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Abstract

We present a general Bayesian framework
for hyperparameter tuning in Lo-regularized
supervised learning models. Paradoxically,
our algorithm works by first analytically in-
tegrating out the hyperparameters from the
model. We find a local optimum of the re-
sulting non-convex optimization problem ef-
ficiently using a majorization-minimization
(MM) algorithm, in which the non-convex
problem is reduced to a series of convex Lo-
regularized parameter estimation tasks. The
principal appeal of our method is its sim-
plicity: the updates for choosing the Lo-
regularized subproblems in each step are triv-
ial to implement (or even perform by hand),
and each subproblem can be efficiently solved
by adapting existing solvers. Empirical re-
sults on a variety of supervised learning mod-
els show that our algorithm is competitive
with both grid-search and gradient-based al-
gorithms, but is more efficient and far easier
to implement.

1. Introduction

Regularization helps to prevent overfitting in super-
vised learning models by restricting model capacity.
Penalty-based regularization methods encode a pref-
erence for simpler hypotheses directly into the opti-
mization problem used for estimating model parame-
ters. Support vector machines, for example, use an Lo
penalty of the form C ||wl||®, where w € R" is the
vector of model parameters, ||-|| is the standard Eu-
clidean norm, and C'is a user-specified constant, com-
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monly termed a regularization hyperparameter. How-
ever, this gives rise to the problem of selecting the
appropriate value for the hyperparameter C.

The most common methods for hyperparameter se-
lection use cross-validation to tune the hyperparame-
ters. For example, in the widely used grid-search algo-
rithm, one trains a model using a range of values for C'
and selects the value that gives the best performance
on a holdout set. However, the computational cost
of grid-search scales exponentially with the number of
hyperparameters in the model, thus limiting its use to
models with few hyperparameters.

For models with multiple hyperparameters, more so-
phisticated gradient-based algorithms exist for opti-
mizing cross-validation loss with respect to the hyper-
parameters. Gradient-based hyperparameter learning
algorithms have been proposed for a variety of su-
pervised learning models, including neural networks
(Larsen et al., 1996a; Andersen et al., 1997; Goutte
& Larsen, 1998; Larsen et al., 1996b), support vector
machines (Glasmachers & Igel, 2005; Keerthi et al.,
2007; Chapelle et al., 2002), and more recently, con-
ditional log-linear models (Do et al., 2008). However,
these algorithms typically require complicated compu-
tations, making them cumbersome to implement. For
example, the hyperparameter learning algorithm of Do
et al. (2008) for log-linear models requires the com-
putation of products of the Hessian of the training
log-likelihood with arbitrary vectors, and performing
conjugate gradient optimization for solving linear sys-
tems based on these Hessian-vector products. As such,
the programmer effort required in getting a gradient-
based hyperparameter learning algorithm to work in
practice is non-trivial.

For probabilistic supervised learning models,
Bayesian methods provide an alternative to cross-
validation—based methods for hyperparameter
learning; Bayesian methods treat hyperparameters as



A MM algorithm for hyperparameter learning

parameters in the model with pre-specified prior dis-
tributions. We focus on the “integrate-out” approach
proposed by Buntine and Weigend (1991), and later
extended by Williams (1995), Cawley and Talbot
(2006), and Cawley, Talbot and Girolami (2007). In
this approach, an uninformative prior is placed over
the regularization hyperparameter, which is then
integrated out, resulting in a modified regularization
penalty (and optimization objective) in which the
hyperparameters have been eliminated.

In this paper, we propose a simple and gen-
eral framework for hyperparameter learning in Lo-
regularized models based on Buntine and Weigend’s
strategy. Using their Bayesian formulation, our frame-
work expresses the problem of parameter learning in
a model where regularization hyperparameters have
been eliminated as a non-convex optimization prob-
lem. In general, although non-convex optimization
problems can be extremely difficult to solve, we pro-
pose an effective strategy based on majorization-
minimization. In this approach, we iteratively replace
the non-convex portion of our objective function with a
convex upper-bound. Each convex optimization sub-
problem, in turn, has the form of an Lo-regularized
parameter estimation task, which we solve efficiently
by adapting existing solvers. Finally, we interpret the
regularization coefficients from the sequence of convex
subproblems as the hyperparameter choices in our hy-
perparameter learning algorithm.

