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Abstract

We consider the problem of estimating detailed 3-d struc-
ture from a single stillimage of an unstructured environmen
Our goal is to create 3-d models which are both quantita-
tively accurate as well as visually pleasing.

For each small homogeneous patch in the image, we use
Mark?v Random Field (MRF) to infer a_set of “plane param- Figure 1. (a) A single image. (b) A screenshot of the 3-d model
gters that capture both the 3jd Iocgtlon and.3—d orlen'ta- generated by our algorithm.
tion of the patch. The MRF, trained via supervised learning,
models both image depth cues as well as the relationshipgetermine an affine structure of the image.
between different parts of the image. Inference in our model In recent work, Saxena, Chung and Ng (SCN) [13, 14]
is tractable, and requires only solving a convex optimiza-presented an algorithm for predicting depth from monocular
tion problem. Other than assuming that the environment ismage features. However, their depthmaps, although use-
made up of a number of small planes, our model makes nful for tasks such as a robot driving [12] or improving per-
explicit assumptions about the structure of the scene; thiformance of stereovision [15], were not accurate enough to
enables the algorithm to capture much more detailed 3-groduce visually-pleasing 3-d fly-throughs. Delage, Le# an
structure than does prior art (such as Saxena et al., 2005Ng (DLN) [4, 3] and Hoiem, Efros and Hebert (HEH) [9, 7]
Delage et al., 2005, and Hoiem et el., 2005), and also givessumed that the environment is made of a flat ground with
a much richer experience in the 3-d flythroughs created usvertical walls. DLN considered indoor images, while HEH
ing image-based rendering, even for scenes with significartonsidered outdoor scenes. They classified the image into
non-vertical structure. ground and vertical (also sky in case of HEH) to produce a

Using this approach, we have created qualitatively cor-simple “pop-up” type fly-through from an image. HEH fo-
rect 3-d models for 64.9% of 588 images downloaded frontussed on creating “visually-pleasing” fly-throughs, bat d
the internet, as compared to Hoiem et al’s performance ofiot produce quantitatively accurate results. More regentl
33.1%. Further, our models are quantitatively more accu-Hoiem et al. (2006) [8] also used geometric context to im-

rate than either Saxena et al. or Hoiem et al. prove object recognition performance.
. In this paper, we focus on inferring the detailed 3-d struc-
1. Introduction ture that is both quantitatively accurate as well as viguall

When viewing an image such as that in Fig. 1a, a humapleasing. Other than “local planarity,” we make no explicit
has no difficulty understanding its 3-d structure (Fig. 1b).assumptions about the structure of the scene; this enalnles o
However, inferring the 3-d structure remains extremelylcha approach to generalize well, even to scenes with significant
lenging for current computer vision systems—there is an innon-vertical structure. We infer both the 3-d location amel t
trinsic ambiguity between local image features and the 3-@rientation of the small planar regions in the image using a
location of the point, due to perspective projection. Markov Random Field (MRF). We will learn the relation be-

Most work on 3-d reconstruction has focused on usingween the image features and the location/orientationef th
methods such as stereovision [16] or structure from moplanes, and also the relationships between various parts of
tion [6], which require two (or more) images. Some methodghe image using supervised learning. For comparison, we
can estimate 3-d models from a single image, but they makalso present a second MRF, which models only the location
strong assumptions about the scene and work in specific seif points in the image. Although quantitatively accuralbés t
tings only. For example, shape from shading [18], relies ormethod is unable to give visually pleasing 3-d models. MAP
purely photometric cues and is difficult to apply to surfacesinference in our models is efficiently performed by solving
that do not have fairly uniform color and texture. Crimin- a linear program.
isi, Reid and Zisserman [1] used known vanishing points to Using this approach, we have inferred qualitatively cor-



rect and visually pleasing 3-d models automatically for
64.9% of the 588 images downloaded from the internet, as
compared to HEH performance 68.1%. “Qualitatively
correct” is according to a metric that we will define later.
We further show that our algorithm predicts quantitatively
more accurate depths than both HEH and SCN.

