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Abstract

We consider feature selection in the “wrap-
per” model of feature selection. This typi-
cally involves an NP-hard optimization prob-
lem that is approximated by heuristic search
for a “good” feature subset. First consider-
ing the idealization where this optimization is
performed exactly, we give a rigorous bound
for generalization error under feature selec-
tion. The search heuristics typically used are
then immediately seen as trying to achieve
the error given in our bounds, and succeed-
ing to the extent that they succeed in solv-
ing the optimization. The bound suggests
that, in the presence of many “irrelevant”
features, the main source of error in wrap-
per model feature selection is from “overfit-
ting” hold-out or cross-validation data. This
motivates a new algorithm that, again under
the idealization of performing search exactly,
has sample complexity (and error) that grows
logarithmically in the number of “irrelevant”
features — which means it can tolerate hav-
ing a number of “irrelevant” features ezpo-
nential in the number of training examples
— and search heuristics are again seen to be
directly trying to reach this bound. Experi-
mental results on a problem using simulated
data show the new algorithm having much
higher tolerance to irrelevant features than
the standard wrapper model. Lastly, we also
discuss ramifications that sample complexity
logarithmic in the number of irrelevant fea-
tures might have for feature design in actual
applications of learning.

1 Introduction

In recent years, Feature Selection for classification
and regression has been enjoying increasing interest
in the Machine Learning community. Impressive per-
formance gains have been reported by numerous au-
thors, and numerous feature subset search heuristics
have been proposed. (The literature is too wide to sur-
vey here, but see [Langley, 1994] and [Miller, 1990] for
overviews.) In view of these significant empirical suc-
cesses, one central question is: What theoretical jus-
tification is there for feature selection? For example,
in parametric function approximation schemes such as
linear regression, it is often the case that excluding a
feature is mathematically identical to setting the co-
efficient(s) associated with that feature to 0. As fea-
ture selection typically runs a risk of misidentifying the
“irrelevant” features, why then is it apparently often
superior to try to estimate which features are “irrele-
vant” and set their coefficients to 0, rather than leave
them and use the estimated coeflicients for these fea-
tures (which will typically be near 0 anyway)? The
theoretical results in this paper will address this ques-
tion.

Since feature selection attempts to eliminate “irrele-
vant” features, another central question is: How does
the performance of feature selection scale with the
number of irrelevant features? The Winnow algorithm
of Littlestone for learning Boolean monomials, or more
generally also k-DNF formulae and r-of-k threshold
functions (over boolean inputs), from noiseless data
enjoys worst-case loss logarithmic in the number of
irrelevant features [Littlestone, 1988]. Likewise, the
EG algorithm for linear regression with quadratic error
also has such loss (and indeed sample complexity) that
grows logarithmically in the number of irrelevant fea-
tures [Kivinen and Warmuth, 1994]. For learning from
noiseless data, of a representation of a boolean concept



(over boolean inputs), Almuallim and Dietterich have
also shown that an algorithm that finds the smallest
set of features consistent with the training data (such
as by exhaustive enumeration) also enjoys loss loga-
rithmic in the number of irrelevant features [Almual-
lim and Dietterich, 1994]. If it were true in general
that feature selection makes sample complexity loga-
rithmic in the number of irrelevant features (though
possibly depending more heavily on the number of rel-
evant features), then this would imply, for example,
that squaring the number of features we have means
needing only fwice as much training data. This could
have huge ramifications on the way features are de-
signed for real-world applications. In this paper, we
will show that, modulo computational and approxi-
mation issues, this ideal of logarithmic sample com-
plexity in the number of irrelevant features — which of
course means being able to handle ezponentially many
irrelevant features as training examples — can indeed
be achieved with a new feature selection algorithm we
propose.

