
Near-Bayesian Exploration in Polynomial Time

J. Zico Kolter kolter@cs.stanford.edu

Andrew Y. Ng ang@cs.stanford.edu

Computer Science Department, Stanford University, CA 94305

Abstract

We consider the exploration/exploitation
problem in reinforcement learning (RL). The
Bayesian approach to model-based RL of-
fers an elegant solution to this problem, by
considering a distribution over possible mod-
els and acting to maximize expected reward;
unfortunately, the Bayesian solution is in-
tractable for all but very restricted cases. In
this paper we present a simple algorithm, and
prove that with high probability it is able to
perform ǫ-close to the true (intractable) opti-
mal Bayesian policy after some small (poly-
nomial in quantities describing the system)
number of time steps. The algorithm and
analysis are motivated by the so-called PAC-
MDP approach, and extend such results into
the setting of Bayesian RL. In this setting,
we show that we can achieve lower sample
complexity bounds than existing algorithms,
while using an exploration strategy that is
much greedier than the (extremely cautious)
exploration of PAC-MDP algorithms.

1. Introduction

An agent acting in an unknown environment must con-
sider the well-known exploration/exploitation trade-
off : the trade-off between maximizing rewards based
on the current knowledge of the system (exploiting)
and acting so as to gain additional information about
the system (exploring). The Bayesian approach to
model-based reinforcement learning (RL) offers a very
elegant solution to this dilemma. Under the Bayesian
approach, one maintains a distribution over possible
models and simply acts to maximize the expected fu-
ture reward; this objective trades off very naturally
between exploration and exploitation. Unfortunately,

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

except for very restricted cases, computing the full
Bayesian policy is intractable. This has lead to nu-
merous approximation methods, but, to the best of
our knowledge, there has been little work on provid-
ing any formal guarantees for such algorithms.

In this paper we present a simple, greedy approxima-
tion algorithm, and show that is is able to perform
nearly as well as the (intractable) optimal Bayesian
policy after executing a “small” (polynomial is quan-
tities describing the system) number of steps. The
algorithm and analysis are motivated by the so-called
PAC-MDP approach, typified by algorithms such as
E3 and Rmax, but extend this paradigm to the setting
of Bayesian RL. We show that by considering opti-
mality with respect to the optimal Bayesian policy, we
can both achieve lower sample complexity than exist-
ing algorithms, and use an exploration approach that
is far greedier than the (extremely cautious) explo-
ration required by any PAC-MDP algorithm. Indeed,
our analysis also shows that both our greedy algorithm
and the true Bayesian policy are not PAC-MDP.

The remainder of the paper is organized as follows.
In Section 2 we describe our setting formally and re-
view the Bayesian and PAC-MDP approaches to ex-
ploration. In Section 3 we present our greedy approxi-
mation algorithm, and then state and discuss the the-
oretical guarantees for this method. In Section 4 we
prove these results, present brief simulation results in
Section 5 and conclude in Section 6.

2. Preliminaries

A Markov Decision Process (MDP) is a tuple
{S,A, P,R,H} where S is a set of states, A is a set
of actions, P : S × A × S → R+ is a state tran-
sition probability function, R : S × A → [0, 1] is a
(bounded) reward function, and H is a time horizon.1

We consider an agent interacting with an MDP via

1We use the finite horizon setting for simplicity, but all
results presented here easily extend to the case of infinite
horizon discounted rewards.

Near-Bayesian Exploration in Polynomial Time

a single continuous thread of experience, and we as-
sume that the transition probabilities P are unknown
to the agent. For simplicity of notation, we will assume
that the reward is known, but this does not sacrifice
generality, since an MDP with unknown (bounded) re-
wards and unknown transitions can be represented as
an MDP with known rewards and unknown transitions
by adding additional states to the system. In this work
we will focus on the case of discrete states and actions.

A policy π is a mapping from states to actions. The
value of a policy for a given state is defined as the
sum of rewards over the next H time steps V π

H(s) =

E
[

∑H
t=1 R(st, π(s))|s1 = s, π

]

. The value function

can also be written in terms of Bellman’s equation

V π
H(s) = R(s, π(s)) +

∑

s′

P (s′|s, a)V π
H−1(s

′).

Finally, when the transitions of the MDP are known,
we can find the optimal policy π⋆ and optimal value
function V ⋆ by solving Bellman’s optimality equation

V ⋆
H(s) = max

a

{

R(s, a) +
∑

s′

P (s′|s, a)V ⋆
H−1(s

′)

}

where π⋆(s) is simply the action a that maximizes the
right hand side; we can apply classical algorithms such
as Value Iteration or Policy Iteration to find a solution
to this equation (Putterman, 2005).

