
High Speed Obstacle Avoidance using Monocular Vision and

Reinforcement Learning

Jeff Michels jmichels@stanford.edu
Ashutosh Saxena asaxena@stanford.edu
Andrew Y. Ng ang@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305 USA

Abstract

We consider the task of driving a remote con-
trol car at high speeds through unstructured
outdoor environments. We present an ap-
proach in which supervised learning is first
used to estimate depths from single monoc-
ular images. The learning algorithm can be
trained either on real camera images labeled
with ground-truth distances to the closest ob-
stacles, or on a training set consisting of syn-
thetic graphics images. The resulting algo-
rithm is able to learn monocular vision cues
that accurately estimate the relative depths
of obstacles in a scene. Reinforcement learn-
ing/policy search is then applied within a
simulator that renders synthetic scenes. This
learns a control policy that selects a steering
direction as a function of the vision system’s
output. We present results evaluating the
predictive ability of the algorithm both on
held out test data, and in actual autonomous
driving experiments.

1. Introduction

In this paper, we consider the problem of high speed
navigation and obstacle avoidance on a remote control
car in unstructured outdoor environments. We present
a novel approach to this problem that combines rein-
forcement learning (RL), computer graphics, and com-
puter vision.

Most work on obstacle detection using vision has fo-
cused on binocular vision/steoreopsis. In this paper,
we present a monocular vision obstacle detection algo-
rithm based on supervised learning. Our motivation
for this is two-fold: First, we believe that single-image
monocular cues have not been effectively used in most

Appearing in Proceedings of the 22 nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

obstacle detection systems; thus we consider it an im-
portant open problem to develop methods for obstacle
detection that exploit these monocular cues. Second,
the dynamics and inertia of high speed driving (5m/s
on a small remote control car) means that obstacles
must be perceived at a distance if we are to avoid them,
and the distance at which standard binocular vision al-
gorithms can perceive them is fundamentally limited
by the “baseline” distance between the two cameras
and the noise in the observations (Davies, 1997), and
thus difficult to apply to our problem.1

To our knowledge, there is little work on depth es-
timation from monocular vision in rich, unstructured
environments. We propose an algorithm that learns
relative depth using only monocular visual cues on
single images of outdoor environments. We collected
a dataset of several thousand images, each correlated
with a laser range scan that gives the distance to the
nearest obstacle in each direction. After training on
this dataset (using the laser range scans as the ground-
truth target labels), a supervised learning algorithm is
then able to accurately estimate the distances to the
nearest obstacles in the scene. This becomes our basic
vision system, the output of which is fed into a higher
level controller trained using reinforcement learning.

An addition motivation for our work stems from
the observation that the majority of successful
robotic applications of RL (including autonomous he-
licopter flight, some quadruped/biped walking, snake
robot locomotion, etc.) have relied on model-based
RL (Kearns & Singh, 1999), in which an accurate
model or simulator of the MDP is first built.2 In
control tasks in which the perception problem is non-
trivial—such as when the input sensor is a camera—
the quality of the simulator we build for the sensor will

1While it is probably possible, given sufficient effort, to
build a stereo system for this task, the one commercial sys-
tem we evaluated (because of vibrations and motion blur)
was unable to reliably detect obstacles even at 1m range.

2Some exceptions to this include (Kim & Uther, 2003;
Kohl & Stone, 2004).

High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning

be limited by the quality of the computer graphics we
can implement. We were interested in asking: Does
model-based reinforcement learning still make sense in
these settings?

Since many of the cues that are useful for estimating
depth can be re-created in synthetic images, we imple-
mented a graphical driving simulator. We ran exper-
iments in which the real images and laser scan data
was replaced with synthetic images. We also used the
graphical simulator to train a reinforcement learning
algorithm, and ran experiments in which we system-
atically varied the level of graphical realism. We show
that, surprisingly, even using low- to medium-quality
synthetic images, it is often possible to learn depth es-
timates that give reasonable results on real camera test
images. We also show that, by combining information
learned from both the synthetic and the real datasets,
the resulting vision system performs better than one
trained on either one of the two. Similarly, the rein-
forcement learning controller trained in the graphical
simulator also performs well in real world autonomous
driving. Videos showing the system’s performance in
real world driving experiments (using the vision sys-
tem built with supervised learning, and the controller
learned using reinforcement learning) are available at
http://ai.stanford.edu/∼asaxena/rccar/