Next, the notion of “relevance” is closely related to fea-
ture selection. Intuitively, one goal of feature selection
is to eliminate all but a small set of “relevant” fea-
tures, which are then given to an induction algorithm.
However, there have been difficulties with a number
of definitions of “relevance” [Kohavi and John, 1997],
and we take the alternative view, which is quite simi-
lar in flavor to those in [Littlestone, 1988] and [Kivinen
and Warmuth, 1994], of the goal of feature selection
as this: If there exists a hypothesis that, using only a
“small” number of features, gives good generalization
error, then we want our classifier to achieve close to
this level of performance with high probability. This
will be made rigorous in subsequent sections, but note
in particular that we make no claims towards exclud-
ing “irrelevant” features or including all the “relevant”
features, so long as the particular set of selected fea-
tures allows us to have performance close to that of
using the “optimal” set of features. ! In the remain-
der of this paper, we will use the terms “relevant” and
“irrelevant” only when we expect them to be consis-
tent with any reasonable definition of relevance.

Using the terminology introduced by [John et al.,
1994], feature selection algorithms broadly fall into
the “filter” and the “wrapper” models. The filter
model relies on general characteristics of the training

! Aside from good generalization error, other goals of
feature selection might be user-interpretability and parsi-
mony of hypotheses for fast prediction. We will not address
these goals in this paper.

data to select some feature subset, doing so without
reference to the learning algorithm. In the wrapper
model, one generates sets of candidate features, runs
them through the learning algorithm, and uses the per-
formance of the resulting hypothesis to evaluate the
feature set. While the wrapper model tends to be
more computationally expensive, it also unsurprisingly
tends to find feature sets better suited to the inductive
biases of our learning algorithm, and tends to give su-
perior performance [Langley, 1994]. In this paper, we
study only the wrapper model of feature selection, and
largely in the context of classification.

Our analysis is largely inspired by [Kearns, 1996], with
our theoretical results heavily based on the techniques
given there and those outlined in [Kearns et al., 1997].
We also rely heavily on tools from [Vapnik, 1982], that
give a very general framework for bounding the devi-
ation of training error from generalization error.

2 Preliminaries

2.1 Feature Selection

Let X be the fixed f-dimensional input space, where f
is the number of features in the inputs we are provided.
For simplicity, we also assume a fixed binary concept
¢: X — {0,1}. We are provided m training exam-
ples S = {z% ¥}, with each of the f-dimensional
input vectors z® = [z 2} ... z}]T drawn i.i.d. from
some fixed distribution Dx over X, and correspond-
ing labels y* = c¢(z%) € {0,1}. In this development,
we will also briefly consider the case where the labels
are independently corrupted by noise with a noise rate
n € [0,0.5), so that y* = c(z?) with probability 1 — 7,
and y* = 1 — c(z%) with probability 5. Note that ¢
may use all f features, but we hope that it can be ap-
proximated well (in the generalization-error sense, to
be defined shortly) by a function that depends only on
a small subset of the f features.

We will use uppercase F' to denote sets of features,
and use F; to identify the i-th feature. For exam-
ple, the feature set including the 1st, 4th and 10th
features may be written F' = {Fy, F4, F1o}. For any
input vector z, let z|p be z with all the features not
in F' eliminated; sometimes, we will call this “z re-
stricted to F.” Analogously, let X|p denote the in-
put space X with all the dimensions/features not in
F eliminated, and S|p be the data set S with each
z' replaced by z'|F. In a slight abuse of notation, if
we have a hypothesis h : X|p —— {0, 1} defined only
the subspace of features X|p, we extend it to X in



the natural way (with h ignoring features not in F).
Thus, for any hypothesis h, we can write the gener-
alization error (with respect to uncorrupted data) as
e(h) = Prgepy[h(z) # ¢(x)] (where the dependence
of ¢(h) on Dx has been suppressed for notational
brevity,) and the empirical error on a set of data S

