
A Control Architecture for Quadruped
Locomotion Over Rough Terrain

J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng
Computer Science Department, Stanford University, Stanford,CA 94305

Abstract— Legged robots have the potential to navigate a
much larger variety of terrain than their wheeled counterparts.
In this paper we present a hierarchical control architecture that
enables a quadruped, the “LittleDog” robot, to walk over rough
terrain. The controller consists of a high-level planner that plans
a set of footsteps across the terrain, a low-level planner that
plans trajectories for the robot’s feet and center of gravity
(COG), and a low-level controller that tracks these desired
trajectories using a set of closed-loop mechanisms. We conduct
extensive experiments to verify that the controller is able to
robustly cross a wide variety of challenging terrains, climbing
over obstacles nearly as tall as the robot’s legs. In addition,
we highlight several elements of the controller that we found
to be particularly crucial for robust locomotion, and which are
applicable to quadruped robots in general. In such cases we
conduct empirical evaluations to test the usefulness of these
elements.

I. I NTRODUCTION

Although wheeled robots are very fuel efficient, they are
extremely limited in the types of terrain that they can reliably
navigate. Legged robots, in contrast, offer the potential to
navigate a much wider variety of terrain, as evidenced by the
fact that biological legged animals are capable of accessing
nearly all of the earth’s land surface. This potential has
sparked a great deal of research on legged locomotion in
recent years, both for quadruped and biped robots. However,
despite a great number of advances in the field, legged robots
still lag far behind the capabilities of their biological cousins.

In this paper we consider the task of quadruped locomotion
over challenging, irregular terrain, with obstacles nearly as
tall as the robot’s legs. We present a full control system
that enables a quadruped robot known as “LittleDog,” shown
in Figure 1, to robustly navigate a wide variety of difficult
terrains using a static walk. This work extends previous
research by considering terrain that is significantly more
challenging (relative to the size of the robot) than any
previously published work of which we are aware.

While the overall performance of our system naturally
depends on several factors (including some, such as the
mechanical design of the robot, that are out of our control),
throughout our work we have found that a few key elements
of the controller and planner have a large impact on perfor-
mance. In particular, the specific method for planning the
robot’s center of gravity (COG) trajectory and the use of
closed-loop recovery and stabilization drastically improved
performance of our system. These elements are applicable to
quadruped locomotion in general, and we therefore describe
them in detail and experimentally document their usefulness.

Fig. 1. The LittleDog robot, designed and built by Boston Dynamics, Inc.

The rest of this paper is organized as follows. In Section
II we discuss related work. In Section III we present the
full hierarchical control system for quadruped locomotion.
Finally, in Section IV we present experimental results, and
conclude the paper in Section V.

II. BACKGROUND AND RELATED WORK

While a complete survey of all quadruped locomotion
literature is beyond the scope of this paper, we present a
broad overview of the general themes present in this research.
One of the fundamental distinctions in this literature is
betweenstatic and dynamic gaits. Static gaits, such as a
walk (or “crawl”), maintain static stability, which in the
ideal setting means that the robot’s center of mass is always
within the polygon formed by its supporting legs. Dynamic
gaits, such as a trot or gallop, do not have this requirement;
although this allows for much faster locomotion, it comes
at the cost of a much more difficult balancing task. Due to
the challenges present in navigating highly irregular terrain,
with obstacles nearly the size of the robots legs, we focus in
this paper on statically stable gaits.

Statically stable gaits were first considered in the robotics
literature by McGhee and Frank [1]. Since then, there have
been a large number of proposed approaches to static gaits,
[2], [3], [4], including many which are capable of walking
on irregular terrain [5], [6], [7], though in these works the
sizes of the irregularities in the terrain are typically much
smaller than the size of the legs. Lee et al. [8] present a
static gait capable of navigating over large obstacles, though
in that work the obstacles considered were all box-shaped,
so the robot is able to step entirely on flat surfaces.

Another vein of research has focused on dynamic gaits



Fig. 2. Overview of the planning and control architecture.

where the robot “bounces” on compliant legs [9], [10], [11],
[12]. While these gaits are capable of achieving very fast
motion, they are highly limited in terms of the terrains they
can reliably cross. There has also been work on adaptive gaits
(both dynamic and static), that make use of a biologically
inspired “central pattern general” to traverse rough terrain
[13], [14], [15], [16], though again the terrain here typically
has only very small irregularities compared to the size of the
robot.

