging terrains, failures aterof
that all the controllers achieve 100% sucess rates, but foaused by collision between the robot’s legs and the terrain
Terrains #3 and #4, the advantage of using all the contrdMoving the COG to a greater extent, while potentially
elements is cledr. increasing stability, also increases the likelihood ofisimin
Subijectively, the failure modes of the different contrdle with the terrain. Given the fact that our controller is alde t
are as expected. Without the stability detection and regpve maintain stability of the robot with the minimum-length COG
the robot frequently falls over entirely after slipping atrajectories that we plan, we feel that moving the COG more
small amount. Without body stabilization, the robot becemeto achieve “greater” stability does more harm than good.

B. Results and Discussion

SStatistically, our method performs better in terms of suctaitisie rates
than the fixed COG and centered COG methods with p-valups-of1.8 x
10~7 andp = 4.9 x 10~ respectively using a pairwise Bernoulli test. Our
method performs better in terms of speed with p-vales 2.1 x 1026
andp = 4.6 x 10~34 using a pairwise-test.

2Statistically, over all four terrains the full controllemutperforms the
controller with no recovery, with no stabilization, with mtosed-loop foot
placement, and with none of these elements in terms of sucoelsahplity
with p-values ofp = 2.2 x 10713, p = 0.0078, p = 0.0012, andp =
5.8 x 10~ 11 respectively, via a pairwise Bernoulli test.

Fig. 7. Snapshots of the robot crossing Terrain #3.

V. CONCLUSION

(7]

In this paper we presented a hierarchical control system
for the LittleDog robot that enables it to navigate over[g]
rough terrain. We conducted experimental evaluations lwhic
showed that using our control system the robot is able tgq

robustly cross a wide variety of challenging terrains. Wé 0]

also highlighted several elements of the controller that we
found to be particularly crucial for robust locomotion, and

which are applicable to quadruped robots in general. Fd¥i]

these elements we conducted extensive experiments that

demonstrated their usefulness in our control system.
VI. ACKNOWLEDGMENTS

[12]

This work was supported by the DARPA Learning Lo-[13]
comotion program under contract number FA8650-05-C-
7261. This work benefited from numerous discussions with
researchers working on the LittleDog robot at Carnegié4l

Mellon, IHMC, MIT, University of Pennsylvania, and USC,

and from frequent interaction with the government teamis)
running the Learning Locomotion program. We also thank
the anonymous reviewers for many helpful suggestions,
and for noticing an earlier error in the body stabilizatiorie)

equations.

REFERENCES

[1] R. B. McGhee and A. A. Frank, “On the stability propertie$
quadruped creeping gaitdylathematical Biosciences, vol. 3, pp. 331—
351, 1968.

[2] V. Hugel and P. Blazevic, “Towards efficient implementatiof
quadruped gaits with duty factor of 0.75,” Rroceedings of the IEEE
International Conference on Robotics and Automation, 1999.

[3] F. Hardarson, “Stability analysis and synthesis ofistdlly balanced
walking for quadruped robotsRoyal Institute of Technology, 2002.

[4] S. Ma, T. Takashi, and H. Waka, “Omnidirectional staic kiagj of a
quadruped robot,JEEE Transactions on Robotics, vol. 21, no. 2, pp.
152-161, 2005.

[5] S.Bai, K. Low, G. Seet, and T. Zielinska, “A new free gaérgeration
for quadrupeds based on primary/secondary gaitPrioceedings of
the |EEE International Conference on Robotics and Automation, 1999.

[6] J. Estremera and P. G. de Santos, “Free gaits for quadrrgisuts
over irregular terrain, The International Journal of Robotics Research,
vol. 21, no. 2, pp. 115-130, 2005.

[17]

(18]

[19]

[20]

[21]

——, “Generating continuous free crab gaits for quaddipebots
on irregular terrain,” inProceedings of the |EEE Transactions on
Robotics, 2005.

H. Lee, Y. Shen, C.-H. Yu, G. Singh, and A. Y. Ng, “Quadrdpebot
obstacle negotiation via reinforcement learning,Piroceedings of the
IEEE International Conference on Robotics and Automation, 2006.

M. H. Raibert, L%ged Robots that Balance. MIT Press, 1986.
J. G. Nichol, S. P. Singh, K. J. Waldron, L. R. P. lll, and B Orin,

“System design of a quadrupedal galloping machinatgrnational
Journal of Robotics Research, vol. 23, no. 10-11, pp. 1013-1027,
2004.

|. Poulakakis, J. A. Smith, and M. Buehler, “Modeling agperiments
of untethered quadrupedal running with a bounding gait: d¢wutii
robot,” The International Journal of Robotics Research, vol. 24, no. 4,
pp. 239-256, 2005.

K. D. Mombaur, R. W. Longman, H. G. Bock, and J. P. Schloder,
“Open-loop stable runningRobotica, vol. 23, pp. 12-33, 2005.

Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive dynamiealing
of a quadruped robot on irregular terrain based on bioldégmacepts,”
The International Journal of Robotics Research, vol. 22, pp. 187-202,
2003.

S. Peng, C. P. Lam, and G. R. Cole, “A biologically inspireour
legged walking robot,” inProceedings of the |IEEE International
Conference on Robotics and Automation, 2003.

H. Kimura, Y. Fukuoka, and A. H. Cohen, “Adaptive dynamialiing
of a quadruped robot on natural ground based on biologicateuts,”
The International Journal of Robotics Research, vol. 26, no. 5, pp.
475-490, 2007.

Z. G. Zhang, Y. Fukuoka, and H. Kimura, “Adaptive runniof a
quadruped robot on irregular terrain based on biologicatepts,” in
Proceedings of the |IEEE International Conference on Robotics and
Automation, 2003.

D. Pongas, M. Mistry, and S. Schaal, “A robust quadrupatking gait
for traversing rough terrain,” iffroceedings of the |EEE International
Conference on Robotics and Automation, 2007.

J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnand
J. E. Pratt, “A controller for the littledog quadruped walgion rough
terrain,” in Proceedings of the |IEEE International Conference on
Robotics and Automation, 2007.

J. Z. Kolter, P. Abbeel, and A. Y. Ng, “Hierarchical appticeship
learning, with application to quadruped locomotion,”Nieural Infor-
mation Processing Systems 20, 2007.

J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami,ldifhing
biped navigation strategies in complex environments/|hiernational
Conference on Humanoid Robotics, 2003.

K. Yoneda and S. Hirose, “Dynamic and static fusion gditao
quadruped walking vehicle on a winding path,”Pnoceedings of the
|EEE International Conference on Robotics and Automation, 1992.