as £s(h) = k{(z,v) € Slh(z) # v}

2.2 The wrapper model

In the wrapper model of feature selection suggested
by [John et al., 1994], we are given a learning algo-
rithm L that, for any set of features F', takes a training
set S|p, and outputs a hypothesis h : X|p — {0,1}.
Given a training set S, an application of feature se-
lection under this model might randomly split S into
a training set S’ of size (1 —4)m and a hold-out set
S" of size ym, and perform a search for a set of fea-
tures F' so that when the learning algorithm is ap-
plied to S’ restricted to F', the resulting hypothesis
h = L(S'|r) has low empirical error ég(h) on the
hold-out data S”. Here, v € [0, 1], the fraction of
S assigned to the hold-out set, is called the hold-out
fraction. A more sophisticated application of feature
selection may use n-fold or leave-one-out cross valida-
tion rather than hold-out. But as they asymptotically
yield at best small-constant improvements over using
hold-out and as leave-one-out is at worst little better
than training error in estimating generalization error,
while rendering the algorithm’s performance much less
tractable to analysis [Kearns and Ron, 1997], we will
not explicitly consider them here, though we believe
our results will be suggestive of the performance of
these schemes as well.

For any given learning algorithm L, the optimal way
to perform feature selection is intimately related to
the inductive biases of L. For example, if L is “suffi-
ciently clever” about doing its own feature selection,
then one would simply give it S unrestricted to any fea-
ture subset, and allow it to select its own features. For
this analysis, therefore, we make the (rather strong)
assumption that given a particular data set S|p, L
chooses the hypothesis h from some class of hypotheses
(shortly to be formalized) so as to minimize training
error. This closely ties in with the learning framework
studied by [Vapnik, 1982], and is also used in [Kearns,
1996] and [Kearns et al., 1997] in proving bounds on
generalization error. We believe it to be a very natural
model, and that it is a rich enough class of learning al-
gorithms to merit detailed study. (But also see [Kearns
et al., 1997] for comments regarding relations to learn-
ing algorithms that do not exactly do this; for example,

it is not difficult to derive rigorous generalizations of
all of our results if L manages to only approximately
minimize training error.)

More formally, for any feature set F', we assume that
we have a hypothesis class Hp, of hypotheses each with
domain X|p. But, with many induction algorithms,
each feature is treated in a “similar” manner — for ex-
ample, when X = R/, then for two feature sets F' and
F'" of the same size, it makes intuitive sense to iden-
tify X|p and X|p and therefore Hp and Hp:, as they
are both sets of functions mapping from Rl to {0,1}.
For simplicity, let us further make the assumption that
the hypothesis class Hp depends on F' only through
|F'|, and let H, be our set of functions with domain X
restricted to any set of r features. (This assumption is
not really necessary, but it greatly eases our notational
burden, and leaving out the assumption does not gain
much in terms of theoretical results.) It will always be
clear from context which particular set F' of features
h € Hp| takes as input. Note also that we have as-
sumed that there is some “uniform” way of handling all
features, whether they are discrete/continuous, have
different ranges, etc.. For simplicity, one may wish
to think of the particular case where all features are
real numbers for the remainder of this paper. In this
notation then, our previous assumption of error min-
imization is that when L is given S|p, it outputs the
hypothesis h € Hp (where Hp is identified with H|p))
that minimizes training error on S|p. For the remain-
der of this paper, we will implicitly assume L meets
these two assumptions — that it treats features “uni-
formly,” and that it minimizes training error over Hp).

One more definition we need is to let ryc be the
Vapnik-Chervonenkis dimension [Vapnik and Chervo-
nenkis, 1971, Vapnik, 1982] of the hypothesis class H,.
Normally, we expect Oye < lye < 2y¢ < - -+, though
this is not an assumption we use. For example, if H,
is the class of linear discriminant functions over R”,
then rye = r+ 1. We chose this notation so that,
to specialize our ensuing bounds on generalization er-
ror to linear discriminant functions, which we later use
in our experiments, ryc may everywhere be replaced
with r (or at least when r > 0).