The work by Pongas et al. [17] and Rebula et al. [18]
bears the most similarity to the current work. These both
present systems for control of the LittleDog robot that share
many similarities to the system we present here. We build
upon this previous work in two ways. First, in this paper we
consider terrain that is substantially more challenging than
the terrain previously considered, at equal or faster speeds.
Although this is somewhat of an unfair comparison (since
these groups have more recently applied these techniques to
more challenging terrain) based on the most recent public
evaluations at the time of the original paper submission
(September, 2007) our results reflect performance that was
on par with the very best that had been achieved by any
group working with the LittleDog robot. Second, although
previous controllers have many elements similar to our own,
the past work has only demonstrated performance for the
entire system. In contrast, in this paper we conduct detailed
experiments evaluating the empirical advantage of severalof
these elements individually.

III. PLANNING AND CONTROL FORQUADRUPED

LOCOMOTION

The full planning and control problem for a quadruped
robot is to plan a sequence of joint angles that moves the
robot to its desired position while maintaining stability,then
apply control inputs (i.e., torques) to achieve this desired
trajectory. However, due to the complexity of this task, we

Fig. 3. Overview of the high-level planner.

make use of a hierarchical decomposition. Specifically, we
separate the system into three components: 1) a high-level
planner, which plans a series of footsteps across the terrain,
2) a low-level planner, which plans trajectories for the COG
and feet so as to achieve the upcoming footsteps, and 3)
a low-level controller, which provides control inputs that
achieve the desired COG and feet trajectories in the face of
disturbances. This architecture is shown in Figure 2. We now
describe each element in detail, highlighting the differences
between it and past approaches.

A. The High-Level Planner

The goal of the high-level planner is to determine a set
of feasible footsteps across the terrain, ideally one that is
robust to minor deviations and slips of the robot. Given
this objective, some foot locations are clearly superior to
others; for example, stepping on flat surfaces or in small
concavities is better than stepping on highly sloped surfaces.
Therefore, the first step in the high-level planning is to build
a “foot cost map” that indicates the desirability of stepping
at any given point in the terrain. The footstep planning task
is then to find the minimum cost set of footsteps across the
terrain. However, due to the high-dimensionality of the space,
even this search problem is difficult, so we again employ a



hierarchical decomposition. In particular, we average thefoot
costs around the default foot locations to form a “body cost
map,” then use dynamic programming to find the minimum-
cost path. Finally, we plan a set of footsteps that approxi-
mately follows this path using a receding horizon search. An
overview of this entire process is show in Figure 3 and we
now describe each of these steps in greater detail.

1. Generate height and collision maps of the terrain.
The terrain is described natively as a set of 3D tri-meshes
along with their positions and orientations, so we begin
the planning process by sampling the heights in a grid to
produce a discrete height map. In addition, a crucial aspect
of planning good footsteps is to ensure that they do not cause
excessive collision with the terrain. For example, if the robot
attempts to place a rear foot directly in front of a large step,
this will most likely cause the knee to collide with the step,
knocking the robot off its desired trajectory. To ensure that
this does not occur, we precompute approximate collision
maps; in simulation, we place the robot’s feet at each point
in the height map, and determine whether the “default” pose1

will cause the legs to collide with the terrain.
2. Generate local features of the terrain.At each point

in the grid, we consider local height maps of different sizes
(squares of 5, 7, 11, and 21 grid cells around the current
point), and generate five features for each of these maps:

1) standard deviation of the heights
2) average slope in thex direction
3) average slope in they direction
4) maximum height relative to the center point
5) minimum height relative to the center point

We do this for each of the four local map sizes, leading to a
total of 20 features that describe local characteristics ofthe
terrain at different spatial scales. In addition, we also include
a boolean feature that indicates whether or not the given
position causes a collision, as specified by the collision map
described above, and a constant offset. This leads to a total
of 22 features, which we represent by the vectorφ(x) ∈ R

22

(note that for a given point on the terrain we actually form
four feature vectors, one corresponding to each foot, with
local features properly reflected to account for symmetry of
the robot).