The salient characteristic of the majorization-
minimization algorithm when applied to our problem
is its striking ease of implementation. Like cross-
validation—based strategies, our algorithm requires it-
erated solution of regularized parameter estimation
problems for varying choices of hyperparameters. Un-
like gradient-based methods, however, the choice of
hyperparameter setting in each iteration is a sim-
ple closed-form expression which is trivial to evalu-
ate. However, the assumptions made by the Bayesian
model are not without consequences, and we do not
claim that the hyperparameters chosen by our algo-
rithm will always be optimal for generalization per-
formance. In practice, however, our approach often
performs surprisingly well in spite of its simplicity.
Moreover, our framework is applicable to a wide va-
riety of problems, including structured classification
models (e.g., log-linear models) and standard classifi-
cation/regression models (e.g., least-squares and logis-
tic regression).

2. The “integrate out” strategy

Consider a general supervised learning problem, in
which D = {(z®, 4} | is a training set of m inde-
pendently and identically distributed (IID) examples.

The labels y(¥ may be real valued, discrete, or struc-
tured, depending on the type of problem we are trying
to solve. We wish to estimate the parameters w € R”
for a probabilistic model of y given x, p(y|z;w). The
usual approach is to formulate the learning problem as
regularized maximum likelihood (ML) or maximum a
posteriori (MAP) estimation,

Wy ap = argmin [—log p(D|w) — logp(w; C)], (1)

where p(w;C) is a prior distribution over model pa-
rameters with the hyperparameter C.! For example,
when p(w; C) o exp(—1C ||w]|[?) is an isotropic zero-
mean Gaussian prior with inverse variance C, then the
second term above simplifies to 2C ||w]|[*, up to addi-
tive constants independent of C.

In an ideal Bayesian framework, one regards
C as another random variable in the model with
some fixed prior distribution p(C), and avoids
committing to point estimates of model param-
eters altogether by making predictions via the
integral, p(ylz,D) = [ p(y|lz, w)p(w|D)dw, where
p(w|D) o [ p(Dlw)p(w|C)p(C)dC  follows  from
Bayes’ rule. In general, the combination of integrals
required for ideal Bayesian inference is analytically
intractable, so one must resort to either sampling
strategies or approximations. One possibility is to
approximate p(w|D) using a point mass centered at its
mode, w* = argmax,, | [, p(Dlw)p(w|C)p(C)dC],
or equivalently,

w*:argwmin 10gp(’D|w)log/cp(w|C)p(C)dC’].
(2)

In this form, we see that (2) is a close vari-
ant of (1); while p(w;C) depends on C, the
hyperparameter C' has been marginalized out in
p(w) = [ p(w|C)p(C)dC. For this reason, (2) is often
referred to as the “integrate out” approach for dealing
with hyperparameters. The integrate out approach
was first introduced by Buntine and Weigend (1991)
and subsequently applied by Williams (1995), Cawley
and Talbot (2006), and Cawley, Talbot and Girolami
(2007). This approach extends in a straightforward
manner to the case where multiple hyperparameters
or hyperparameter groupings are used. For clarity of
exposition we first present the derivations for the sin-
gle hyperparameter case. We treat the multiple and
grouped hyperparameter cases in a later subsection.