2. Related Work

Broadly, there are three categories of cues that can be
used for depth perception from two-dimensional im-
ages: monocular cues, stereopsis, and motion parallax
(Kudo et al., 1999). By far the most commonly studied
for this problem is stereo vision (Scharstein & Szeliski,
2002). Depth-from-motion or optical flow is based on
motion parallax (Barron et al., 1994). Both methods
require finding correspondence between points in mul-
tiple images separated over space (stereo) or time (op-
tical flow). Assuming that accurate correspondences
can be established, both methods can generate very
accurate depth estimates. However, the process of
searching for image correspondences is computation-
ally expensive and error prone, which can dramatically
degrade the algorithm’s overall performance.

A number of researchers have studied how humans use
monocular cues for depth estimation (Loomis, 2001;
Wu et al., 2004; Blthoff et al., 1998). Also, (Kardas,
2005) presents experiments charaterizing some of the
the different cues’ effects. Such studies done both on
humans and on animals show that cues like texture,
texture gradient, linear perspective, occlusion, haze,
defocus, and known object size provide information to
estimate depth.

Gini (Gini & Marchi, 2002) used single camera vi-

Figure 1. Laser range scans overlaid on the image. Laser
scans give one range estimate per degree.

sion to drive a indoor robot, but relied heavily on the
known color and texture of the ground, and hence does
not generalize well and will fail in unstructured out-
door environments. In (Pomerleau, 1989), monocular
vision and apprenticeship learning (also called imita-
tion learning) was used to drive a car, but only on
highly structured roads and highways with clear lane
markings, in which the perception problem is much
easier. (LeCun, 2003) also successfully applied imi-
tation learning to driving in richer environments, but
relied on stereo vision. Depth from defocus (Jahne
& Geissler, 1994; Honig et al., 1996; Klarquist et al.,
1995) is another method to obtain depth estimates,
but requires high-quality images, objects with sharp
boundaries, and known camera parameters (including
camera aperture model and modulation transfer func-
tion). Nagai (Nagai et al., 2002) built an HMM model
of known face and hand images to recover depth from
single images. Shao (Shao et al., 1988) used shape
from shading to reconstruct depth for objects having
relatively uniform color and texture.

3. Vision System

We formulate the vision problem as one of depth esti-
mation over stripes of the image. The output of this
system will be fed as input to a higher level control
algorithm.

In detail, we divide each image into vertical stripes.
These stripes can informally be thought of as cor-
responding to different steering directions. In order
to learn to estimate distances to obstacles in outdoor
scenes, we collected a dataset of several thousand out-
door images (Fig. 1). Each image is correlated with
a laser range scan (using a SICK laser range finder,
along with a mounted webcam of resolution 352x288,
Fig. 2), that gives the distance to the nearest obsta-

High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning

Figure 2. Rig for collecting correlated laser range scans and
real camera images.

cle in each stripe of the image. We create a spatially
arranged vector of local features capturing monocular
depth cues. To capture more of the global context,
the feature vector of each stripe is augmented with
the features of the stripe to the left and right. We use
linear regression on these features to learn to predict
the relative distance to the nearest obstacle in each of
the vertical stripes.

Since many of the cues that we used to estimate depth
can be re-created in synthetic images, we also devel-
oped a custom driving simulator with a variable level
of graphical realism. By repeating the above learning
method on a second data set consisting of synthetic im-
ages, we learn depth estimates from synthetic images
alone. Additionally, we combine information learned
from the synthetic dataset with that learned from real
images, to produce a vision system that performs bet-
ter than either does individually.

3.1. Synthetic Graphics Data

We created graphics datasets of synthetic images of
typical scenes that we expect to see while driving the
car. Graphics data with various levels of detail were
created, ranging from simple two-color trees of uniform
height without texture; through complex scenes with
five different kind of trees of varying heights, along
with texture, haze and shadows (Fig. 3). The scenes
were created by placing trees randomly throughout the
environment (by sampling tree locations from a uni-
form distribution). The width and height of each tree
was again chosen uniformly at random between a min-
imum and maximum value.