3. Generate foot cost maps.Given a set of features
describing each point of the terrain, we take a linear combi-
nation of these features to form a cost map representing the
desirability of that location for each foot (i.e., the cost of a
point x becomeswT φ(x) for some weight vectorw ∈ R

22).
Of course, a crucial element to this system is choosing

a weight vectorw that produces the proper costs. A good
choice of w has to trade off several features, and it is
highly non-trivial to simply tune the coefficients by hand.

1The high-level planner frequently uses the notion of adefault location
for the feet, or (equivalently) a default pose for the robot.This is simply a
(x, y, z) location for the foot relative to the body that is “good” in the sense
that it gives the robot a stable pose while still allowing fora fair amount of
kinematic reachability. While this is often an approximation (because, for
example, whether or not the foot collides with the terrain at agiven location
can depend on the precise pose of the robot), it nonetheless captures the
“expected” behavior in many cases, and greatly reduces computation.

The algorithm we use to learn the coefficients is called
Hierarchical Apprenticeship Learning (HAL), and it allows
a “teacher” to demonstrate good actions at multiple levels of
the control hierarchy [19]. Very briefly, the HAL algorithm
requires that user specify good footsteps at a few key and
good approximate paths for the body over the terrain. It then
uses information from both these levels to learn a the weights
of a cost function which can be used both for the body path
and footstep planning levels. In practice, we have found that
demonstrating good behavior in this way is far easier than
hand-coding a set of rules that induces the behavior.

4. Form body cost map and plan body path.To form the
body cost map, we aggregate the foot cost maps in a square
around the default foot location for each of the four feet.
While this is only an approximation, since the robot’s feet
could be in many other locations given the body position,
it nonetheless does capture the “expected” cost incurred for
a given body position, and therefore serves as a mechanism
for planning the desired path for the robot’s body. Given
this body cost map, we then use value iteration, a dynamic
programming algorithm, to plan a minimum-cost path across
the terrain. Note that this body path is merely a tool for
limiting the search space for our footstep planner; the low-
level planner itself only looks at the footsteps and does not
attempt to follow the body path exactly.

5. Plan footsteps along the desired body path.Given
a desired path for the robot’s body, the final step of the
planning process is to plan a set of footsteps that (roughly)
follow this path. We plan the footsteps sequentially —
moving first the back-right foot, then front-right, then back-
left, then front-left — following the standard biological gait
pattern for static walking [1]. Starting at the robot’s initial
location, we move the robot’s center some distance along
the desired body path, then look for low-cost foot place-
ment around the default foot location of the moving foot.
Because this “greedy” placement might lead to suboptimal
foot placements in the future, we use a receding horizon
branching search to find the placement that leads to a low
sum of the foot costs for several steps in advance. We require
that each footstep obey kinematic feasibility and that it not
cause collisions with the terrain.

The primary goal of the hierarchical decomposition for
the quadruped task is to speed up planning time, and there
has been previous work that uses beam-search [8] or an A*
variant [20] to accomplish similar goals. The advantage of
the hierarchical decomposition we propose is that it both
works well in practice, and allows us to apply the previously
mentioned method for hierarchical apprenticeship learning.

B. The Low-Level Planner

The goal of the low-level planner is to plan a desired
trajectory for the robot’s COG and moving feet so as to
achieve the upcoming footsteps while maintaining static
stability. For reasons that will soon be apparent, we actually
plan a trajectory for the upcomingtwo footsteps, starting with
one of the hind feet. Note that this plan for the COG is not the
same as the “body path plan” mentioned above in the high-



Fig. 4. Planning of the COG trajectory for a sequence of two steps.

level planner: the body path plan is just an approximate path
for the robot over the terrain, used to speed up the footstep
search, while the COG trajectory is the actual path that the
COG should follow in order to maintain static stability.

Consider the robot pose shown in Figure 4(a), where the
filled circles represent the current locations of the robot’s
feet, and the open circles represent the desired footsteps for
the back-right and front-right feet. We begin by moving the
back-right foot. When moving this foot, the robot will be
statically stable if the COG is in the support triangle formed
by the other three feet, as shown in Figure 4(b) — we
take a standard approach, and inset the support triangle by
some fixed margin, to be more robust to slight deviations or
inaccuracies in the state estimation. Likewise, when moving
the front-right foot, the robot will be statically stable ifthe
COG is within the inset support triangle of the three new
supporting legs, as shown in Figure 4(c). A key observation,
noted in [1] among others, is that the supporting triangles
for these two steps overlap, so that if the COG is moved
properly, it is often possible to start lifting the front foot
as soon as the back foot touches the ground. In contrast,
when transitioning between moving the front-right foot and
the back-left foot, the support triangles are disjoint, so some
period of time must be spent shifting the COG with all four
feet on the ground.