2.1. Bayesian Reinforcement Learning

Of course, in the setting we consider, the transitions
of the MDP are not known, so we must adopt differ-
ent methods. The Bayesian approach to model-based
RL, which has its roots in the topic of Dual Control
(Fel’dbaum, 1961; Filatov & Unbehauen, 2004), ex-
plicitly represents the uncertainty over MDPs by main-
taining a belief state b. Since we are concerned with
the setting of discrete states and actions, a natural
means of representing the belief is to let b consist of a
set of Dirichlet distributions that describe our uncer-
tainty over the state transitions

b = {α(s, a, s′)}, P (s′|b, s, a) =
α(s, a, s′)

α0(s, a)

where α0(s, a) =
∑

s′ α(s, a, s′). In this setting, the
“state” now consists of both the system state and the
belief state; policies and value functions now depend
on both these elements. The value of a policy π for a
belief and state is again given by Bellman’s equation

V π
H(b, s) = R(s, a) +

∫

b′,s′

P (b′, s′|b, s, a)V π
H−1(b

′, s′)

= R(s, a) +

∫

b′,s′

P (b′|s′, b, s, a)

P (s′|b, s, a)V π
H−1(b

′, s′)

= R(s, a) +
∑

s′

P (s′|b, s, a)V π
H−1(b

′, s′)

where a = π(s, b) and where on the third line the belief
b′ is equal to b except that we increment α(s, a, s′).
The simplified form on this third line results from the
fact that P (b′|s′, b, s, a) is deterministic: if we are in
state s, take action a, and end up in state s′, then we
know how to update b (by incrementing α(s, a, s′), as
described above). This allows us to remove the integral
over b′, and since the states are discrete we only need
to sum over s′.

We can also use the same logic to derive a Bayesian
version of Bellman’s optimality equation, which gives
us the optimal Bayesian value function and policy

V ⋆
H(b, s) = max

a

{

R(s, a) +
∑

s′

P (s′|b, s, a)V ⋆
H−1(b

′, s′)

}

and where the optimal Bayesian policy π⋆(b, s) is just
the action that maximizes the right hand side. Since
this Bayesian policy plays a crucial role in the remain-
der of this paper, it is worth understanding the in-
tuition behind this equation. The optimal Bayesian
policy chooses actions based not only on how they will
affect the next state of the system, but also based on
how they will affect the next belief state; and, since
a better knowledge of the MDP will typically lead to
greater future reward, the Bayesian policy will very
naturally trade off between exploring the system to
gain more knowledge, and exploiting its current knowl-
edge of the system.

Unfortunately, while the Bayesian approach provides
a very elegant solution to the exploration/exploitation
problem, it is typically not possible to compute the
Bayesian policy exactly. Since the dimension of the be-
lief state grows polynomially in the number of states
and actions, computing the Bayesian value function
using value iteration or other methods is typically not
tractable.2 This has lead to numerous methods that
approximate the Bayesian exploration policy (Dearden
et al., 1999; Strens, 2000; Wang et al., 2005; Poupart
et al., 2006), typically by computing an approximation
to the optimal value function, either by sampling or
other methods. However, little is known about these

2One exception, where the Bayesian approach is
tractable, is the domain of a k-armed bandit (i.e., an MDP
with one state and k actions, where the rewards are un-
known). In this case, the Bayesian approach leads to the
well-known Gittins indices (Gittins, 1989). However, the
approach does not scale analytically to multi-state MDPs.

Near-Bayesian Exploration in Polynomial Time

algorithms from a theoretical perspective, and it is un-
clear what (if any) formal guarantees can be made for
such approaches.

2.2. PAC-MDP Reinforcement Learning

An alternative approach to exploration in RL is the so-
called PAC-MDP approach, exemplified by algorithms
such as E3, Rmax, and others (Kearns & Singh, 2002;
Brafman & Tennenholtz, 2002; Kakade, 2003; Strehl
& Littman, 2008a). Such algorithms also address the
exploration/exploitation problem, but do so in a dif-
ferent manner. The algorithms are based on the fol-
lowing intuition: if an agent has observed a certain
state-action pair enough times, then we can use large
deviation inequalities, such as the Hoeffding bound,
to ensure that the true dynamics are close to the em-
pirical estimates. On the other hand, if we have not
observed a state-action pair enough times, then we as-
sume it has very high value; this will drive the agent
to try out state-action pairs that we haven’t observed
enough times, until eventually we have a suitably ac-
curate model of the system — this general technique
is known as optimism in the face of uncertainty.

Although the precise formulation of the learning guar-
antees vary from algorithm to algorithm, using these
strategies, one can prove theoretical guarantees of the
following form, or similar: with high probability, the
algorithm performs near optimally for all but a “small”
number of time steps — where “small” here means
polynomial is various quantities describing the MDP.
Slightly more formally, if At denotes the policy fol-
lowed by the algorithm at time t, then with probability
greater than 1 − δ,