There are two reasons why it is useful to supplement
real images with synthetic ones. First, a very large
amount of synthetica data can be inexpensively cre-
ated, spanning a variety of environments and scenar-
ios. Comparably large and diverse amounts of real

Figure 4. For each overlapping window Wsr, statistical co-
efficients (Law’s texture energy, Harris angle distribution,
Radon) are calculated. The feature vector for a stripe con-
sists of the coefficients for itself, its left column and right
column.

world data would have been much harder to collect.
Second, in the synthetic data, there is no noise in the
labels of the ground truth distances to obstacles.

3.2. Feature Vector

Each image is divided into 16 stripes, each one labeled
with the distance to the nearest obstacle. In order
to emphasize multiplicative rather than additive er-
rors, we converted each distance to a log scale. Early
experiments training with linear distances gave poor
results (details omitted due to space constraints).

Each stripe is divided into 11 vertically overlapping
windows (Fig. 4). We denote each window as Wsr for
s = 1...16 stripes and r = 1...11 windows per stripe.
For each window, coefficients representing texture en-
ergies and texture gradients are calculated as described
below. Ultimately, the feature vector for a stripe con-
sists of coefficients for that stripe, the stripe to its left,
and the stripe to its right. Thus, the spatial arrange-
ment in the feature vector for the windows allows some
measure of global structure to be encoded in it.

3.2.1. Texture Energies

First, the image is transformed from RGB into the
YCbCr color space, where Y represents the intensity
channel, and Cb and Cr are the color channels. Infor-
mation about textures is contained mostly in the vari-
ation of intensity (Davies, 1997). For each window,
we apply Laws’ masks (Davies, 1997) to measure tex-
ture energies. The nine Laws masks M1, . . . ,M9 are
obtained by multiplying together pairs of three 1x3

High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning

Figure 3. Graphics images in order of increasing level of detail. (In color, where available.) (a) Uniform trees, (b) Different
types of trees of uniform size, (c) Trees of varying size and type, (d) Increased density of trees, (e) Texture on trees only,
(f) Texture on ground only, (g) Texture on both, (h) Texture and Shadows.

Figure 5. Law’s masks for Texture Energy. The 1x3 masks
(local averaging L3, edge detection E3 and spot detection
S3) are used to obtain nine 3x3 masks Mn

masks (Fig. 5). We apply these masks to the inten-
sity channel image IY and to the color channel images
ICb, ICr to obtain

Fn = IY ∗ Mn, n = 1, 2, ..., 9 (1)

F10 = ICb ∗ M1 (2)

F11 = ICr ∗ M1 (3)

For color channels Cb and Cr, we calculate the local
averaging mask M1 only; this gives a total of 11 tex-
ture energy coefficients for each window. Lastly, we
estimate the texture energy En for the rth window in
the sth stripe (denoted as Wsr) as

En(s, r) =
∑

x,y∈Wsr

|Fn(x, y)| (4)

3.2.2. Texture Gradient

Studies on monocular vision in humans strongly in-
dicate that texture gradients are an important cue
in depth estimation. (Wu et al., 2004) When well-
defined edges exist (e.g., scenes having regular struc-
ture like buildings and roads, or indoor scenes), vanish-
ing points can be calculated with a Hough transform

to get a sense of distance. However, outdoor scenes
are highly irregular.

In order to calculate a texture gradient that is robust
to noise in the image and that can capture a greater va-
riety of textures, we use a variant of the Radon trans-
form3 and a variant of the Harris corner detector.4

These features measure how the directions of edges in
each window are distributed.