Integrating out a single hyperparameter Con-
sider an isotropic Gaussian prior of the form p(w|C)

'Here, we view C' as a pre-determined parameter of the
distribution p(w; C), and not a random variable. This is
why we do not condition over C.
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exp(—3C ||w]||?), which corresponds to the product of
n independent zero-mean Gaussian priors with com-
mon variance 1/C for each parameter w;. In this sec-
tion, we show that if we place a Gamma prior on C,
it is possible to compute the integral for p(w) analyt-
ically in closed form. Similar derivations for Laplace
priors over the parameters w; and Jeffrey’s prior for
C were presented in (Williams, 1995; Cawley et al.,
2007).

More precisely, suppose C ~ Gammal(a, (), such

that p(C;a,3) = W

desired integral for p(w) is
yolwe, C2718%e7 70
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where the integrand I(C) is given by

In this case, the
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we have factored out terms independent of C and

- n 1 2 7(%+a)
the additional term I'(§ + o) (5 [lw]|” + 6) to
form the new integrand I(C). Since I(C) is actu-
ally the probability density function for a Gamma dis-
tribution (with parameters % + o and % lw|* + 8),
JoSI(C)dC = 1. Thus, the integral for p(w) simpli-

fies to
BUL(5 +a) (1 ~la+e)
i Gvres) e

Hence, up to additive constants independent of w,
2

log p(w) = — (5 +a) log (} |wI[* + 3

successfully eliminated the regularization constant C.

) and we have

Integrating out multiple hyperparameters In
some cases, different features in a probabilistic model
may be known to have considerably different prior
variances. Here, we show how the “integrate out”
framework may be extended for multiple hyperparam-
eters by describing a more flexible parameterization of
the prior p(w|C) in terms of a vector of parameters
C := (C4,...,Ck). This parameterization is adapted
from (Do et al., 2008) and is also described briefly in
(Williams, 1995).

Consider a setting in which parameters w =
(w1, ..., w,) have been partitioned into k fixed groups,

known as regularization groups, such that the param-
eters in each group are known in advance to have
roughly similar variances. Such a setting occurs reg-
ularly in structured estimation tasks, where different
types of features have varying frequencies of occur-
rence. For example, in natural language processing
tasks, unigram and bigram features might be regular-
ized separately; in RNA secondary structure predic-
tion, features for different types of structural motifs
should be treated separately.

Let 7 : {1,...,n} — {1,...,k} be a fixed map-
ping from parameters to their corresponding regular-
ization groups. This mapping should be available
to the learning algorithm prior to training. The in-
verse image of this mapping is defined by 7=1(j) :=
{ie{1,...,n}|n(i) = j}. Finally, let n; := |7~1(j)|
be the size of the jth regularization group, for
j =1,...,k. An automatic relevance determination
(ARD) (MacKay, 1992) prior is a special case of this
framework, where we let each hyperparameter be in
its own group.

Suppose p(w|C) o exp(—3 Y, Cr(jyw?). Further-
more, suppose that each C; is now independently sam-
pled from a Gamma distribution with common param-
eters o and . Following the derivation in the previous
section, we obtain

—(F+a)

o<H1"( j+a) ﬁ—i—f Z w? (4)

zETr

and therefore up to additive constants,

Zk:( +a>log 6+% > wl]. (5)

j=1 ier—1(5)

log p(w

3. A majorization-minimization
algorithm for hyperparameter
learning

In this section we describe how to perform the min-

imization in equation (2) using the new prior p(w)

computed in the previous section, which results in the

optimization problem (for the single hyperparameter
case)

w*=arg min {logp(D|w)+ (%Jroz) log (; | w] 2+ﬂ)] :
(6)

In the models we consider in this paper, the negative
log-likelihood — log p(D|w) is convex in the parameters
w. However, the second term corresponding to the log
marginalized prior is in fact neither convex nor concave
in w. Because the log prior is differentiable, one could
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Algorithm 1 Majorization-minimization algorithm
for single hyperparameter learning

Initialize ¢ := 0.

repeat

1 ift=0
n/2+a
3w+

t) .—
Compute C**) : otherwise.