V At(st) ≥ V ⋆(st) − ǫ

for all but m = O(poly(|S|, |A|,H, 1/ǫ, 1/δ)) time
steps. This statement does not indicate when these
suboptimal steps will occur — the algorithm could
act near-optimally for a long period of time before
returning to sub-optimal behavior for some number
of steps — which allows us to avoid issues of mix-
ing times or ergodicity of the MDP; this precise for-
mulation is due to Kakade (2003). Many variations
and extensions of these results exist: to the case of
metric MDPs (Kakade et al., 2003), factored MDPs
(Kearns & Koller, 1999) to continuous linear (in state
features) domains (Strehl & Littman, 2008b), to a cer-
tain class of switching linear systems (Brunskill et al.,
2008), and others. However, the overall intuition be-
hind these approaches is similar: in order to perform
well, we want to explore enough that we learn an accu-
rate model of the system.3 While this results in very

3A slightly different approach is taken by Strehl et al.

powerful guarantees, the algorithms typically require
a very large amount of exploration in practice. This
contrasts to the Bayesian approach, were we just want
to obtain high expected reward over some finite hori-
zon (or alternatively, an infinite discounted horizon).
Intuitively, we might then expect that the Bayesian
approach could act in a greedier fashion than the PAC-
MDP approaches, and we will confirm and formalize
this intuition in the next section. Furthermore, many
issues that present challenges in the PAC-MDP frame-
work, such as incorporating prior knowledge or dealing
with correlated transitions, seemingly can be handled
very naturally in the Bayesian framework.

3. A Greedy Approximation Algorithm

and Theoretical Results

From the discussion above, it should be apparent that
both the Bayesian and PAC-MDP approaches have ad-
vantages and drawbacks, and in this section we present
an algorithm and analysis that combines elements from
both frameworks. In particular, we present a simple
greedy algorithm that we show to perform “nearly as
well” as the full Bayesian policy, in a sense that we
will formalize shortly; this is a PAC-MDP-type re-
sult, but we consider optimality with respect to the
Bayesian policy for a given belief state, rather than
the optimal policy for some fixed MDP. As we will
show, this alternative definition of optimality allows us
to both achieve lower sample complexity than existing
PAC-MDP algorithms and use a greedier exploration
method.

The algorithm we propose is itself very straightforward
and similar to many previously proposed exploration
heuristics. We call the algorithm Bayesian Exploration
Bonus (BEB), since it chooses actions according to
the current mean estimate of the state transitions plus
an additional reward bonus for state-action pairs that
have been observed relatively little. Specifically, the
BEB algorithm, at each time step, chooses actions
greedily with respect to the value function

Ṽ ⋆
H(b, s) = max

a

{

R(s, a) +
β

1 + α0(s, a)

+
∑

s′

P (s′|b, s, a)Ṽ ⋆
H−1(b, s

′)

} (1)

where β is a parameter of the algorithm that we will
discuss shortly. In other words, the algorithm acts
by solving the an MDP using the mean of the cur-

(2006), where they do not build an explicit model of the
system. However, the overall idea is the same, only here
they want to explore enough until they obtain an accurate
estimate of the state-action value function.

Near-Bayesian Exploration in Polynomial Time

rent belief state for the transition probabilities, and
an additional exploration bonus of β/(1 + α0(s, a)) at
each state. Note that the belief b is not updated in
this equation, meaning we can solve the equation using
the standard Value Iteration or Policy Iteration algo-
rithms. To simplify the analysis that follows, we also
take a common approach and cease updating the belief
states after a certain number of observations, which we
will describe more fully below. The following theorem
gives a performance guarantee for the BEB algorithm
for a suitably large value of β.

Theorem 1. Let At denote the policy followed by the
BEB algorithm (with β = 2H2) at time t, and let st

and bt be the corresponding state and belief. Also sup-
pose we stop updating the belief for a state-action pair
when α0(s, a) > 4H3/ǫ. Then with probability at least
1 − δ,

V At

H (bt, st) ≥ V ⋆
H(bt, st) − ǫ

— i.e., the algorithm is ǫ-close to the optimal Bayesian
policy — for all but

m = O

(|S||A|H6

ǫ2
log

|S||A|
δ

)

time steps.

In other words, BEB acts sub-optimality (where op-
timality is defined in the Bayesian sense), for only a
polynomial number of time steps. Like the PAC-MDP
results mentioned above, the theorem makes no claims
about when these sub-optimal steps occur, and thus
avoids issues of mixing times, etc.

In terms of the polynomial degree on the various quan-
tities, this bound is tighter than the standard PAC-
MDP bounds, which to the best of our knowledge have
sample complexity of

m = Õ

(|S|2|A|H6

ǫ3

)

time steps.4 Intuitively, this smaller bound re-
sults from the fact that in order to approximate the
Bayesian policy, we don’t need to learn the “true” dy-
namics of an MDP, we just need to ensure that the
posterior beliefs are sufficiently peaked so that further
updates cannot lead to very much additional reward.
However, as mentioned above, the two theorems are
not directly comparable, since we define optimality
with respect to the Bayesian policy for a belief state,
whereas the standard PAC-MDP framework defines

4The Õ(·) notation suppresses logarithmic factors. In
addition, the model-free algorithm of (Strehl et al., 2006)

obtains a bound of Õ

“

|S||A|H8

ǫ4

”

, also larger than our

bound.

optimality with respect to the optimal policy for some
given MDP. Indeed, one of the chief insights of this
work is that by considering the Bayesian definition of
optimality, we can achieve these smaller bounds.