The guiding principle behind the our COG planning
method is that we want to minimize the distance travelled by
the COG while the robot is not moving its feet. To achieve
this, we first compute the intersection of the two supporting
triangles for each step, which we refer to as thedouble
supporting triangle, shown in Figure 4(d). We then project
the current COG into this double support triangle, and move
it to this point. Because the robot’s COG is not yet in the
double support triangle during this “shifting” phase, it isnot
able to lift either foot and must instead keep all four feet on
the ground. Finally, we move the COG from this projected
location to its final location inside the double support triangle
(which is the projection of the robot’s effective center, the
average of its four feet after taking the two footsteps, into
the double support triangle). During this phase the robot can
lift either foot, as the COG is in the support triangle for
both moving feet; in our approach we move the COG half
the distance while moving the back foot, then the remaining
distance while moving the front foot. As mentioned, the
advantage of this method is that we minimize the time spent
moving the COG while the robot is not moving its feet, and

Fig. 5. Desired trajectory for moving feet over obstacles.

we never move the COG backwards. These two effects allow
for fast locomotion, even over very challenging terrain.

We determine the height and pitch of the robot’s body by
the height of the four feet. Given four foot locations, we set
the the height to be the average height of these four foot
locations, plus a constant amount. We determine the pitch
by the average height of the front two feet relative to the
average height of the back two feet. While moving a foot
we interpolate between the height and pitch defined by the
initial foot location and the height and pitch defined by the
final foot location.

Finally, to plan the desired trajectories for the moving feet
we take a very simple approach, and move the feet in a box
pattern, where the height of the box is determined to lie some
margin above the tallest obstacle crossed by the foot. This
approach is shown in Figure 5. While this is not the shortest
possible path, an advantage of this approach is that we do
not need to adjust the foot trajectory based onwhere the
tallest obstacle is relative to the foot’s path.

Previous work on quadruped locomotion has often focused
on periodic patterns (for example, sinusoidal trajectories)
for COG movement, with a fixedduty factor (percentage
of time spent moving the feet versus merely shifting the
COG) [21], [2]. While such trajectories can be very efficient
for fixed walking patterns, and have desirable properties
such as smoothness (i.e., being twice differentiable) theyare
much more difficult to maintain given the irregular footsteps
required to navigate difficult terrain. Recently, researchers
have proposed a technique for online modification of periodic
COG trajectories that maintains the smooth nature of these
trajectories while adjusting for the current position of the
feet, and applied this to the LittleDog robot [17]. However,
in their implementation, the robot’s COG still moves slightly
backwards for a short time period during each step. As we
will show in the next section, our system is able to achieve
very robust performance on challenging terrain even with
our non-smooth COG trajectories, and we therefore prefer to



minimize the length of these trajectories as much as possible,
thereby increasing the speed of locomotion.

The COG trajectory planning used in [18] bears a great
deal of similarity to our own, though they do not explicitly
consider the double supporting triangle. When executing
the irregular footstep patterns required to navigate large
obstacles, we have found that often times the projection of
the current COG into the first supporting triangle actually lies
ahead of the projection of the final center into the second
supporting triangle. By explicitly considering the double
support triangle, we guarantee that we never need to move
the COG backwards. In addition, the system presented in
[18] occasionally opts to move the COG into thecenter of
the current supporting triangle for a greater stability margin.
While this technique can increase stability we found that
for our system, moving the COG into the center of the
supporting triangle actually oftenincreased the chance of
falling over. We discuss this effect further in Section IV.

C. Low-Level Controller

Given the desired trajectories for the COG and moving
feet, we use inverse kinematics to convert these to joint
trajectories, then use a PD controller to apply torques that
move the robot along these trajectories. However, due to the
challenging nature of the terrains we consider, this approach
alone is highly unreliable. Regardless of how well we plan,
and regardless of how well the individual joints track their
desired trajectories, it is almost inevitable that at some point
the robot will slip slightly and deviate from its desired
trajectory. Therefore, a critical element of our system is a
set of closed-loop control mechanisms that detect failures
and either stabilize the robot along its desired trajectoryor
re-plan entirely. In particular, we found three elements to
be especially crucial: 1) stability detection and recovery, 2)
body stabilization, and 3) closed-loop foot placement. We
now describe each of these in greater detail.