Finally, to obtain the performance bounds, we wish
to make statements of the form that “we will, with
high probability, find a hypothesis with generalization
error no worse than z more than the best hypothesis
that uses r features.” To formalize this, define the ap-
proximation rate function €4(r) to be the least gener-
alization error achievable by any hypothesis h € H,
using any set of r features. In general, we expect



gg(1) > €4(2) > - - -, though this is also not an assump-
tion we require (except briefly when we summarize our
results in terms of sample complexity).

Thus, in the common instantiation of wrapper model
feature selection, we search for a feature set F' such
that when L is applied to S’|r, the resulting hypothe-
sis has low empirical error on the hold-out set. (That
is, €gv (L(S’|F)) is minimized.) Leaving aside details
of the actual search, we will call this idealization the
STANDARD-WRAP algorithm. Note that in performing
the search, enumeration over all the 2/ possible fea-
ture sets is usually intractable, and there is no known
algorithm for otherwise performing this optimization
tractably. Indeed, the Feature Selection problem in
general is NP-hard [Garey and Johnson, 1979], but
much work over recent years has developed a large
number of heuristics for performing this search effi-
ciently. (Again, the literature is too wide to survey
here, but examples include [Moore and Lee, 1994,
Caruana and Frietag, 1994, Yang and Hoavar, 1997],
and [Langley, 1994, Miller, 1990] include overviews.)
In this development, we will, in the style of [Kearns,
1996], give bounds for generalization error when this
optimization is performed exactly. Of course, the ex-
tent to which our bounds predict actual performance
will in part depend on the extent to which the opti-
mization algorithms succeed in performing this search
on “real life” distributions of data. Alternatively,
one can also view these bounds as what the heuris-
tic search/approximation algorithms are (in a rigorous
sense, to be discussed later) aspiring to do, with the
bounds giving insight into how we might expect the
algorithms to perform.

3 Main Results

The ensuing bounds are all given to hold “with high
probability.” We defer their more detailed versions to
the full paper, but note that when we say “with high
probability,” we mean that the bound holds with at
least probability 1 — é for any 6 > 0, with constants
that depend on & (through an omitted log } term) hid-
den by the O(-) notation.

Bound for performance without feature selec-
tion

The Universal Estimate Rate bound of Vapnik and
Chervonenkis [Vapnik and Chervonenkis, 1971, Vap-
nik, 1982] gives a bound on generalization error when
learning using all f features without feature selection.

Theorem 1 (Vapnik and Chervonenkis, 1971)
With high probability, the generalization error of the
hypothesis h = L(S), given by L applied to S (unre-
stricted to any feature subset), is bounded by:

() < 2(f) + 0 N% (108 7= +1) ) (1)

Note this is a bound for learning from noiseless data;
when the training data labels have independently been
corrupted at some noise rate 7, the second term in the

bound becomes O (\/O_J;%(log oo T 1))

Bound for performance of wrapper model

Applying the proof technique given in [Kearns, 1996]
(used to bound the error of hold-out) to feature selec-
tion, we obtain the following theorem:

Theorem 2 Given L,S,~, the hypothesis h output by
STANDARD-WRAP, given by h = L(S'|p) where F =
argming £gn (L(S'|p)), will, with high probability, have
generalization error bounded by

(%)

Proof (Sketch): The first square-root term is sim-
ply the universal estimation rate bound as before,
that says that with high probability, the hypothe-
sis obtained by applying L to S’|p for any fixed
F with |F| = r will give additional error no more

m

than O( (1’;‘;0)771 (log ;2 4 1)). Following this, using

a holdout-test set of size ym to test 2/ hypotheses
will, by a standard Chernoff-bound argument, result
with high probability in picking a hypothesis with gen-
eralization error no more than O(y/log(2/)/ym) =

O(+/f/ym) higher. O

Again, this bound holds only when learning from
noiseless data. Similar to Theorem 1, a generalization
to learning from noisy data can be obtained by replac-
ing all occurrences of m in any denominator term in
the bound by (1 — 2n)?m, where 5 is the noise rate.