Occlusion
Boundaries

2. Visual Cuesfor Scene Understanding

Images are the projection of the 3-d world to two
dimensions—hence the problem of inferring 3-d structure
from an image is degenerate. An image might represent a
infinite number of 3-d models. However, not all the possi- Image Features
ble 3-d structures that an image might represent are validkigyre 2. An illustration of the Markov Random Field (MRF) for

and only a few are likely. The environment that we live in isinferring 3-d structure. (Only a subset of edges and scales shown.)
reasonably structured, and hence allows humans to infer 3-d

structure based on prior experience. superpixel bear some relation to the depth (and orienta-

Humans use various monocular cues to infer the 3-d  on) of the superpixel. . _
structure of the scene. Some of the cues are local proper- ® Connected structure: Except in case of occlusion,
ties of the image, such as texture variations and gradients, ~Nneighboring superpixels are more likely to be con-
color, haze, defocus, etc. [13, 17]. Local image cues alone  nected to each other.

are usually insufficient to infer the 3-d structure. Theigpil ~ o Co-planar structure: Neighboring superpixels are
of humans to “integrate information” over space, i.e., unde more likely to belong to the same plane, if they have
standing the relation between different parts of the imige, similar features and if there are no edges between them.

crucial to understanding the 3-d structure. [17, chap. 11] e Co-linearity: Long straightlines in the image represent
Both the relation of monocular cues to the 3-d structure,  straight lines in the 3-d model. For example, edges of
as well as relation between various parts of the image is  buildings, sidewalk, windows.

learned from prior experience. Humans remember that & Nte that no single one of these four properties is enough,
structure of a particular shape is a building, sky is bluesgr  y jself, to predict the 3-d structure. For example, in some
is green, trees grow above the ground and have leaves on tRses |ocal image features are not strong indicators of the
of them, and so on. depth (and orientation). Thus, our approach will combine
. these properties in an MRF, in a way that depends on our
3. Image Representatlon _ ) _ “confidence” in each of these properties. Here, the “confi-
We first find small homogeneous regions in the imagegence” is itself estimated from local image cues, and will
called “Superpixels,” and use them as our basic unit of rePyary from region to region in the image.
resentation. (Fig. 6b) Such regions can be reliably found us Concretely, we begin by determining the places where
ing over-segmentation [5], and represent a coherent regiofhere is noconnectedor co-planar structure, by inferring
in the image with all the pixels having similar properties. | yariablesy,; that indicate the presence or absence of oc-
most images, a superpixel is a small part of a structure, suchlysion boundaries and folds in the image (Section 4.1).
as part of a wall, and therefore represents a plane. We then infer the 3-d structure using our “Plane Parameter
In our experiments, we use algorithm by [5] to obtain thepRrF,” which uses the variableg;; to selectively enforce
superpixels. Typically, we over-segment an image into &bouUcoplanar and connected structure property (Section 4.2).

2000 superpixels, representing regions which have similarhis MRF models the 3-d location and orientation of the
color and texture. Our goal is to infer the location and ofien syperpixels as a function of image features.

tation of each of these superpixels. For comparison, we also present an MRF that only mod-
R els the 3-d location of the points in the image (“Point-wise
4. Probabilistic M odel MRF,” Section 4.3) We found that our Plane Parameter MRF

It is difficult to infer 3-d information of a region from outperforms our Point-wise MRF (both in quantitative and
local cues alone, (see Section 2) and one needs to infer thgsually pleasing aspects); therefore we will discuss Roin
3-d information of a region in relation to the 3-d informatio wise MRF only briefly.
of other region. i )

In our MRF model, we try to capture the following prop- 4-1- ©Occlusion Boundaries and Folds
erties of the images: We will infer the location of occlusion boundaries and

folds (places where two planes are connected but not co-

e Image Features and depth: The image features of a planar). We use the variablag;, < {0,1} to indicate



whether an “edgel” (the edge between two neighboring su

perpixels) is an occlusion boundary/fold or not. The infer- s

ence of these boundaries is typically not completely accu ' ‘

rate; therefore we will infesoft values fory;;. More for-

mally, for an edgel between two superpixésndj, y;; = 0 (@) (b) (©

indicates an occlusion boundary/fold, amg = 1 indicates  Figure 4. An illustration to explain effect of the choicespfands;
none (i.e., a planar surface). We modg] using a logis- on enforcing the following properties: (a) Partially connected, (b)
tic response a®(y;; = 1|x;;¢) = 1/(1 + exp(—yTz;;). Fully connected, and (c) Co-planar.