Stability Detection and Recovery.Recall that (ignoring
friction effects, which do not appear to have a major effect in
the terrain we consider) the robot is statically stable onlyif
the projection of the COG onto the ground plane lies within
the triangle formed by the supporting feet (also projected
onto the ground plane). If the robot slips while following its
trajectory, the COG can move outside the supporting triangle,
causing the robot to tip over. To counteract this effect, we
compute the current (double) support triangle at each time
step, based on the current locations of the feet as determined
by state estimation. If the COG lies outside this triangle, then
we re-run the low-level planner (planning only one step if
the robot falls while moving a front foot). This has the effect
of lowering all the robot’s feet to the ground, then re-shifting
the COG back into the inset support triangle.

Body Stabilization. While sometimes the recovery proce-
dure in unavoidable, as much as possible we would like to
ensure that the COG doesnot move outside the supporting
triangle, even in light of minor slips. To accomplish this, we
adjust the commanded positions of the supporting feet so as
to direct the COG toward its desired trajectory. In particular,

we multiply the commanded positions of the supporting feet
by a transformation that will move the robot’s COG from its
current position and orientation to its desired position and
orientation (assuming the supporting feet are fixed to the
ground).

More formally, letTdes be the4×4 homogeneous transfor-
mation matrix specifying thedesired position and orientation
of the robot relative to the world frame, and similarly letTcur

be the homogeneous transformation specifying thecurrent
position and orientation of the robot relative to the world
frame. In addition, letfeet denote the default commanded
positions of the supporting feet expressed in the robot’s frame
of reference, based on the desired trajectory for the COG. If
we transform the commanded positions for the feet by

T−1

des
Tcurfeet

then (assuming the supporting feet remain fixed) this would
move the COG to its desired position and orientation. How-
ever, when coupled with PD control, this typically leads to
large oscillations, so instead we employ a common interpo-
lation scheme and command the supporting feet according
to

(1 − α)feet + αT−1

des
Tcurfeet

for some0 < α < 1 (in our experiments we foundα = 0.1
to be a good value). This causes the robot’s COG to move
gradually to track the desired trajectory, even if the robot
slips slightly. In addition, we project the desired position
Tdes into the current (double) supporting triangle, thereby
working to stabilize the robot even if the initially computed
trajectory becomes unstable due to the feet slipping. During
our development we found this approach to be slightly
more robust than attempting to move the supporting feet
individually to stabilize the body, as our method keeps intact
the relative positions of the supporting feet, leading to fewer
unstable configurations. While the stabilization does lead to
kinematic infeasibilites on occasion, we find that usually
in such cases the robot is about to fall, and the recovery
procedure shortly replans (feasible) footsteps.

Closed-loop Foot Placement.Finally, we want to ensure
that the moving foot tracks its desired trajectory as closely as
possible, even if the body deviates from its desired path. To
accomplish this, at each time step we compute the desired
location of the foot along its (global) trajectory, and use
inverse kinematics based on thecurrent pose of the robot’s
body to find a set of joint angles that achieves the desired foot
location. This is particularly important in cases where the
robot slips downward. If the robot’s body is below its desired
position and we merely execute an open loop trajectory for
the moving foot, then the foot can punch into the ground,
knocking the robot over faster than we can stabilize it.
Computing a closed-loop trajectory for the foot in the manner
described above avoids this situation.

It may seem as if there are also cases where closed-loop
foot placement could actually hinder the robot rather than
help. For example, if the robot is falling, then it may be
best to simply put its foot down, rather than attempt to keep



TABLE I

THE FOUR TERRAINS USED FOR EVALUATION.

Terrain # 1 2 3 4

Max Height 6.4 cm 8.0 cm 10.5 cm 11.7 cm

Picture

Heightmap

Fig. 6. Example of a typical setup for the robot and terrain (shown here with Terrain #3).

its foot along the proper (global) trajectory. However, in our
experience this nearly always occurs in situations where the
recovery procedure mentioned previously will catch the robot
anyway, and this is borne out in the experimental results, as
we will discuss shortly.