One important remark here is that the O(y/f/ym)
term is a worst-case bound for evaluating 2/ hypothe-
ses on the independent hold-out set S” of size ym.
Its increase with f reflects the fact that we are test-
ing a set of hypotheses of size exponential in f, and
that there is potential for “overfitting” the ym hold-
out samples. (In the context of feature selection, the
issue of overfitting of hold-out data was also raised
by [Kohavi and Sommerfield, 1995]; see also [Ng, 1997]
for a detailed discussion of overfitting of hold-out data
in hypothesis selection.)
case bound, it holds in particular for the “bad case”
where all 2/ hypotheses are “very different” from each
other. This is unlikely as they were trained on the
same dataset S’ and using only f distinct features.
For at least some pathological hypothesis classes (that
may, for example, include a set of hash-like basis func-
tion so that changing one feature’s range dramatically
changes the output hypotheses,) this is certainly pos-
sible; but for more “sensible” hypothesis classes, we
might expect it to be possible to significantly tighten
this bound. We have not managed to formalize this
yet, but conjecture, based on the behavior of power-

But since this is a worst-

law decay learning curves, that the asymptotic be-
havior for “many” learning algorithms will be better
modeled by replacing this last term in the bound by
V% /ym for some a € (0,1]. (A preliminary analy-
sis suggests that under a (perhaps surprisingly large)
range of formal modeling assumptions regarding how
much hypotheses change when F' is changed, the num-
ber of “significantly different” hypotheses does grow
as 2°U)  which would suggest o = 1 behavior. On the
other hand, there are certainly also some reasonable
assumptions that would lead to @ < 1; and we defer a
detailed discussion of this to the full paper.)

Bound for performance of new algorithm

For STANDARD-WRAP, the dependence on f of our
bound on the error is \/f/ym (or possibly \/f®/ym),
and it comes from testing 2/ hypothesis on holdout-
data. If f > ryc where r is the number of features
needed to approximate the target concept well, this
\/f/ym will be the dominant term. Consider instead
the following algorithm, which we call ORDERED-FS:

1. Foreach 0 < r < f, find the hypothesis h, that, of
all the hypotheses using exactly r features, mini-
mizes error on the training set S’. (This involves
a search over all sets of r features.)

2. Evaluate all f+1 hypotheses {iLT}fzo on the hold-
out set S”, and pick the one with the smallest

hold-out error.

Note that we are now testing only O(f) hypotheses on
the hold-out data, so the previous y/f/ym term now

becomes +/(log f)/ym.

Theorem 3 Given L, S,~y, the hypothesis h output by
ORDERED-Fs will, with high probability, have general-
1zation error bounded by

e(h) <

o?rigf {5g(r) +0 <\/7(1 ~ym <log - + 1) )
rlog f log f
*O( (1_7)m)}+0( vm)

Proof (Sketch): The first square-root term is simply
the universal estimation rate bound as before, used
to bound the additional error when training on any
fixed feature set. For this to hold with probability
1 — &, there is also an additive (1/m)log(1/6) within
the square-root. Now, for any fixed r, we want to
uniformly bound the deviation of training error from
generalization error for all ({) hypotheses that use
exactly r features. Taking a standard union bound
(see [Vapnik, 1982]), we replace (1/m)log(1/6) with
(1/m)log ((f) /§), which (noting log (f) < rlogf)
gives the second term. Lastly, the third term comes,
using a standard Chernoff-bound argument as before,
from testing O(f) hypotheses on the hold-out set of
size ym. O