where, z;; are features of the superpixelsand j (Sec- The first termf(.) models the plane parameters as a func-
tion 5.2), andy> are the parameters of the model. During iion, of the image features; ,,. We haveR”. a; = 1/d; .

inference (Section 4.2), we will use a mean field-like ap-\yherep, . is the ray that connects the camera to the 3-d lo-
proxmgtlpn, where we replagg; with its mean value under cation of points;), and if the estimated depth . — T,
the logistic model. i p i 83

then the fractional error would beR; , a;(z; . 0-) — 1).

7,8

4.2. Plane Parameter MRF Therefore, to minimize the aggregate fractional error over
In this MRF, each node represents a superpixel in the imall the points in the superpixel, we model the relation be-

age. We assume that the superpixel lies on a plane, and i&een the plane parameters and the image features as

will infer the location and orientation of that plane.

Representation: We parameterize both the location and ori- fo(ci, Xi, yi, R;) = exp (— S Vi, |RT il 60,) — 1|)
entation of the infinite plane on which the superpixel lies

by using plane parame- The parameters of this model ate € R°24. We use
tersa € R3. (Fig. 3) different parameters() for each rowr in the image, be-
(Any pointg € R3 lying 1/lal Ri cause the images we consider are taken from a horizontally
on the plane with param- plane with mounted camera, and thus different rows of the image have

etersa satisfiesa’q = / di """'---J.?_'_E_'_fametew different statistical properties. E.g., a blue superpiréiht

1.) The valuel /|| is the . . be more likely to be sky if it is in the upper part of im-
distance from the cam- Figure 3. A 2-d illustration to ex-  age, or water if it is in the lower part of the image. Here,
era center to the closest Plain the plane parameter and - — ,, . =1, .. 5} and the variable, ,, indicates
point on the plane, and rays ¢ from the camera. the confidence of the features in predicting the defpth at
the normal vectotr = ﬁ gives the orientation of the plane. points,.! If the local image features were not strong enough
If R, is the unit vector from the camera center to a paint to predict depth for point;, thenv; ,, = 0 turns off the
lying on a plane with parameters thend; = 1/RTaisthe  effect of the term R, o (21, 6,) —1].

distance of poini from the camera center. The second terny(.) models the relation between the
c- plane parameters of two superpixélandj. It uses pairs

Fractional depth error: For 3-d reconstruction, the fra .
I of pointss; ands; to do so:

tional (or relative) error in depths is most meaningfu
and is used in structure for motion, stereo reconstruction, _ h 2

. g() - H{si,s-}EN Si,Sj(') ( )
etc. [10, 16] For ground-truth depth and estimated depth J
d, fractional error is defined &8/ — d)/d = d/d—1. There- We will capture co-planarity, connectedness and co-
fore, we would be penalizing fractional errors in our MRF. linearity, by different choices df(.) and{s;, s; }.

Model: To capture the relation between the plane param- Connected structure: We enforce this constraint by

eters and the image features, and other properties such 8800sings; ands; to be on the boundary of the superpix-
co-planarity, connectedness and co-linearity, we forteula €lS¢ andj. As shown in Fig. 4b, penalizing the distance

our MRF as between two such points ensures that they remain fully con-
1 nected. Note that in case of occlusion, the variapjes= 0,
P(a|X,Y,R;0) = A Hfg(ai,Xi,yi, R;) and hence the two superpixels will not be forced to be con-
i nected. The relative (fractional) distance between paints