3.3. Training

Using the labeled data and the feature vector for each
column as described above, we trained linear models
to estimate the log distance to the nearest obstacle in
a stripe of the image. In the simplest case, standard

3The Radon transform is a standard method for
estimating the density of edges at various orienta-
tions. (Davies, 1997) We found the distribution of edges
for each window Wsr using a variant of the this method.
The Radon transform maps an image I(x, y) into a new
(θ, ρ) coordinate system, where θ corresponds to possible
edge orientations. Thus the image is now represented as
Iradon(θ, ρ) instead of I(x, y). For each of 15 discretized
values of θ, we pick the highest two values of Iradon(θ, ρ)
by varying ρ, i.e., R(θ) = toptwoρ(g(θ, ρ))

4A second approach to finding distributions of direc-
tional edges over windows in the image is to use a cor-
ner detector. (Davies, 1997) More formally, given an image
patch p (in our case 5x5 pixels), the Harris corner detec-
tor first computes the 2x2 matrix M of intensity gradi-
ent covariances, and then compares the relative magnitude
of the matrix’s two eigenvalues. (Davies, 1997) We use a
slightly different variant of this algorithm, in which rather
than thresholding on the smaller eigenvalue, we first calcu-
late the angle represented by each eigenvector and put the
eigenvalues into bins for each of 15 angles. We then sum
up all of the eigenvalues in each bin over a window and use
the sums as the input features to the learning algorithm.

High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning

linear regression was used in order to find weights w

for N total images and S stripes per image

w = arg min
w

N
∑

i=1

S
∑

s=1

(

wT xis − ln(di(s))
)2

(5)

where, xis is the feature vector for stripe s of the ith

image, and di(s) is the distance to the nearest obstacle
in that stripe.

Additionally, we experimented with outlier rejection
methods such as robust regression (iteratively re-
weighted using the “fair response” function, Huber,
1981) and support vector regression (Criminisi et al.,
2000). Our this task, these methods did not pro-
vide significant improvements over linear regression,
and simple minimization of the sum of squared errors
produced nearly identical results to the more complex
methods. All of the results below are given for linear
regression.

3.4. Error Metrics

Since the ultimate goal of these experiments is to be
able to drive a remote control car autonomously, the
estimation of distance to nearest obstacle is really only
a proxy for true goal of choosing the best steering di-
rection. Successful distance estimation allows a higher
level controller to navigate in a dense forest of trees
by simply steering in the direction that is the farthest
away. The real error metric to optimize in this case
should be the mean time to crash. However, since the
vehicle will be driving in unstructured terrain, exper-
iments in this domain are not easily repeatable.

In the ith image, let α be a possible steering direction
(with each direction corresponding to one of the verti-
cal stripes in the image), let αchosen be steering direc-
tion chosen by the vision system (chosen by picking the
direction cooresponding to the farthest predicted dis-
tance), let di(α) be the actual distance to the obstacle

in direction α, and let d̂i(α) be the distance predicted
by the learning algorithm. We use the following error
metrics:

Depth. The mean error in log-distance estimates of
the stripes is defined as

Edepth =
1

N

1

S

N
∑

i=1

S
∑

s=1

∣

∣

∣
ln(di(s)) − ln(d̂i(s))

∣

∣

∣
(6)

Relative Depth To calculate the relative depth error,
we remove the mean from the true and estimated log-
distances for each image. This gives a free-scaling con-
straint to the depth estimates, reducing the penalty for
errors in estimating the scale of the scene as a whole.

Choosen Distance Error. When several steering
directions α have nearly identical di(α), it is it is un-

reasonable to expect the learning algorithm to reliably
pick out the single best direction. Instead, we might
wish only to ensure that di(αchosen) is nearly as good
as the best possible direction. To measure the degree
to which this holds, we define the error metric

Eα =
1

N

N
∑

i=1

∣

∣

∣
ln(max

s
(di(s)) − ln(di(αchosen))

∣

∣

∣
(7)

This gives us the difference between the true distance
in the chosen direction and the true distance in the
actual best direction.