Notice that, similar to STANDARD-WRAP, we have
not explicitly addressed the NP-hard search problem
for the optimal (here in the minimum training error
sense) set of r features, and actual implementations
of ORDERED-FS will generally have to rely on heuristic
search. But for now, let us beg this computational
issue and treat it similarly to how we had treated
STANDARD-WRAP, appealing to the same approxima-
tions/idealizations as before, and also mentioning that,
in a rigorous sense to be discussed later, the extent to
which an approximation algorithm can solve the opti-
mization is exactly the extent to which its error bound
will reach the bound we give here, which means that
our bound can as before be interpreted, in a formal
sense, as being exactly what a heuristic search imple-
mentation is trying to attain. (In considering heuris-
tic search implementations, it is also worth mention-
ing that searching to minimize training error is prob-



ably often somewhat easier than searching to mini-
mize hold-out error, which STANDARD-WRAP requires;
for example, in linear regression, we have fast algo-
rithms for simultaneously evaluating training error for
all single-feature changes to a feature subset.) This
bound is also easily generalized to learning from noisy
examples (again by replacing all occurrences of m in
any denominator term with (1 — 2n)?m).

In any case, the key point of this bound is then the
following: The dependence of our bound on f is only
logarithmic in f. It is also easy to see from the bound
that the sample complexity m is also logarithmic in f.
As discussed in the Introduction, this means that, from
an information-theoretic point of view, one may square
the number of features (for example by adding all
cross-terms between all features), and expect to need
only twice as much training data. We believe that this,
if even only approximately realizable by search algo-
rithms, may have tremendous consequences for feature
design — that modulo computational expense, overly
careful human design of features would often be un-
necessary, so long as additional training data can be
obtained reasonably cheaply.

To close this section, we informally restate our the-
oretical results in terms of upper bounds on sample
complexity, if the target concept is well represented by
some small number r* of features. That is, we want
the number m* of examples required so that general-
ization error will be close to that of the optimal hy-
pothesis that uses r* features. (Slightly more formally,
we want, for any fixed ¢ > 0, that E(;l) < gg(r*) + €
with high probability, and where dependence of m* on
¢ will again be hidden by the O(-) notation.) From
the earlier theorems, it is not difficult to derive the
following (upper bounds on) sample complexity:

| m’ |
O(fve)
O(T*\F/C +fa)a @ S 1
O(ry,o +r*log f)

| algorithm

No feature selection
STANDARD-WRAP
ORDERED-FS

Particularly if ry¢ grows superlinearly in r, we easily
see STANDARD-WRAP has a significantly smaller sam-
ple complexity than not performing feature selection
if r* <« f. This appears to us to be rather strong the-
oretical justification for performing feature selection,
thereby answering the question of “why feature selec-
tion” raised in the Introduction. Also, when r* < f,
ORDERED-FS, which has sample complexity logarith-
mic in f, is likely to learn with many fewer training
examples than STANDARD-WRAP.

4 Experimental Results

Our theoretical results predicted ORDERED-FS to be
much more tolerant to having a large number of ir-
relevant features than STANDARD-WRAP. To test this
hypothesis, we ran both algorithms on a small, artifi-
cial feature selection problem.

The learning algorithm used was logistic regres-
sion [McCullagh and Nelder, 1989], used to fit a linear
discriminant function, and which, while not minimiz-
ing training error, approximates that reasonably. The
input space was X = R/, and the first target concept
¢ we used had only one relevant feature:

(2) = 1 ifz;4+02>0
AT)=11 0 otherwise

Training examples were corrupted at a noise rate
n = 0.3, and all input features were ¢.7.d. zero-mean
unit variance normally distributed random variables.
The search heuristic was beam search/forward search
(starting out with the empty set of features, and in-
crementally adding features until we have the full set
of features). Forward search is a popular choice that
appears to usually do well [Miller, 1990], and beam
search, with a beam width of 50 in our case, should
be a strict improvement. (Notice also that, while
ORDERED-FS was originally formulated as consisting
of f + 1 separate searches, it is probably most nat-
urally implemented as carrying out all the searches
“together”; our beam search implementation, which
starts from zero features and incrementally considers
higher numbers of features, is one example of such.)
Unlike many “real life” problems, all of our input fea-
tures are independent, and so there were, for example,
no complicated interactions between them that could
complify the search procedure. For STANDARD-WRAP,
we are searching for a feature set F' so that training
on S’|p would give low hold-out error. For ORDERED-
FS, we are searching, for each r, for a feature set F' of
size r so that training on S’|p gives low training error.
In the rest of this section, we will not distinguish be-
tween the “idealized” versions of these two algorithms
and the approximate versions of the algorithms. All
experimental results reported here are averages of 200
independent trials.

For both algorithms, the hold-out fraction 7 is a
parameter that had to be chosen. The analysis
of [Kearns, 1996] suggests that, for a wide range of
hold-out testing applications, ¥ = 0.3 is a good choice
(though it is unclear STANDARD-WRAP would fall into
his framework). Using this as an initial choice for 7,



we obtain Figure 1, as we vary the total number of
features. We see from the graph that ORDERED-FS is
performing significantly better on this domain. For
reference, the performance of learning without feature
selection, using all the features and not saving any
data for hold-out testing, has also been plotted; for
this problem, this is not really a competitive algorithm
(and it is only very slightly competitive on the other
target concept we test), and we omit it from the rest
of our graphs.

Earlier, our bound had predicted that as f increases,
the dominating factor for the error of STANDARD-
WRAP comes from testing 2/ hypotheses on ym hold-
out samples, thereby possibly “overfitting” the hold-
out data. For STANDARD-WRAP, it is therefore natural
to see if increasing the hold-out fraction 7y might alle-
viate this effect. Doing so, we obtain Figure 2, which
shows results for STANDARD-WRAP using v = 0.3, 0.5,
and 0.7. While still inferior to ORDERED-FS, the choice
of v = 0.5 does appear to give better performance for
large f, and for the remainder of our experimental re-
sults, we report results using STANDARD-WRAP with
v = 0.3 and 0.5.

1 relevant feature, 30% noise, 100 samples
0.4 T T

Generalization error

0.15
5

1‘0 15I o . 20 2‘5 30

Total Number of features
Figure 1: performance of no feature selection
training on all the data (dot), of STANDARD-
WRAP (dash) with v = 0.3 and ORDERED-FS

(solid) with vy = 0.3. Vertical dashes are 1se.
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Figure 2: performance of STANDARD-WRAP us-
ing ¥ = 0.3 (dash), ¥ = 0.5 (dot-dash) and
¥ = 0.7 (dot). Vertical dashes are 1se.

Next, as we vary m, keeping the total number of fea-
tures at 20, Figure 3 shows ORDERED-FS still consis-
tently beating STANDARD-WRAP. Lastly, performing
similar experiments with a new target function, this
time with 3 relevant features

C(.l‘)_ 1 fe;+a2s+23>0
“ 1 0 otherwise

we obtain Figures 4 and 5, which both show ORDERED-
Fs performing significantly better.

20 features total, 1 relevant, 30% noise

0.4

Generalization error

0.05 . 1 I . . .
50 100 150 200 250 300 350 400
Sample size (m)

Figure 3: performance of STANDARD-WRAP with
v = 0.3 (dash) and v = 0.5 (dot-dash), and
ORDERED-Fs with v = 0.3 (solid).

3 relevant features, 30% noise, 200 samples

Generalization error

1‘0 1‘5 2‘0 2‘5 30
Total Number of features

Figure 4: performance of STANDARD-WRAP and

ORDERED-FS. Target has 3 relevant features.

(Same legend as Figure 3.)