To gain further insight into the nature of Bayesian
exploration, BEB, and the PAC-MDP approach, we
compare our method to a very similar PAC-MDP algo-
rithm known as Model Based Interval Estimation with
Exploration Bonus (MBIE-EB) (Strehl & Littman,
2008a). Like BEB, this algorithm at each time step
solves an MDP according to the mean estimate of
the transitions, plus an exploration bonus. However,
MBIE-EB uses an exploration bonus of the form

β
√

n(s, a)

where n(s, a) denotes the number of times that the
state-action pair s, a has been observed; this contrasts
with the BEB algorithm, which has an exploration
bonus of

β

1 + n(s, a)

where here n(s, a) also includes the “counts” implied
by the prior. Since 1/

√
n decays much slower than 1/n,

MBIE-EB consequently explores a great deal more
than the BEB algorithm. Furthermore, this is not
an artifact of the MBIE-EB algorithm alone: as we
formalize in the next theorem, any algorithm with an
exploration bonus that decays faster than 1/

√
n can-

not be PAC-MDP.

Theorem 2. Let At denote the policy followed an
algorithm using any (arbitrary complex) exploration
bonus that is upper bounded by

β

n(s, a)p

for some constant β and p > 1/2. Then there exists
some MDP M and ǫ0(β, p), such that with probability
greater than δ0 = 0.15,

V At

H (st) < V ⋆
H(st) − ǫ0

will hold for an unbounded number of time steps.

In other words, the BEB algorithm (and Bayesian ex-
ploration itself), are not PAC-MDP, and may in fact
never find the optimal policy for some given MDP.
This result is fairly intuitive: since the Bayesian algo-
rithms are trying to maximize the reward over some
finite horizon, there would be no benefit to excessive
exploration if it cannot help over this horizon time.

To summarize, by considering optimality with respect
to the Bayesian policy, we can obtain algorithms with

Near-Bayesian Exploration in Polynomial Time

lower sample complexity and greedier exploration poli-
cies than PAC-MDP approaches. Although the result-
ing algorithms may fail to find the optimal policy for
certain MDPs, they are still close to optimal in the
Bayesian sense.

4. Proofs of the Main Results

Before presenting the proofs in this section, we want
to briefly describe their intuition. Due to space con-
straints, the proofs of the technical lemmas are de-
ferred to the appendix, available in the full version of
the paper (Kolter & Ng, 2009). The key condition that
allows us to prove that BEB quickly performs ǫ-close
to the Bayesian policy is that at every time step, BEB
is optimistic with respect to the Bayesian Policy, and
this optimism decays to zero given enough samples —
that is, BEB acts according to an internal model that
always overestimates the values of state-action pairs,
but which approaches the true Bayesian value estimate
at a rate of O(1/n(s, a)). The O(1/n) term itself arises
from the L1 divergence between particular Dirichlet
distributions.

Given these results, Theorem 1 follows by adapting
standard arguments from previous PAC-MDP results.
In particular, we define the “known” state-action pairs
to be all those state-action pairs that have been ob-
served more than some number of times and use the
above insights to show, similar to the PAC-MDP
proofs, that V At

H (b, s) is close to the value of acting
according to the optimal Bayesian policy, assuming
the probability of leaving the known state-action set
is small. Finally, we use the Hoeffding bound to show
that this “escape probability” can be large only for a
polynomial number of steps.

To prove Theorem 2, we use Slud’s inequality (Slud,
1977) to show that any algorithm with exploration rate
O(1/np) for p > 1/2 may not be optimistic with re-
spect to the optimal policy for a given MDP. The do-
main to consider here is a simple two-armed bandit,
where one of the arms results in a random Bernoulli
payoff, and the other results in a fixed known payoff
with slightly lower mean value; we can show that with
significant probability, any such exploration bonus al-
gorithm may prefer the suboptimal arm at some point,
resulting in a policy that is never near-optimal.

4.1. Proof of Theorem 1

We begin with a series of lemmas used in the proof.
The first lemma states that if one has a sufficient num-
ber of counts for a Dirichlet distribution, then incre-
menting one of the counts won’t change the proba-
bilities very much. The proof just involves algebraic

manipulation.

Lemma 3. Consider two Dirichlet distributions with
parameters α, α′ ∈ R

k. Further, suppose α′
i = αi for

all i, except α′
j = αj + 1. Then

∑

i

∣

∣P (xi|α) − P (xi|α′)
∣

∣ ≤ 2

1 + α0
.

Next we use this lemma to show that if we solve the
MDP using the current mean of the belief state, with

an additional exploration bonus of 2H2

1+α0(s,a) , this will

lead to a value function that is optimistic with respect
to the Bayesian policy. The proof involves showing
that the potential “benefit” of the true Bayesian pol-
icy (i.e., how much extra reward we could obtain by
updating the beliefs), is upper bounded by the explo-
ration bonus of BEB. The proof is deferred due to
space constraints, but since this result is the key to
proving Theorem 1, this lemma is one of the key tech-
nical results of the paper.