Hazard Rate. Because the car is driving at a high
speed (about 5m/s), it will crash into an obstacle when
the vision system chooses a column containing obsta-
cles less than about 5m away. Letting dHazard=5m
denote the distance at which an obstacle becomes a
hazard (and writing 1{·} to denote the indicator func-
tion), we define the hazard-rate as

HazardRate =
1

N

N
∑

i=1

1{di(αchosen) < dHazard}, (8)

3.5. Combined Vision System

We combined the system trained on synthetic data
with the one trained on real images in order to reduce
the hazard rate error. The system trained on synthetic
images alone had a hazard rate of 11.0%, while the
best performing real-image system had a hazard rate of
2.69%. Training on a combined dataset of real and syn-
thetic images did not produce any improvement over
the real-image system, even though the two separately
trained algorithms make the same mistake only 1.01%
of the time. Thus, we chose a simple voting heuristic
to improve the accuracy of the system. Specifically, we
ask each system output its top two steering directions,
and a vote is taken among these four outputs to select
the best steering direction (breaking ties by defaulting
to the algorithm trained on real images). This results
in a reduction of the hazard rate to 2.04% (Fig. 7).5

4. Control

4.1. Reinforcement Learning

In order to convert the output of the vision system into
actual steering commands for the remote control car, a
control policy must be developed. The policy controls
how aggressively to steer, what to do if the vision sys-
tem predicts a very near distance for all of the possible
steering directions in the camera-view, when to slow
down, etc. We model the RC car control problem as
a Markov decision process (MDP) (Sutton & Barto,

5The other error metrics are not directly applicable to
this combined output.

High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning

θ1: σ of the Gaussian used for spatial smoothing of
the predicted distances
θ2: if d̂i(αchosen) < θ2, take evasive action rather
than steering towards αchosen

θ3: the maximum change in steering angle at any
given time step
θ4, θ5: parameters used to choose which direction
to turn if no location in the image is a good steering
direction (using the current steering direction and
the predicted distances of the left-most and right-
most stripes of the image).
θ6: the percent of max throttle to use during an
evasive turn

Figure 6. Parameters learned by RL

1998). We then used the Pegasus policy search algo-
rithm (Ng & Jordan, 2000) (with locally greedy search)
to learn the the parameters of our control policy. Due
to space constraints, instead of a complete description
of the policy class used, we give only a short descrip-
tion of each of the six learned parameters6 is given in
Fig. 6.

The reward function was given as

R(s) = −|vdesired − vactual| − K · Crashed (9)

where vdesired and vactual are the desired and actual
speeds of the car, Crashed is a binary variable stating
whether or not the car has crashed in that time step.
In our experiments, we used K = 1000. Thus, the
vehicle attempts to maintain the desired forward speed
while minimizing contact with obstacles.

Each trial began with the car initialized at (0,0) in a
randomly generated environment and ran for a fixed
time horizon. The learning algorithm converged after
1674 iterations of policy search.

4.2. Experimental Setup

Our test vehicle is based on an off-the-shelf remote con-
trol car (the Traxxas Stampede measuring 12”x16”x9”
with wheel clearance of about 2”). We mounted on
it a DragonFly spy camera (from PointGrey Research,
320x240 pixel resolution, 4mm focal length). The cam-
era transmits images at up to 20 frames per second to
a receiver attached to a laptop running a 1.6GHz Pen-
tium. Steering and throttle commands are sent back to
the RC transmitter from the laptop via a custom-built
serial interface. Finally, the RC transmitter sends the
commands directly to the car.

6Since the simulator did not accurately represent com-
plex ground contact forces that act on the car when driv-
ing outdoors, two additional parameters were set manually:
the maximum throttle, and a turning scale parameter

Figure 7. Reduction in hazard rate by combining systems
trained on synthetic and real data.

5. Experimental Results

Table 2 shows the test-set error rates obtained using
different feature vectors, when training on real camera
images. As a baseline for comparing the performance
of different features, the first row in the table shows the
error obtained by using no feature at all (i.e., always
predict the mean distance and steer randomly). The
results indicate that texture energy and texture gradi-
ent have complementary information, with their com-
bination giving better performance then either alone.
Further, Harris and Radon features give comparable
performance, with Harris performing slightly better.
However, combining them does not significantly reduce
the error. Table 3 shows the error rates for synthetic
images at various degrees of detail. The performance
of the vision system trained on synthetic images alone
first goes up as we add texture in the images, and add
variety in the images, by having different types and
sizes of trees. However, it drops when we add shadows
and haze. We attribute this to the fact that real shad-
ows and haze are very different from the ones in syn-
thetic images, and the learning algorithm significantly
over-fits these images (showing virtually no error at all
on synthetic test images).