20 features total, 3 relevant, 30% noise
05 T T

Generalization error

01 L L
50 100 150

. . .
20 250 300 350 400
Sample size (m)

Figure 5: performance of STANDARD-WRAP and
ORDERED-FS. Target has 3 relevant features.



5 Discussion and Conclusions

Our experimental results showed our heuristic-search
version of ORDERED-FS generally beating that of
STANDARD-WRAP. Of course, we do not claim that this
will always be the case; indeed, a more detailed analy-
sis than we had given suggests STANDARD-WRAP might
do slightly better than ORDERED-FS when the number
of relevant features is large, for example if r & 0.5f.
(But then, this is often also the case when feature se-
lection is less useful, compared to learning on the entire
set of features.)

Throughout the paper, we skirted the issue of compu-
tational expense in (approximately) finding the best
(in the training or hold-out error sense) set of fea-
tures. Indeed, we believe that much work remains to
be done on this field, perhaps particularly in design-
ing algorithms for finding feature subsets that mini-
mize training error such as ORDERED-FS requires; for
example, we have very efficient algorithms for per-
forming forward and backward search for linear regres-
sion [Miller, 1990], but few generalizations or fast ap-
proximations thereof to other algorithms. Moreover,
for our bounds to predict actual performance well on
real problems, we have to rely on these heuristics to
perform well, though rigorous bounds for performance
using search heuristics can also be given if we can
bound how well the heuristic performs the required
search/optimization. In particular, if heuristic approx-
imation to STANDARD-WRAP finds only a feature sub-
set that comes within only ¢4 of minimizing hold-out
error, then a rigorous bound for its generalization er-
ror is the same as for STANDARD-WRAP with an ad-
ditional e4 term. For ORDERED-FS, if for each value
of r, we succeed in finding only a feature subset that
comes within €4 (r) of minimizing training error over
all feature subsets of size r, then a rigorous bound for
generalization error is the same as for ORDERED-FS but
with an additional €4 (r) term in the {} curly brack-
ets. (We defer proofs and a more detailed discussion
of implications to the full paper.) Nevertheless, search
heuristics are then immediately seen to be trying to
drive 4 or e4(r) to zero, and can therefore be argued
to be trying to reach the performance suggested by
our bounds. (However, one other surprising effect not
modeled by our bounds and which deserves mention is
that when STANDARD-WRAP is “badly” overfitting the
hold-out data, then our earlier work suggests that even
randomly throwing some subset of the 2/ hypotheses
away may improve performance [Ng, 1997]. This sug-
gests that in such somewhat-degenerate cases, using a
weaker search heuristic may actually be helpful. In our

experiments, we did manage to find parameter ranges
that seemed to exhibit this effect; but, we do not know
how prevalent this effect is in practice, and would of
course recommend using a good optimization criteria,
like ORDERED-FS’s, rather than using a less-sound cri-
teria and then to trying to do a poor job in optimizing
it.)

Finally, using techniques similar to those used in this
paper, it is possible to derive other algorithms or mod-
ified versions of our algorithm that, like ORDERED-FS,
have strong theoretical properties regarding tolerance
to the presence of many irrelevant features, and which
may have slightly different strengths and weaknesses
than ORDERED-FS; and we discuss a number of them
in detail in the full paper. But for now, a significant
result of this work is that with appropriate feature se-
lection, sample complexity becomes logarithmic in the
number of irrelevant features, so that we can handle
ezponentially many irrelevant features as training ex-
amples. Of course, we still have rely on search heuris-
tics to help us reach these bounds, and while much em-
pirical work remains to be done evaluating ORDERED-
FS and comparing it to STANDARD-WRAP and possible
interpolations between the two algorithms, we also be-
lieve that being able to give these bounds is very en-
couraging, because it means that if they are even only
approximately realizable by search algorithms, they
may have tremendous consequences for feature design
— that modulo computational expense, overly careful
human design of features may often be unnecessary,
so long as additional training data can be obtained
reasonably cheaply.
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