Lemma 4. Let Ṽ ⋆
H(b, s) be the value function used by

BEB, defined as in (1), with β = 2H2; that is, it is
the optimal value function for the mean MDP of belief
b, plus the additional reward term. Then for all s,

Ṽ ⋆
H(b, s) ≥ V ⋆

H(b, s).

Our final lemma is a trivial modification of the
“Induced Inequality” used by previous PAC-MDP
bounds, which extends this inequality to the Bayesian
setting. The lemma states that if we execute a policy
using two different rewards and belief states R, b and
R′, b′, where b = b′ and R = R′ on a “known” set
of state-action pairs K, then following a policy π will
obtain similar rewards for both belief states, provided
the probability of escaping from K is small. The proof
mirrors that in (Strehl & Littman, 2008a).

Lemma 5. Let b,R and b′, R′ be two belief states over
transition probabilities and reward functions that are
identical on some set of state-action pairs K — i.e.,
αb(s, a, s′) = αb′(s, a, s′) and R(s, a) = R′(s, a) for all
s, a ∈ K. Let AK be the probability that a state-action
pair not in K is generated when starting from state s
and following a policy π for H steps. Assuming the
rewards R′ are bounded in [0, Rmax] then,

V π
H(R, b, s) ≥ V π

H(R′, b′, s) − HRmaxP (AK)

where we now make explicit the dependence of the value
function on the reward.

We are now ready to prove Theorem 1.

Proof. (of Theorem 1) Define R̃ as the reward function
used by the BEB algorithm (i.e., the reward plus the

Near-Bayesian Exploration in Polynomial Time

exploration bonus). Let K be the set of all states that
have posterior counts α0(s, a) ≥ m ≡ 4H3/ǫ. Let R′

be a reward function equal to R on K and equal to R̃
elsewhere. Furthermore, let π̃ be the policy followed by
the BEB at time t— i.e., the greedy policy with respect
to the current belief bt and the reward R̃. Letting AK

be the event that π̃ escapes from K when starting in
and acting for H steps. Then

V At

H (R, bt, st) ≥ V π̃
H(R′, bt, st) − H2P (AK) (2)

by Lemma 5 where we note that we can limit
the “exploration bonus” to H (i.e., use a bonus of

min{ 2H2

1+α0(s,a) ,H}), and still maintain optimism, and

by noticing that At equals π̃ unless AK occurs.

In addition, note that since R′ and R̃ differ by at most
2H2/m = ǫ/(2H) at each state,

|V π̃
H(R′, bt, st) − V π̃

H(R̃, bt, st)| ≤
ǫ

2
. (3)

Finally, we consider two cases. First, suppose that
P (AK) > ǫ/(2H2). By the Hoeffding inequality, with
probability 1 − δ this will occur no more than

O

(

m|S||A|H3

ǫ

)

= O

(|S||A|H6

ǫ2

)

times before all the states become “known”. Now sup-
pose P (AK) ≤ ǫ/(2H2). Then

V At

H (R, bt, st) ≥ V π̃
H(R′, bt, st) − H2P (Ak)

≥ V π̃
H(R′, bt, st) −

ǫ

2

≥ V π̃
H(R̃, bt, st) − ǫ

= Ṽ ⋆
H(R̃, bt, st) − ǫ

≥ V ⋆
H(R, bt, st) − ǫ

i.e., the policy is ǫ-optimal. In this derivation the first
line follows from (2), the second line follows from our
assumption that P (AK) ≤ ǫ/(2H2), the third line fol-
lows from (3), the fourth line follows from the fact that
π̃ is precisely the optimal policy for R̃, bt, and the last
line follows from Lemma 4.

4.2. Proof of Theorem 2

We make use of the following inequality, due to Slud
(1977), which gives a lower bound on the probability
of large deviations from the mean in a binomial distri-
bution.

Lemma 6. (Slud’s inequality) Let X1, . . . ,Xn be i.i.d.
Bernoulli random variables, with mean µ ≥ 3/4. Then

P

(

µ − 1

n

n
∑

i=1

Xi > ǫ

)

≥ 1 − Φ

(

ǫ
√

n
√

µ(1 − µ)

)

where Φ(x) is the cumulative distribution function of
a standard Gaussian random variable

Φ(x) =

∫ x

−∞

1√
2π

e
−x2

2 dx.

Using this lemma, we now prove the theorem.

Proof. (of Theorem 2) As mentioned in the preced-
ing text, the scenario we consider for this proof is a
two-armed bandit: action a1 gives a Bernoulli random
reward, with true payoff probability (unknown to the
algorithm) of 3/4; action a2 gives a fixed (known) pay-
off of 3/4−ǫ0 (we will define ǫ0 shortly). Therefore, the
optimal policy is to always pick action a1. Since this
is a setting with only one state (and therefore known
transition dynamics) but unknown rewards, later in
the proof we will transform this domain into one with
unknown transitions but known rewards; however, the
bandit formulation is more intuitive for the time being.