Hg(ai, a;,yij, Ri, R)) (1) ands; is penalized by

1’7.] A~
where,q; is the plane parameter of the superpikeFor  hy, . (i, aj, yij5, Ri, Rj) = exp (—yij\(Rfsiai — R]T,Sjaj)d|)
atotal ofS; points in the superpixel we user; ;, to denote
the features for point; in the superpixef. X; = {1”7 c 1_The var_iat_)leui,si is an ind‘icato‘r of how good the image features
R524 . s =1,... S-} are the features for the superpixel are in predicting depth for poing; in supe‘rplxe_li. We learnv; g,
. Ve . from the monocular image features, by estimating the expecitde\of
(Section 5.1) SimilarlyR; = {R; s, : s; = 1,..., S;} is the |d; — ¥ 60, |/d; asp? z; with logistic response, with, as the parameters
set of rays for superpixel of the model, features; andd; as ground-truth depths.




In detail, R}, o; = 1/d; s, andesjaj = 1/d;,,; there-

fore, the term( R} o; — R] a;)d gives the fractional dis-

tance|(di s, — djs,)/ /s, dj,s, | for d = W

% plane with
"‘-,_parameleraj

plane with

with structures in the image such as lines and corners to im-
prove performance. Further, in addition to using the con-
nected structure property (as in SCN), our model also cap-
tures co-planarity and co-linearity. Finally, we use loegis
tic response to identify occlusion and folds, whereas SCN
learned the variances.

In the MRF below, the first ternfi(.) models the relation
between depths and the image featuregdd;, z;,y;) =

.., parameter a;

exp (—yild; — 27 0,(;y|). The second termy(.) mod-

els connected structure by penalizing differences in
depth of neighboring points ag(d;,d;,yi;, Ri, R;) =
Figure 5. A 2-d illustration to explain the co-planarity term. The exp (—yi;|(Rid; — R;d;)|). The third termh(.) depends
distance of the point; on superpixelj to the plane on which su-  gn three points,j and k, and models co-planarity and co-

perpixel: lies along the rayz; s; - is given byd — d. linearity. (Details omitted due to space constraints; sdle f
Co-planarity: We enforce the co-planar structure by paper for detalils.)

choosing a third pair of points; ands’” in the center of
each superpixel along with ones on the boundary. (Fig. 4
To enforce co-planarity, we penalize the relative (fractik)
distance of point’/ from the plane in which superpixel
lies, along the rayR; o (See Fig. 5).

% superpixel i

1
Pax, v, 750) = 5 T] foldis i, )
i iJEN

H h(di, dj, dk, Yijks Ri, Rj7 Rk)
i,j,kEN

where,d; € R is the depth at a point z; are the image
features at poini. MAP inference of depths, i.e. maxi-
. ) mizinglog P(d|X,Y, R;0) is performed by solving a linear
with Ay o0 (.) = hsy(.)hsr(.). Note that if the two super-  program (LP). However, the size of LP in this MRF is larger
pixels are coplanar, thd’r&gl,s}/ = 1. To enforce co-planarity than in the Plane Parameter MRFE.
between two distant planes that are not connected, we can
choose 3 pairs of points and use the above penalty. 5. Features

Co-linearity: Finally, we enforce co-linearity constraint  For each superpixel, we compute a battery of features to
using this term, by choosing points along the sidetoaf)  capture some of the monocular cues discussed in Section 2.
straight lines. This also helps to capture relations betweeWe also compute features to predict meaningful boundaries
regions of the image that are not immediate neighbors.  in the images, such as occlusion. Note that this is in contras

P L . d MAP Inf £ with some methods that rely on very specific features, e.g.
arameter Learning an nference: Exact param- computing parallel lines on a plane to determine vanishing

eter learning of the model is intractable; therefore, we USeoints. Relying on a large number of different types of fea-