1
w1 .= arg min [— logp(D|w) + 50“) |W||2]-

until convergence

consider applying a generic gradient-based algorithm
in order to identify a local minimum of the objective
function. However, we found that in our experiments,
such a strategy is highly prone to identifying poor local
minima which does not give as good performance in
practice as compared to our algorithm.

Single hyperparameter learning Because the op-
timization objective contains a term which is neither
convex nor concave, we cannot simply apply stan-
dard algorithms for minimizing a difference of two con-
vex functions, such as the Convex-Concave Procedure
(CCCP) (Yuille & Rangarajan, 2002). Instead, we
employ a bound optimization strategy which is a spe-
cial instance of the class of majorization-minimization
(MM) algorithms (Lange et al., 2000). Our strategy
proceeds in an EM-like fashion, alternating between
construction of a convex upper bound of the objective
function and minimization of that bound.

To see how this is done, recall that the function log =
is concave over the domain Ry = (0,00), and hence
is upper-bounded by its first-order Taylor expansion.
That is, for any z,y € Ry 4, logz <logy+(z—vy)/y =
logy 4+ /y — 1; furthermore, the inequality is tight if
and only if z = y. Let h(w) = %||W||2 + 3. Then,
given a parameter vector w(?) on iteration ¢, it follows
that for any w € R™, if § > 0,

h(w)

() _

log (h(w)) < log (h(w )) S TerCIR
Letting f(w) denote the objective function of (6), and
defining the function

g(w;w")) := —log p(D|w)
+ (g-i—a) {log (h(w(t))) + hf(L‘SVVz;))) —1] ,

it follows from (7) that f(w) < g(w;w®) for any
parameter vectors w and w(®), provided 8 > 0.

The MM algorithm proceeds by repeatedly con-
structing a convex upper bound for the non-convex
prior terms using (7), and then minimizing this upper

bound until convergence. In particular, it computes a
sequence of successive iterates for the parameter vec-
tor w as follows: given a parameter vector w(®) on
iteration ¢, compute the next iterate in the sequence,
w1 via w(ttD) .= argming, g(w; w®). More ex-
plicitly, w(**+1) is given by

n/2 1
argvinin l— log p(D|w)+ (WJFW) <2 || w] 2)] )
: ®)

where we have omitted constant terms from the upper-
bounding function that do not affect the optimiza-
tion.2 We may then show that our algorithm mono-
tonically decreases the objective, since

F D) < gw D wl®) < glw D wl®) = f(wl).

(9)

The first inequality follows from the argument that
g(w; w®) upper bounds f(w) for any w, and the
second inequality holds because our algorithm com-
putes w(t1) = argmin, g(w;w®).> Observe that
as a consequence of our upper-bounding procedure,
the objective function on each iteration ¢ is that of an
Lo-regularized ML estimation problem with regular-
% (see Algorithm 1).
This allows us to use existing solvers for such problems
to compute the iterates, making the algorithm easy to
implement as a wrapper around any such solver. In
addition, improvements in such solvers translate di-
rectly into improvements for this algorithm: one may
make use of faster solvers for solving these problems
when available to speed up the algorithm.

Moreover, the objective functions in each iteration
give us a way to interpret what the algorithm is
doing. Upon termination, the algorithm will have
solved a regularized ML estimation problem with a
specific regularization constant C*), which we can

ization constant C'®) =

interpret to be the optimal value for the constant.

2In practice, we can set the initial parameter vector w(®
to be the solution of a regularized ML estimation problem
with the regularization constant set to an arbitrary value,
eg., L.