Since the reward for action a2 is known, the only “ex-
ploratory” action in this case is a1, and we let n denote
the number of times that the agent has chosen action
a1, where at each trial it receives reward ri ∈ {0, 1}.
Let f(n) be an exploration bonus for some algorithm
attempting to learn this domain, and suppose it is up-
per bounded by

f(n) ≤ β

np

for some p > 1/2. Then we can lower bound the prob-
ability that the algorithm’s estimate of the reward,
plus its exploration bonus, is pessimistic by more than
β/np:

P

(

3/4 − 1

n

n
∑

i=1

ri − f(n) ≥ β

np

)

≥ P

(

3/4 − 1

n

n
∑

i=1

ri ≥
2β

np

)

≥ 1 − Φ

(

8β√
3np−1/2

)

where the last line follows by applying Slud’s inequal-
ity. We can easily verify numerically that 1 − Φ(1) >
0.15, so for

n ≥
(

8β√
3

)
2

2p−1

we have that with probability greater than δ0 =
0.15, the algorithm is pessimistic by more than β/np.
Therefore, after this many steps, if we let

ǫ0(β, p) = β/

(

8β√
3

)
2

2p−1

Near-Bayesian Exploration in Polynomial Time

then with probability at least δ0 = 0.15, action a2 will
be preferred by the algorithm over action a1. Once this
occurs, the algorithm will never opt to select action a1

(since a2 is known, and already has no exploration
bonus), so for any ǫ ≤ ǫ0, the algorithm will be more
than ǫ sub-optimal for an infinite number of steps.

Finally, we also note that we can easily transform this
domain to an MDP with known rewards but unknown
transitions by considering a three state MDP, with
transition probabilities and rewards

P (s2|s1, a1) = 3/4

P (s3|s1, a1) = 1/4

P (s1|s1, a2) = 1

P (s1|s2:3, a1:2) = 1

R(s2, a1:2) = 1

R(s3, a1:2) = 0

R(s1, a2) = 3/4 − ǫ0.

5. Simulated Domain

In this section we present empirical results for BEB
and other algorithms on a simple chain domain from
the Bayesian exploration literature (Strens, 2000;
Poupart et al., 2006), shown in Figure 1. We stress
that the results here are not intended as a rigorous
evaluation of the different methods, since the domain
is extremely small-scale. Nonetheless, the results il-
lustrate that the characteristics suggested by the the-
ory do manifest themselves in practice, at least in this
small-scale setting.

Figure 2 shows the average total reward versus time
step for several different algorithms. These results
illustrate several points. First, the results show, as
suggested by the theory, that BEB can outperform
PAC-MDP algorithms (in this case, MBIE-EB), due
to it’s greedier exploration strategy. Second, the value
of β required by Theorem 1 is typically much larger
than what is best in practice. This is a common trend
for such algorithms, so for both BEB and MBIE-EB
we evaluated a wide range of values for β and chose
the best for each (the same evaluation strategy was
used by the authors of MBIE-EB (Strehl & Littman,
2008a)). Thus, while the constant factors in the theo-
retical results for both BEB and MBIE-EB are less im-
portant from a practical standpoint, the rates implied
by these results — i.e., the 1/n vs. 1/

√
n exploration

rates — do result in empirical differences. Finally, for
this domain, the possibility that BEB converges to a
sub-optimal policy is not a large concern. This is to
be expected, as Theorem 2 analyzes a fairly extreme
setting, and indeed implies only relatively little sub-
optimality, even in the worse case.

Figure 1. Simple chain domain, consisting of five states and
two actions. Arrows indicate transitions and rewards for
the actions, but at each time step the agent performs the
opposite action as intended with probability 0.2. The agent
always starts in state 1, and the horizon is H = 6.

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1000 2000 3000 4000 5000

A
ve

ra
ge

 T
ot

al
 R

ew
ar

d

Time Step

BEB β=2.5
MBIE-EB β=2.5

Optimal policy
BEB β=2H2

Exploit only (β=0)

Figure 2. Performance versus time for different algorithms
on the chain domain, averaged over 500 trials and shown
with 95% confidence intervals.

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1000 2000 3000 4000 5000

A
ve

ra
ge

 T
ot

al
 R

ew
ar

d

Time Step

Small Prior, α0 = 0.001
Uniform Prior, α0 = |S|

Uniform Prior, α0 = 5|S|
Informative Prior, α0 = |S|

Informative Prior, α0 = 5|S|

Figure 3. Performance versus time for BEB with different
priors on the chain domain, averaged over 500 trials and
shown with 95% confidence intervals.

We also evaluated the significance of the prior distri-
bution on BEB. In Figure 3 we show performance for
BEB with a very small prior, for uniform priors of
varying strength, and for informative priors consisting
of the true transition probabilities. As can be seen,
BEB is fairly insensitive to either small priors, but can
be negatively impacted by a large misspecified prior.
These results are quite intuitive, as such as prior will
greatly decrease the exploration bonus, while provid-
ing a poor model of the environment.