Multi—ConditionaI Learning (MC!‘.) for approximate Iear_n- tures helps our algorithm to be more robust and generalize
ing, where we model the probability as a product of muItlpIeto images that are very different from the training set.
conditional likelihoods of individual densities. [11] Wete

mate thef, parameters by maximizing the conditional like- 5.1. Monocular | mage Features

lihood log P(c| X, Y, R; 0,) of the training data, which can  For each superpixel at location we compute texture-

be written as a Linear Program (LP). based summary statistic features, and superpixel shape and
MAP inference of the plane parameters, i.e., maximiz{ocation based featurds(See Fig. 6.) We attempt to cap-

ing the conditional likelihood”(a| X, Y, R; 0), is efficiently  ture more “contextual” information by also including fea-

performed by solving a LP. To solve the LP, we implementedyres from neighboring superpixels (4 in our experiments),

an efficient method that uses the sparsity in our problem aland at multiple spatial scales (3 in our experiments). (See

lowing inference in a few seconds. Fig. 6.) The features, therefore, contain information from

a larger portion of the image, and thus are more expressive

hs;/ (ai7 aj, yij, Rj,s;/) = exXp <_yljl(R3:5’]’ Q; — R;js}’ aj)dsy |)

4.3. Point-wise MRF
; ; . - 2Similar to SCN, we use the output of each of the 17 (9 Laws masks,
We present another MRF, in which we use points in thez color channels in YCbCr space and 6 oriented edges) filigrs, v),

imqge as bas_ic unit, instead.of syperpixels; and infer pnlyb = 1178 Ei(n) = S, cs, 1(@y) * Fu(e,y)|, where
their 3-d location. The nodes in this MRF are a dense grid ok = 2,4 gives the energy and kurtosis respectively. Thisgaotal of 34
points in the image, where the value of each node representglues for each superpixel. We compute features for a suggipiimprove

; ; ; ; performance over SCN, who computed them for fixed rectangaiehes.
its depth. The depths in this model are in log scale to em Our superpixel shape and location based features inclimeshape and

p_haSize fractional (rglative) errors in depth. Unl_ike S.QN’ location based features in Section 2.2 of [9], and also thergdcity of the
fixed rectangular grid, we use a deformable grid, alignedsuperpixel.
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Figure 6. The feature vector for a superpixel, which includes immediataestant neighbors in multiple scaleBest viewed in coloy.

than just local features. This makes the feature vectaf In fact, we can also encode other similar spatial-relations

a superpixeb24 dimensional. by choosing the vectot appropriately. For example, a con-

. straint“Object A is in front of Object B"can be encoded by

5.2. Featuresfor Boundaries L .

choosingz to be the ray from the camera to the object.

Another strong cue for 3-d structure perception is bound-  (p) “Object A is attached to Object B”

ary information. If two neighbor superpixels of an im- For example, if the ground-plane is known from a recog-

age display different features, humans would often peeceivpizer, then many objects would be more likely to be “at-

them to be parts of different objects; therefore an edge begched” to the ground plane. We easily encode this by using

tween two superpixels with distinctly different featuresa  oyr connected-structure constraint (Section 4).

candidate for a occlusion boundary or a fold. To compute the  (¢) Known plane orientation

featurest;; between superpixeisand;, we firstgenerate 14 |t grientation of a plane is roughly known, e.g. that a person

different segmentations for each image for 2 differentesal s more likely to be “vertical”, then it can be easily encoded

for 7 different properties: textures, color, and edges. FEac py adding to Eq. 1 a ternfi(a;) = exp (—wilaZ2[); here;

element of our 14 dimensional feature vecigy is then an  represents the confidence, antepresents the up vector.

indicator if two superpixelg andj lie in the same segmen-

tation. The features;; are the input to the classifier for the

occlusion boundaries and folds. (see Section 4.1)

6. Incor porating Object I nformation 7. Experiments

In this section, we will discuss how our model can also in-/-1. Data collection

corporate other information that might be available, for ex  We used a custom-built 3-D scanner to collectimages and
ample, from object recognizers. In [8], Hoiem et al. usedtheir corresponding depthmaps using lasers. We collected a
knowledge of objects and their location to improve the estitotal of 534 images+depthmaps, with an image resolution of
mate of the horizon. In addition to estimating the horizon,2272x1704 and a depthmap resolution of 55x305; and used
the knowledge of objects and their location in the scenesgive400 for training our model.