IV. EXPERIMENTAL RESULTS

In this section we present experimental results for our
controller on a variety of challenging terrain. The chief
result is that our system is able to reliably cross difficult
terrain at relatively fast speeds. In order to better understand
the performance of the system, we perform experiments to
analyze its behavior with and without several of the planning
and control elements described above, thereby demonstrating
their usefulness.

A video of the robot crossing the evaluation terrains is
included with the paper. A higher-resolution version of this
video is available at

http://cs.stanford.edu/˜kolter/icra08videos/

A. Experimental Setup

The LittleDog robot, shown in Figure 1, was designed
and built by Boston Dynamics, Inc. It is a quadruped robot,
about 30 cm long, whose legs lie 12 cm below its body
when fully extended; the robot weights about 3kg. The
robot has 12 independently actuated electric motors, three

on each leg. A separate “host” computer performs nearly all
processing, running a control loop at 100hz and relaying
servo commands to the robot once every 10ms over a
wireless channel. The robot’s on-board hardware runs a joint-
level PD servo controller at 500hz.

A motion capture (MOCAP) system estimates the position
and orientation of the robot’s body by tracking reflective
markers attached to the robot. Joint encoders provide esti-
mates of the robot’s joint angles. Although we have exper-
imented extensively with the use of additional localization
methods, such as Kalman filters, we found in general that the
raw estimates provided by the MOCAP and joint encoders
were sufficient for complete pose estimation. The robot
also contains an on-board IMU that can provide orientation
estimates, but we do not make use of this component in our
current system. Finally, the MOCAP also tracks markers on
the terrains; we combine this with 3D models of the terrain
to estimate the state of the entire environment.

We evaluated the performance of our system on four
different terrains of varying difficulty, two that were provided
by the official LittleDog program and two that we built
ourselves. Pictures of the terrains and their corresponding
heightmaps are shown in Table I. For all the terrains we
considered all four crossing directions, and planned five
separate paths across each direction by varying the initial
position of the robot. This lead to a total of 20 paths across



TABLE II

SUCCESS PROBABILITIES OUT OF20 RUNS ACROSS DIFFERENT

TERRAINS FOR THE CONTROLLER WITH AND WITHOUT RECOVERY,

BODY STABILIZATION , AND CLOSED-LOOP FOOT PLACEMENT.

Terrain All w/o Rec. w/o Stab. w/o CLF None

1 100% 100% 100% 100% 100%

2 100% 60% 95% 95% 55%

3 95% 25% 55% 75% 35%

4 95% 0% 75% 85% 35%

Total 97.5% 46.25% 81.25% 88.75% 56.25%

each terrain. A standard setup for the robot and terrain is
shown in Figure 6. Figure 7 shows several snapshots of the
robot crossing Terrain #3.

B. Results and Discussion

Overall, the system we present is able to successfully cross
a wide variety of challenging terrains with a 97.5% success
rate, at an average speed of 3.28 cm/sec. To put these results
in context, we note that at the most recent public test of
the LittleDog systems (which had an overall setup virtually
identical to the one we use for our experiments, but which
used a different terrain), the controller we describe in this
paper achieved a speed of 3.63 cm/s on its best run, which
was the fastest time of any group across this terrain; the
next-fastest time on this test by another team was 2.85 cm/s.
This result should be taken with some caution, since there
are a very limited number of these tests, and not all teams
were optimizing for speed. Nonetheless, based on these tests
and personal communication with other researchers, we feel
justified in our claim that the system we present is on par
with the very best that had been achieved with the LittleDog
robot at the time of original submission (September, 2007).

In our first set of experiments, we analyze the performance
of the system with and without the low-level controller
elements described previously. For each of the 20 planned
paths across each of the four terrains, we evaluated the
performance of our system with and without the stability
detection and recovery, body stabilization, and closed-loop
foot placement. In addition, we evaluated the performance of
the system with none of these elements enabled. As shown in
Table II, the controller with all elements enabled substantially
outperforms the controller when disabling any of these three
elements. This effect becomes more pronounced as the
terrains become more difficult: Terrain #1 is easy enough
that all the controllers achieve 100% sucess rates, but for
Terrains #3 and #4, the advantage of using all the control
elements is clear.2

Subjectively, the failure modes of the different controllers
are as expected. Without the stability detection and recovery,
the robot frequently falls over entirely after slipping a
small amount. Without body stabilization, the robot becomes

2Statistically, over all four terrains the full controller outperforms the
controller with no recovery, with no stabilization, with noclosed-loop foot
placement, and with none of these elements in terms of success probability
with p-values ofp = 2.2 × 10−13, p = 0.0078, p = 0.0012, and p =
5.8× 10−11 respectively, via a pairwise Bernoulli test.