Near-Bayesian Exploration in Polynomial Time

6. Conclusion

In this paper we presented a novel algorithm and
mode of analysis that allows an agent acting in an
MDP to perform ǫ-close to the (intractable) optimal
Bayesian policy after a polynomial number of time
steps. We bring PAC-MDP-type results to the set-
ting of Bayesian RL, and we show that by doing so,
we can both obtain lower sample complexity bounds,
and use exploration techniques that are greedier than
those required by any PAC-MDP algorithm.

Looking forward, the same mode of analysis that we
use to derive the bounds in this paper (which involves
bounding divergences between updates of the belief
distributions) can also be applied to more structured
domains, such as finite MDPs with correlated transi-
tions or continuous state MDPs with smooth dynam-
ics; it will be interesting to see how the resulting algo-
rithms perform in such domains. An alternative means
of analyzing the efficiency of reinforcement learning al-
gorithms is the notion of regret in infinite-horizon set-
tings (Auer & Ortner, 2007), and it remains an open
question whether the ideas we present here can be ex-
tended to this infinite-horizon case. Finally, very re-
cently Asmuth et al. (2009) have independently de-
veloped an algorithm that also combines Bayesian and
PAC-MDP approaches. The actual approach is quite
different — they use Bayesian sampling to achieve a
PAC-MDP algorithm — but it would be very interest-
ing to compare the algorithms.

Acknowledgments

This work was supported by the DARPA Learning Lo-
comotion program under contract number FA8650-05-
C-7261. We thank the anonymous reviews and Lihong
Li for helpful comments. Zico Kolter is supported by
an NSF Graduate Research Fellowship.

References

Asmuth, J., Li, L., Littman, M. L., Nouri, A., & Wingate,
D. (2009). A Bayesian sampling approach to exploration
in reinforcement learning. (Preprint).

Auer, P., & Ortner, R. (2007). Logarithmic online regret
bounds for undiscounted reinforcement learning. Neural
Information Processing Systems.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX –
a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning
Research, 3, 213–231.

Brunskill, E., Leffler, B. R., Li, L., Littman, M. L., & Roy,
N. (2008). CORL: A continuous-state offset-dynamics
reinforcement learner. Proceedings of the International
Conference on Uncertainty in Artificial Intelligence.

Dearden, R., Friedman, N., & Andre, D. (1999). Model
based Bayesian exploration. Proceedings of the Inter-
national Conference on Uncertainty in Artificial Intelli-
gence.

Fel’dbaum, A. A. (1961). Dual control theory, parts I–
IV. Automation and Remote Control, 21 874–880, 21
1033–1039, 22 1–12, 22 109–121.

Filatov, N., & Unbehauen, H. (2004). Adaptive dual con-
trol: Theory and applications. Springer.

Gittins, J. C. (1989). Multiamred bandit allocation indices.
Wiley.

Kakade, S., Kearns, M., & Langford, J. (2003). Exploration
in metric state spaces. Proceedings of the International
Conference on Machine Learning.

Kakade, S. M. (2003). On the sample complexity of rein-
forcement learning. Doctoral dissertation, Gatsby Com-
putational Neuroscience Unit, University College, Lon-
don.

Kearns, M., & Koller, D. (1999). Efficient reinforcement
learning in factored MDPs. Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence.

Kearns, M., & Singh, S. (2002). Near-optimal reinforce-
ment learning in polynomial time. Machine Learning,
49.

Kolter, J. Z., & Ng, A. Y. (2009). Near-Bayesian explo-
ration in polynomial time (full version). Available at
http://ai.stanford.edu/˜kolter.

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (2006).
An analytic solution to discrete Bayesian reinforcement
learning. Proceedings of the International Conference on
Machine Learning.

Putterman, M. L. (2005). Markov decision processes: Dis-
crete stochastic dynamic programming. Wiley.

Slud, E. V. (1977). Distribution inequalities for the bino-
mial law. The Annals of Probability, 5, 404–412.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., &
Littman, M. L. (2006). Pac model-free reinforcement
learning. Proceedings of the International Conference
on Machine Learning.

Strehl, A. L., & Littman, M. L. (2008a). An analysis of
model-based interval estimation for markov decision pro-
cesses. Journal of Computer and System Sciences, 74,
1209–1331.

Strehl, A. L., & Littman, M. L. (2008b). Online linear
regression and its application to model-based reinforce-
ment learning. Neural Information Processing Systems.

Strens, M. J. (2000). A Bayesian framework for reinforce-
ment learning. Proceedings of the International Confer-
ence on Machine Learning.

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D.
(2005). Bayesian sparse sampling for on-line reward op-
timization. Proceedings of the International Conference
on Machine Learning.