3In fact, when a = 0 and 8 = 1, our algorithm for single
hyperparameter learning is an instance of the algorithm
proposed by (Delaney & Bresler, 1998) for edge-preserving
regularized image reconstruction, who proved convergence
of the method to a local minimizer of (6) under certain
conditions. For convenience, we used a = 0, and 8 = 1
in our experiments. We performed a sensitivity analysis in
our experiments using multinomial logistic regression and
found that this is a reasonable choice. For other values of
a and B > 0, it is also possible to prove convergence of
our algorithm using a similar proof to that in (Delaney &
Bresler, 1998). We omit the proof due to a lack of space.
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Algorithm 2 Majorization-minimization algorithm
for multiple hyperparameter learning
Initialize ¢ := 0.

repeat
For j =1,...,k, compute
C;” = > n;/2+(a m) - otherwise.
2 Laier—1()
1 n
w1, —argmln —log p(D|w) 52 Tr()

until convergence

Thus, even though we originally eliminated the reg-
ularization hyperparameters from the objective func-
tion, the majorization-minimization algorithm pro-
vides us a way to learn the optimal hyperparameter
C for training a model using standard MAP estima-
tion.

Multiple hyperparameter learning To general-
ize the majorization-minimization algorithm to the
multiple hyperparameter case, observe that the new
prior in this case is the sum of multiple functions of the
same essential form as the regularizer in (6). Hence, we
can apply the upper bounding argument to each log-
arithm in the same way as before (see Algorithm 2).
Here at each step the algorithm solves a weighted Lo
regularized ML estimation problem, with the weights
for each regularization group given analogously to how
they are given in the single hyperparameter case. As
before, we may interpret the weights in the final step
of the algorithm, when it converges, to be the optimal
hyperparameter settings for a regularized ML estima-
tion problem.

4. Experiments

In order to illustrate the generality of our proposed
framework, we show that it is competitive with grid-
search on linear regression; that it is competitive with
grid-search and the gradient-based method in (Do
et al., 2008) on logistic and multinomial logistic re-
gression models when evaluated on an array of tasks;*
and that it is competitive with a gradient-based algo-
rithm in the case of a conditional log-linear model for
RNA secondary structure prediction. We also evalu-

4The datasets used were obtained from http://www.
csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. We
used the supplied test sets, or otherwise held out 30% of
the data as the test set and used the remaining 70% for
training. All algorithms were given the same amount of
training data, from which a validation set was constructed
if necessary. 5-fold cross-validation was used in the experi-
ments for grid-search and we considered values C' = 2" for
integral k£ such that —10 < k£ < 10.

Table 1. Methods comparison for Lo-regularized linear re-
gression, on test set MSE. -n/a- indicates that the problem
was ill-conditioned and no unique solution exists.

Dataset Test MSE .Best C

LR Grid MM Grid MM
abalone  4.815 4.970 4.821 1 0.109
bodyfat  0.000 0.000 0.000 0.0625 0.0600
cpusmall 93.325  93.506 93.381 0.5 0.160
housing 24.111 24.833 24.491 2 1.04
mg 0.0213  0.0213 0.0213 2 1.630
mpg 10.759 11.223 11.204 1 0.951
pyrim -n/a-  0.00355 0.00367 8 1.137
space 0.0190 0.0190 0.0190 0.00391 0.00503
triazines -n/a- 0.0272 0.0247 2 26.579

ated the approach of directly optimizing the modified
objective using L-BFGS. The sensitivity of the algo-
rithm to parameters «a and 8 was also evaluated on
the multinomial logistic regression model.

Linear regression Suppose that the target labels
y@ € R are related to the input variables x(? via
Yy = wTx® 4 ) where w ~ N(0,C7T) and ¢ ~
N(0,0?) for some unknown variance parameter o2. In
this case, we may treat o2 as a random variable in a
similar way to the regularization hyperparameter C.
Integrating out o using Jeffrey’s prior, we obtain the
optimization problem,

m i
w —argurjnm [2 log E 1 (y

1
_ (D) - 2
w' X ) +QC||W|‘|
(10)

In this setting, the regularized ML estimation
problems in each iteration of the majorization-
minimization algorithm are standard ridge regression
problems which can be solved using standard numeri-
cal methods. We compared the performance of our al-
gorithm against grid-search, in terms of mean squared-
error (MSE). For reference, we also include the MSE
of ordinary linear regression (LR).