TABLE III

SUCCESS PROBABILITIES AND AVERAGE SPEED(IN CM /S) OF

SUCCESSFUL RUNS FOR OURCOG TRAJECTORY PLANNING METHOD,

FOR KEEPING THECOG FIXED WHILE MOVING THE FEET, AND FOR

MOVING THE COG TO THE CENTER OF THE SUPPORTING TRIANGLE.

Terrain Our Method Fixed COG Centered COG

1 100% (3.67) 100% (2.99) 100% (2.28)

2 100% (3.31) 75% (2.61) 70% (2.22)

3 95% (3.07) 60% (2.62) 35% (2.10)

4 95% (3.01) 50% (2.45) 30 % (2.26)

Total 97.5% (3.28) 71.25% (2.72) 58.75% (2.23)

noticeably less stable during small slips, which sometimes
leads to falls that even the recovery routine cannot salvage.
Without closed-loop foot placement, the feet can punch into
the ground during slips, occasionally flipping the robot. One
interesting effect is that without recovery, the controller actu-
ally performsworse with body stabilization and closed loop
foot movement enabled, especially on the more challenging
terrains. This appears to be due to the fact that when the robot
falls significantly (and makes no attempt to recover) both the
body stabilization and closed-loop foot placement attemptto
make large changes to the joint angles, causing the robot
to become less stable. However, with recovery enabled the
robot never strays too far from its desired trajectory without
attempting to re-plan; in this case the advantage of using the
body stabilization and closed-loop foot placement is clear
from the experiments above.

In our second set of experiments, we compare the perfor-
mance of the our COG trajectory planning method versus
several alternatives. In particular, we consider a planner
that does not make use of the double support triangle, but
merely projects the COG into the current support triangle
and keeps it fixed in this location while moving the feet.
Second, we consider a planner that moves the COG into
center of the supporting triangle as done (for some steps)
in [18]. Table III shows the success percentages and speeds
for each of the different methods. Not surprisingly, keeping
the COG fixed or moving it to the center of the supporting
triangle significantly lowers the speed of the the gait. More
surprisingly, however, is the fact that for harder terrainsthese
seeminglymore stable methods actually perform muchworse
in terms of success rates.3

Based on our observations, we feel this performance is
due to the fact that in challenging terrains, failures are often
caused by collision between the robot’s legs and the terrain.
Moving the COG to a greater extent, while potentially
increasing stability, also increases the likelihood of collision
with the terrain. Given the fact that our controller is able to
maintain stability of the robot with the minimum-length COG
trajectories that we plan, we feel that moving the COG more
to achieve “greater” stability does more harm than good.

3Statistically, our method performs better in terms of success/failure rates
than the fixed COG and centered COG methods with p-values ofp = 4.8×
10−7 andp = 4.9×10−9 respectively using a pairwise Bernoulli test. Our
method performs better in terms of speed with p-valuesp = 2.1× 10−26

andp = 4.6× 10−34 using a pairwiset-test.



Fig. 7. Snapshots of the robot crossing Terrain #3.

V. CONCLUSION

In this paper we presented a hierarchical control system
for the LittleDog robot that enables it to navigate over
rough terrain. We conducted experimental evaluations which
showed that using our control system the robot is able to
robustly cross a wide variety of challenging terrains. We
also highlighted several elements of the controller that we
found to be particularly crucial for robust locomotion, and
which are applicable to quadruped robots in general. For
these elements we conducted extensive experiments that
demonstrated their usefulness in our control system.

VI. A CKNOWLEDGMENTS

This work was supported by the DARPA Learning Lo-
comotion program under contract number FA8650-05-C-
7261. This work benefited from numerous discussions with
researchers working on the LittleDog robot at Carnegie
Mellon, IHMC, MIT, University of Pennsylvania, and USC,
and from frequent interaction with the government team
running the Learning Locomotion program. We also thank
the anonymous reviewers for many helpful suggestions,
and for noticing an earlier error in the body stabilization
equations.