Figure 7 shows hazard rates for the vision system re-
lying on graphics-trained weights alone, real images
trained weights alone, and improvement after combin-
ing the two systems.

We drove the car in four different locations and under
different weather conditions. The learned controller
parameters were directly ported from the simulator to
the real world (rescaled to fit in the range of steer-
ing and throttle commands allowed by the real vehi-
cle). For each location, the mean time7 before crash is
given in Table 1. All the terrain types had man-made
structures (like cars and buildings) in the background.

7Some of the test locations were had nearby roads, and
it was unsafe to allow the car to continue driving outside
the bounds of our testing area. In these cases, the car was
given a restart and the time was accumulated.

High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning

Figure 8. An image sequence showing the car avoiding a small bush, a difficult obstacle to detect in presence of trees
which are larger visually yet more distant. (a) First row shows the car driving to avoid a series of obstacles (b) Second
row shows the car view (c) Third row shows the predicted distances by the vision system. (Best viewed in color)

Table 1. Real driving tests under different terrains

Terrain Obstacle Obstacle Ground Mean Max Average

Density Type Time (sec) Time (sec) Speed (m/s)

1 High Sculptures, Trees, Uneven Ground 19 24 4
Bushes, Rocks Rocks, Leaves

2 Low Trees, Even, 40 80 6
man-made with Leaves
benches

3 Medium Trees Rough with Leaves 80 >200 2
4 Medium Uniform Trees, tiled concrete 40 70 5

man-made benches

The unstructured testing sites were limited to areas
where no training or development images were taken.
Videos of the learned controller driving autonomously
are available on the web at the URL given in Section 1.
Performance while driving in the simulator was com-
parable to the real driving tests.

6. Conclusions and Discussion

We have shown that supervised learning can used to
learn (1D) monocular depth estimates in unstructured
outdoor environments, and demonstrated that the re-
sulting depth estimates are sufficiently reliable to drive
an RC car at high speeds through the environment.
Further, the experiments with the graphical simulator
show that model-based RL holds great promise even in
settings involving complex environments and complex
perception. In particular, a vision system trained on
computer graphics was able to give reasonable depth
estimate on real image data, and a control policy
trained in a graphical simulator worked well on real
autonomous driving. Some remaining important open
problems are to characterize when graphics-trained al-

gorithms will work in real life; and to develop further
algorithms for exploiting monocular vision cues.

Acknowledgments

We give warm thanks to Vijay Pradeep for help setting
up the RC Car, and Brian Gerkey for help collecting
correlated laser and image data. We also thank Larry
Jackel, Khian Lim, Wenmiao Lu, and Sebastian Thrun
for helpful discussions. This work was supported by
the DARPA LAGR program under contract number
FA8650-04-C-7134.

References

Barron, J., Fleet, D., & Beauchemin, S. (1994). Per-
formance of optical flow techniques. Int’l Journal of
Computer Vision, 12, 43–77.

Blthoff, I., Blthoff, H., & Sinha, P. (1998). Top-down
influences on stereoscopic depth-perception. Nature
Neuroscience, 1, 254 – 257.

Criminisi, A., Reid, I., & Zisserman, A. (2000). Single

High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning

Table 2. Test error on 3124 images, obtained on different
feature vectors after training data on 1561 images. For the
case of “None” (without any features), the system predicts
the same distance for all stripes, so relative depth error has
no meaning.

Feature Edepth
Rel
Depth

Eθ
Hazard
Rate

None .900 - 1.36 23.8%
Y (intensity) .748 .578 .792 9.58%
Laws only .648 .527 .630 2.82%
Laws .640 .520 .594 2.75%
Radon .785 .617 .830 6.47%
Harris .687 .553 .713 4.55%
Law+Harris .612 .508 .566 2.69%
Laws+Radon .626 .519 .581 2.88%
Harris+Radon .672 .549 .649 3.20%
Law+Har+Rad .604 .508 .546 2.69%

Table 3. Test error on 1561 real images, after training on
667 graphics images, with different levels of graphics real-
ism using Laws features.