As shown in the Table 1, the MSE of all the meth-
ods are almost identical. This may be because the
datasets we tested the methods on are too easy, since
even ordinary linear regression performs well. In fact,
it often performs best, except on two ill-conditioned
datasets, pyrim and triazines, for which no unique so-
lution exists, causing it to fail. Also, we observe that
the optimal regularization hyperparameters found by
our approach are qualitatively similar to those found
by grid-search. Moreover, these hyperparameters were
found after only 4-7 iterations of the MM algorithm.

Logistic regression We applied the framework to
Lo-regularized logistic regression, and compared it to
grid-search and the gradient-based method. In this
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Table 2. Methods comparison for Lo-regularized logistic re-
gression.

Dataset Accuracy (%)

Grid Grad Direct MM
australian 86.96 86.47 85.51 85.51
breast-cancer  96.08 96.08 96.57 96.57
diabetes 76.52 76.96 76.52 76.09
german-numer 75.33 75.33 75.00 75.00
heart 83.95 87.65 83.95 86.42
ionosphere 83.81 82.86 80.00 82.86
liver-disorders 68.93 67.96 67.96 65.05
mushrooms 100.00 100.00 100.00 100.00
sonar 70.97 75.81 66.13 70.97
splice 73.24 8547 73.29 85.33
wla 97.32 97.83 97.20 97.03

model, we have labels y € {—1,+1} distributed ac-
cording to p(y|x;w) = WM.

As seen from the results in Table 2, our algorithm
performs competitively with both grid-search and the
gradient-based method. The results also show that
directly optimizing the modified objective yields worse
results on a number of datasets, most notably on the
sonar (5% lower) and splice (12% lower) datasets. We
observed that our algorithm is 11 to 34 times as fast as
grid-search, and 1.2 to 25 times as fast as the gradient-
based method, as measured by running time. On 7 of
the datasets, our algorithm was at least 20 times as
fast as grid-search.

Multinomial Logistic Regression Generalizing
logistic regression to the case where we have mul-
tiple classes yields the multinomial logistic regres-
sion model. Here we have labels y € {1,...,k} if

we have k different classeTs. They are distributed as

_ . _ exp(wy, X)
p(y - k|X, W) - Zf=1 cxpk(wlTx)’
rameter vector corresponding to class i. We compared
our framework against grid search and the gradient-
based algorithm.

As can be seen from the results in Table 3(a), our
algorithm performs similarly to grid-search and the
gradient-based algorithm, even outperforming these
competing algorithms on some datasets (dna, glass,
iris). However, our algorithm performs worse on the
svmguide2 dataset. The results also show that our
MM algorithm performs as well or better than direct
optimization of the modified objective; direct opti-
mization yielded significantly worse performance on
the iris (11% lower) and vowel (7% lower) datasets.
Our algorithm was 3.3 to 25 times as fast as grid-
search as measured by execution time. As compared
to the gradient-based method, our algorithm was 2 to
20 times as fast. Substantial speedups were observed
on the larger datasets (connect-4, dna, mnistl, and

where w; is the pa-

usps), being 11 to 25 times as fast as grid-search and
2 to 11 times as fast as the gradient-based algorithm.
We also tested for the stability of the learned hy-
perparameters and model accuracy with respect to «
and ( using the multinomial logistic regression model.
We ran our algorithm for all pairs of «,3 where
a,8 € {277,275, ... ,2"}, on each of the datasets
listed in Table 3(a). In general, the accuracy of the
model did not vary dramatically, except when o > 2°,
where the accuracy drops drastically in some cases.
On some datasets the learned hyperparameter did not
vary much, but on others there was a general increas-
ing trend as « was increased and (§ was decreased.