REFERENCES

[1] R. B. McGhee and A. A. Frank, “On the stability propertiesof
quadruped creeping gaits,”Mathematical Biosciences, vol. 3, pp. 331–
351, 1968.

[2] V. Hugel and P. Blazevic, “Towards efficient implementation of
quadruped gaits with duty factor of 0.75,” inProceedings of the IEEE
International Conference on Robotics and Automation, 1999.

[3] F. Hardarson, “Stability analysis and synthesis of statically balanced
walking for quadruped robots,”Royal Institute of Technology, 2002.

[4] S. Ma, T. Takashi, and H. Waka, “Omnidirectional staic walking of a
quadruped robot,”IEEE Transactions on Robotics, vol. 21, no. 2, pp.
152–161, 2005.

[5] S. Bai, K. Low, G. Seet, and T. Zielinska, “A new free gait generation
for quadrupeds based on primary/secondary gait,” inProceedings of
the IEEE International Conference on Robotics and Automation, 1999.

[6] J. Estremera and P. G. de Santos, “Free gaits for quadrupedrobots
over irregular terrain,”The International Journal of Robotics Research,
vol. 21, no. 2, pp. 115–130, 2005.

[7] ——, “Generating continuous free crab gaits for quadruped robots
on irregular terrain,” inProceedings of the IEEE Transactions on
Robotics, 2005.

[8] H. Lee, Y. Shen, C.-H. Yu, G. Singh, and A. Y. Ng, “Quadruped robot
obstacle negotiation via reinforcement learning,” inProceedings of the
IEEE International Conference on Robotics and Automation, 2006.

[9] M. H. Raibert,Legged Robots that Balance. MIT Press, 1986.
[10] J. G. Nichol, S. P. Singh, K. J. Waldron, L. R. P. III, and D. E. Orin,

“System design of a quadrupedal galloping machine,”International
Journal of Robotics Research, vol. 23, no. 10–11, pp. 1013–1027,
2004.

[11] I. Poulakakis, J. A. Smith, and M. Buehler, “Modeling andexperiments
of untethered quadrupedal running with a bounding gait: Thescout II

robot,” The International Journal of Robotics Research, vol. 24, no. 4,
pp. 239–256, 2005.

[12] K. D. Mombaur, R. W. Longman, H. G. Bock, and J. P. Schloder,
“Open-loop stable running,”Robotica, vol. 23, pp. 12–33, 2005.

[13] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive dynamic walking
of a quadruped robot on irregular terrain based on biological concepts,”
The International Journal of Robotics Research, vol. 22, pp. 187–202,
2003.

[14] S. Peng, C. P. Lam, and G. R. Cole, “A biologically inspired four
legged walking robot,” inProceedings of the IEEE International
Conference on Robotics and Automation, 2003.

[15] H. Kimura, Y. Fukuoka, and A. H. Cohen, “Adaptive dynamic walking
of a quadruped robot on natural ground based on biological concepts,”
The International Journal of Robotics Research, vol. 26, no. 5, pp.
475–490, 2007.

[16] Z. G. Zhang, Y. Fukuoka, and H. Kimura, “Adaptive runningof a
quadruped robot on irregular terrain based on biological concepts,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2003.

[17] D. Pongas, M. Mistry, and S. Schaal, “A robust quadrupedwalking gait
for traversing rough terrain,” inProceedings of the IEEE International
Conference on Robotics and Automation, 2007.

[18] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and
J. E. Pratt, “A controller for the littledog quadruped walking on rough
terrain,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2007.

[19] J. Z. Kolter, P. Abbeel, and A. Y. Ng, “Hierarchical apprenticeship
learning, with application to quadruped locomotion,” inNeural Infor-
mation Processing Systems 20, 2007.

[20] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami, “Planning
biped navigation strategies in complex environments,” inInternational
Conference on Humanoid Robotics, 2003.

[21] K. Yoneda and S. Hirose, “Dynamic and static fusion gait of a
quadruped walking vehicle on a winding path,” inProceedings of the
IEEE International Conference on Robotics and Automation, 1992.