Near-Bayesian Exploration in Polynomial Time

A. Technical Proofs

A.1. Proof of Lemma 3

Proof. Using definition of the Dirichlet distribution,

P (xi|α) =

∫

P (xi|π)p(π|α)dπ =
αi

α0

where α0 ≡∑i αi. By the assumptions on α and α′,

∑

i

∣

∣P (xi|α) − P (xi|α′)
∣

∣

=
∑

i6=j

(

αi

α0
− αi

α0 + 1

)

+

(

αj + 1

α0 + 1
− αj

α0

)

=
∑

i6=j

αi

α0 + α2
0

+
α0 − αj

α0 + α2
0

≤
∑

i

αi

α0 + α2
0

+
α0

α0 + α2
0

=
2

1 + α0
.

A.2. Proof of Lemma 4

Proof. Consider some belief and state b and s, and let
bt be the new belief formed by updating b after taking
t ≤ H steps. Then

Ṽ ⋆
H(b, s) − V ⋆

H(bt, s)

= max
a

{

R(s, a) +
2H2

1 + α0(s, a)
+

∑

s′

P (s′|b, s, a)Ṽ ⋆
H−1(b, s

′)

}

−

max
a

{

R(s, a) +
∑

s′

P (s′|bt, s, a)V ⋆
H−1(bt+1, s

′)

}

≥ min
a

{

2H2

1 + α0(s, a)
+
∑

s′

P (s′|b, s, a)Ṽ ⋆
H−1(b, s

′) −

∑

s′

P (s′|bt, s, a)V ⋆
H−1(bt+1, s

′)

}

≥ min
a

{

2H2

1 + α0(s, a)
−

(H − 1)
∑

s′

∣

∣P (s|b, s, a) − P (s′|bt, s, a)
∣

∣+

∑

s′

P (s′|b, s, a)
(

Ṽ ⋆
H−1(b, s) − V ⋆

H−1(bt, s)
)

}

≥ min
a

{

∑

s′

P (s′|b, s, a)
(

Ṽ ⋆
H−1(b, s) − V ⋆

H−1(bt, s)
)

}

≥ min
s

{

Ṽ ⋆
H−1(b, s) − V ⋆

H−1(bt+1, s)
}

.

The first line just substitutes the definitions of Ṽ ⋆
H

and V ⋆
H . In the second line we use the fact that

max
x

f(x) − max
x

g(x) ≥ min
x

(f(x) − g(x)) .

In the third line we use the fact that

∑

x

p(x)f(x) −
∑

x

q(x)g(x)

≥
∑

x

p(x)(f(x) − g(x)) −
∑

x

|p(x) − q(x)|g(x),

and note that V ⋆
H−1(b, s) ≤ (H − 1) for any b and s.

In the fourth line we apply Lemma 3 to show that

2H2

1 + α0(s, a)
≥ (H − 1)

∑

s′

∣

∣P (s|b, s, a) − P (s′|bt, s, a)
∣

∣

which lets us remove these terms. In greater detail,
using the triangle inequality, Lemma 3, and the fact
that t ≤ H

∑

s′

∣

∣P (s′|bt, s, a) − P (s′|b, s, a)
∣

∣

≤
t
∑

i=1

∑

s′

∣

∣P (s′|bi, s, a) − P (s′|bi−1, s, a)
∣

∣

≤
t
∑

i=1

2

1 + α0(s, a) + i
≤ 2H

1 + α0(s, a)
.

Since s is arbitrary in the above derivation, we have
that for any t ≤ H,

min
s

{

Ṽ ⋆
H(b, s) − V ⋆

H(bt, s)
}

≥ min
s

{

Ṽ ⋆
H−1(b, s) − V ⋆

H−1(bt+1, s)
}

Applying this equation repeatedly proves the desired
lemma.

A.3. Proof of Lemma 5

Proof. Consider a sequence of beliefs, states, actions,
and rewards of length t, pt = s1a1r1, . . . , st, at, rt. Let
P (pt) be the probability of this sequence under belief
b with reward function R when starting in state s, and
let P ′(pt) be the probability of the sequence under
belief b with reward function R. Let Kt be the set of

Near-Bayesian Exploration in Polynomial Time

sequences where all s1, . . . , st ∈ K Then

V π
H(R′, b′, s) − V π

H(R, b, s)

=
H
∑

t=1

∑

pt

(

P ′(pt)rt(pt) − P (pt)rt(pt)
)

=

H
∑

t=1

∑

pt∈Kt

(

P ′(pt)rt(pt) − P (pt)rt(pt)
)

+

∑

pt 6∈Kt

(

P ′(pt)rt(pt) − P (pt)rt(pt)
)

=
H
∑

t=1

∑

pt 6∈Kt

(

P ′(pt)rt(pt) − P (pt)rt(pt)
)

≤
H
∑

t=1

∑

pt 6∈Kt

P ′(pt)rt(pt) ≤ HRmaxP (AK)

where we can eliminate the terms for pt ∈ Kt, be-
cause R, b and R′, b′ are identical on this set, and where
the last line follows since the rewards are bounded in
[0, Rmax].