Conditional log-linear models Ribonucleic acids
(RNAs) are a class of biological macromolecules which
play important roles in all living cells. In the problem
of RNA secondary structure prediction, we are given
an RNA sequence x and asked to predict the pattern of
nested base-pairings y that arise when the RNA folds
in vivo. For this real world task, we applied our hyper-
parameter learning framework to a probabilistic mod-
eling framework known as conditional log-linear mod-
els (CLLMs). In a CLLM, the conditional probability
of y given x is modelled as p(y|z; w) o exp(w! F(z,y))
where F' is a mapping of input-output pairs to features.

Here, the features were constructed to mirror the
energetic terms found in standard RNA physics-based
models, such as hairpin loops, bulge loops and interior
loops (Do et al., 2006). Unlike in the previous tasks,
the features for the RNA secondary structure prob-
lem have very natural groupings based on the types
of structural motifs they detect; we took advantage of
these groupings in order to test the performance our
hyperparameter learning algorithm in the multiple hy-
perparameter setting.

We evaluated our algorithm on a collection of 151
known RNA sequence-structure pairs culled from the
Rfam database (Griffiths-Jones et al., 2003) using two-
fold cross-validation, and compared it to the gradient-
based hyperparameter learning algorithm described in
(Do et al., 2008). As shown in Table 3(b), the hyperpa-
rameters learned on each fold are practically identical,
which reflects the robustness of our approach. More-
over, even after just a single iteration of the iterative
linearization algorithm, the learnt hyperparameters
were qualitatively close to their final values, further
showing the robustness of our approach. In fact, fea-
tures with small regularization hyperparameters corre-
spond to properties of RNA molecules that are known
to contribute strongly to the energetics of RNA sec-
ondary structure formation, while most of the features
with large regularization hyperparameters correspond
to structural properties that are not as well correlated
to RNA secondary structure, or may be simply too
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Table 3. (a) Methods comparison for La-regularized multinomial logistic regression..

learned for RNA secondary structure prediction task.

(b) Grouped hyperparameters

Hyperparameter group

After 1 iteration Final values

Datasot k Accuracy (%) Fold A Fold B Fold A Fold B
Grid Grad Direct MM base pairings 1.647 1.884 1.047 1.129

connect-4 3 75.62  75.62  75.59 75.60 terminal mismatch interactions 13.473  10.442 126.280 124.953
dna 3 9494 95.03 9511 95.11 hairpin loop lengths 0.771 0.875 0.886 0.953
glass 6 64.06 65.62 67.19 67.19 explicit internal loop sizes 4.436 3.505 3.891 3.478
iris 3 84.44 88.89 82.22 93.33 bulge loop lengths 2.961 3.310 5.903 6.200
letter 26 75.62 77.34 75.60 77.30 internal loop lengths 4.663 3.072 9.626 8.792
mnist1 10 91.44 91.64 89.68 89.86 symmetric internal loop lengths 5.528 5.469 6.617 6.511
satimage 6 83.25 83.65 83.80 83.50 internal loop asymmetry 5.710 6.869 9.798 10.967
segment 7 9524 95.09 93.51 93.51 single base bulge nucleotides 1.882 1.943 1.261 1.241
svmguide2 3  84.62 84.62 60.68 60.68 1 X 1 internal loop nucleotides 2.140 3.209 6.236 6.571
usps 10 92.08 91.98 90.33 90.33 helix stacking interactions 20.738  21.066 67.288 65.758
vehicle 4 82.21 83.00 82.21 83.00 helix closing interactions 0.683 0.788 0.302 0.380
vowel 11  40.48 48.70 40.91 48.27 multi-branch loop lengths 0.454 0.443 0.329 0.312
wine 3 98.11 98.11 98.11 98.11 single base pair stacking interactions 12.377  13.262 61.294 62.128
external loop lengths 0.691 0.787 0.833 0.779

(a)
(b)

Table 4. ROC area for the RNA secondary structure pre-
diction task.

Hyperparameter(s) Gradient Direct MM
Single 0.619 0.603  0.603
Grouped 0.638 0.612 0.633

noisy to be useful.