Train Edepth
Rel
Depth

Eθ
Hazard
Rate

None .900 - 1.36 23.8%
Laser Best .604 .508 .546 2.69%
Graphics-8 .925 .702 1.23 15.6%
Graphics-7 .998 .736 1.10 12.8%
Graphics-6 .944 .714 1.04 14.7%
Graphics-5 .880 .673 .984 11.0%
Graphics-4 1.85 1.33 1.63 34.4%
Graphics-3 .900 .694 1.78 38.2%
Graphics-2 .927 .731 1.72 36.4%
Graphics-1 1.27 1.00 1.56 30.3%
G-5 (L+Harris) .929 .713 1.11 14.5%

view metrology. Int’l Journal of Computer Vision,
40, 123–148.

Davies, E. (1997). Machine vision: Theory, algo-
rithms, practicalities 2nd ed. Academic Press.

Gini, G., & Marchi, A. (2002). Indoor robot navigation
with single camera vision. Proc. Pattern Recognition
in Information Systems, PRIS, Spain.

Honig, J., Heit, B., & Bremont, J. (1996). Visual depth
perception based on optical blur. Proc. of Int’l Conf.
on Image Processing (pp. 721–724).

Huber, P. (1981). Robust statistics. New York: Wiley.

Jahne, B., & Geissler, P. (1994). Depth from focus
with one image. Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition CVPR (pp. 713–717).

Kardas, E. (2005). Monocular cues
in depth perception. [Online]:
http://peace.saumag.edu/faculty/Kardas/
Courses/GPWeiten/C4SandP/MonoCues.html.

Kearns, M., & Singh, S. (1999). Finite-sample rates
of convergence for q-learning and indirect methods.
NIPS 11 (pp. 996–1002). The MIT Press.

Kim, M., & Uther, W. (2003). Automatic gait opti-
misation for quadruped robots. Proc. Australasian
Conf. on Robotics and Automation (pp. 1–9).

Klarquist, W., Geisler, W., & Bovik, A. (1995).
Maximum-likelihood depth-from-defocus for active
vision. Proc. Int’l Conf. on Intelligent Robots and
Systems (pp. 374–379).

Kohl, N., & Stone, P. (2004). Policy gradient rein-
forcement learning for fast quadrupedal locomotion.
Proc. IEEE Int’l Conf. Robotics and Automation.

Kudo, H., Saito, M., Yamamura, T., & Ohnishi, N.
(1999). Measurement of the ability in monocu-
lar depth perception during gazing at near visual
target-effect of the ocular parallax cue. Proc. IEEE
Int’l Conf. Systems, Man & Cybernetics (pp. 34–37).

LeCun, Y. (2003). Presentation at Navigation, Lo-
comotion and Articulation workshop. Washington
DC.

Loomis, J. M. (2001). Looking down is looking up.
Nature News and Views, 414, 155–156.

Nagai, T., Naruse, T., Ikehara, M., & Kurematsu, A.
(2002). Hmm-based surface reconstruction from sin-
gle images. Proc. IEEE Int’l Conf. on Image Pro-
cessing (pp. II–561 – II–564).

Ng, A. Y., & Jordan, M. (2000). Pegasus: A policy
search method for large mdps and pomdps. Proc.
16th Conf. UAI.

Pomerleau, D. (1989). An autonomous land vehicle in
a neural network. NIPS 1. Morgan Kaufmann.

Scharstein, D., & Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. Int’l Journal of Computer Vision, 47,
7–42.

Shao, M., Simchony, T., & Chellappa, R. (1988). New
algorithms from reconstruction of a 3-d depth map
from one or more images. Proc. IEEE Conf. on
Computer Vision and Pattern Recognition CVPR
(pp. 530–535).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning. MIT Press.

Wu, B., Ooi, T. L., & He, Z. J. (2004). Perceiving
distance accurately by a directional process of inte-
grating ground information. Letters to Nature, 428,
73–77.