For cross-validation performance, we used ROC area
as a measure of accuracy, as described in (Do et al.,
2006). The results are summarized in Table 4. Our al-
gorithm gives slightly worse, but nonetheless competi-
tive results as compared to the gradient-based method
in terms of the ROC area. Considering the complexity
involved in the implementation of the gradient-based
method, the slight reduction in performance may be a
small price to pay for ease of implementation. We also
tried directly optimizing the nonconvex objective func-
tion using standard gradient methods; while this gave
comparable performance in the single hyperparameter
case, in the multiple hyperparameter setting, it per-
formed significantly worse, indicating convergence to
a poor local optimum.

5. Related work and discussion

We have presented a Bayesian approach for hyper-
parameter learning based on placing an uninformative
prior over the hyperparameters and integrating them
out of the model. This approach has also been adopted
for Lo-regularized models by Figueiredo (2003). How-
ever, in his approach, the uninformative prior is placed
over the variance, as opposed to the inverse variance,
as in our formulation. Nonetheless, the resultant pos-
teriors are equivalent in the case where each param-
eter is separately regularized. In the other settings
where we have a single or grouped hyperparameters,
the integrals resulting in Figuereido’s approach be-

come analytically intractable, and it is unclear how
to proceed further. In contrast, the integrals remain
tractable in our framework, and the resultant opti-
mization problem can be efficiently solved using the
iterative linearization algorithm that we propose in
this paper. Williams (1995) and Cawley et al. (2007)
have also adopted the approach for integrating out the
hyperparameters in the case when L;-regularization is
used. Williams applied this approach to neural net-
works while Cawley et al. applied it to multinomial
logistic regression.

Another possible approach would be to integrate
out the parameters to obtain the marginal likelihood
(or evidence), and optimize it over the hyperparame-
ters. This is known as the empirical Bayes (i.e., ML-II)
strategy, and it is used in Automatic Relevance Deter-
mination (ARD) (MacKay, 1992) and the Relevance
Vector Machine (RVM) (Tipping, 2001). In these two
methods, the posterior distribution over model param-
eters is approximated using a Gaussian distribution
about their most probable values. However, in or-
der to compute the required “Occam factor,” one has
to compute the determinant of the Hessian matrix,
which may be computationally expensive, for exam-
ple, in large log-linear models. More recently, a fast
marginal likelihood optimization algorithm has been
proposed for the RVM (Tipping & Faul, 2003). A
third approach is the fully Bayesian strategy, in which
both parameters and hyperparameters are integrated
out to obtain a posterior distribution over all possible
outputs given the input data. However, the integrals
are typically analytically intractable, and Monte Carlo
integration techniques (Neal, 1996) may be used to ap-
proximate them. Such techniques are computationally
expensive and may be slow to converge.

As mentioned in the introduction, numerous other
approaches to hyperparameter learning exist. While
our approach may not always give the best perfor-
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mance as compared to all these other methods, its
performance is quite competitive; we do note that in
a number of situations, possibly due to model mis-
specification, our method performs worse than grid-
search and the gradient-based algorithm. Nonethe-
less, there are typically efficiency gains as compared
to grid-search and the gradient-based algorithm, espe-
cially on larger datasets. Our algorithm thus appears
to be trading off a little accuracy for modest efficiency
gains. One issue that needs to be further explored is
the stability of the model with regards to the a and
([ parameters. In our limited experiments on multi-
nomial logistic regression, we found that the accuracy
of the learned model remained generally stable over a
range of o and ; in some cases, the learned hyperpa-
rameter showed an increasing trend as « was increased
and 3 was decreased.

The most important characteristic of our method,
however, is its simplicity in implementation. Gener-
ally, the majorization-minimization algorithm reduces
to writing a wrapper around existing solvers. Often,
the updates can even been easily computed by hand,
making this method ideal for quick-and-dirty machine
learning “proof-of-concept” applications. If additional
performance is desired, one may then turn to model-
specific methods which may require greater effort in
implementation and more computation.
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