strong cues regarding the 3-d structure of the scene. For ex- We tested our model on 134 images collected using our
ample, a person is more likely to be on top of the ground3-d scanner, and also on 588 internetimages. The images on

We will describe our results using these constraints in
Section 7.3.

rather than under it. the internet were collected by issuing keywords on Google
Here we give some examples of such constraints, and démage search. To collect data and to perform the evaluation
scribe how we can encode them in our MRF: of the algorithms in a completely unbiased manner, a person
(a)“Object A is on top of object B” not associated with the project was asked to collect images

This constraint could be encoded by restricting the point®f environments (greater than 800x600 size). The person
s; € R? on object A to be on top of the points € R3 chose the following keywords to collect the images: campus,
on object B, i.e.s] 2 > 51z (if 2 denotes the “up” vector). garden, park, house, building, college, university, churc
In practice, we actually use a probabilistic version of thiscastle, court, square, lake, temple, scene.

constraint. We represent this inequality in plane-paramet ) )

space §; = R;d; = R;/(eTR;)). To penalize the fractional 7-2- Resultsand Discussion

erroré§ = (RféR]Taj — RféRiai) d (the constraint corre- We performed an extensive evaluation of our algorithm
sponds t& > 0), we choose an MRF potential, ., (.) =  on 588 internet test images, and 134 test images collected
exp (—y,; (€ + [€])), wherey;; represents the uncertainty in using the laser scanner.

the object recognizer output. Note that fgy — oo (corre- In Table 1, we compare the following algorithms:

sponding to certainty in the object recognizer), this beesm (a) Baseline: Both for depth-MRF (Baseline-1) and plane
a “hard” constraintk} /(o] R;) > R} 2/(a] R;). parameter MRF (Baseline-2). The Baseline MRF is trained
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Figure 7. (a) Original Image, (b) Ground truth depthmap, (c) Depimfimage features only, (d) Point-wise MRF, (e) Plane parameter
MRF. (Best viewed in Colgr _ ) _
Table 1. Results: Quantitative comparison of various methods. ~ Table 2. Percentage of images for which HEH is better, our PP-

MRF is better, oritis a tie.

METHOD CORRECT | % PLANES | log,, REL =
(%) CORRECT ALGORITHM YoBETTER
SCN NA NA 0.198 0.530 TE 15.8%
HEH 33.1% | 50.3% | 0.320 1.423 ;'E_F,\'A nE 522110/?
BASELINE-1 0% NA 0.300 0.698 -
NO PRIORS 0% NA 0.170 0.447 .
POINT-WISE MRF |  23% NA 0.149 0.45g| mMay stil show small errors.
BASELINE-2 0% 0% 0334 0516 Our algorithm gives qualitatively correct models for
NO PRIORS 0% 0% 0205 0.392| 64.9% ofimages as compared 83.1% by HEH. The qual-
CO-PLANAR 45.7% 57.1% | 0.191 0.373| Iitative evaluation was performed by a person not associ-
PP-MRF 64.9% 71.2% 0.187 0.370 | ated with the project following the guidelines in Footnote 3

HEH generate a “photo-popup” effect by folding the im-
without any image features, and thus reflects a “prior"ages at “ground-vertical” boundaries—an assumption which

depthmap of sorts. is not true for a significant number of images; thereforeirthe
(b) Our Point-wise MRF: with and without constraints (con- method fails in those images. Some typical examples of the
nectivity, co-planar and co-linearity). 3-d models are shown in Fig. 8. (Note that all testcases

(c) Our Plane Parameter MRF (PP-MRF): without any conshown in Fig. 1, 8 and 9 are from the dataset downloaded
straint, with co-planar constraint only, and the full madel from the internet, except Fig. 9a which is from the laset-tes
(d) Saxena et al. (SCN), applicable for quantitative etrors dataset.) These examples also show that our models are of-
(e) Hoiem et al. (HEH). For fairness, we scale and shift theiten more detailed than HEH, in that they are often able to
depthmaps before computing the errors to match the globahodel the scene with a multitude (over a hundred) of planes.
scale of our test images. Without the scaling and shifting, We performed a further comparison to HEH. Even when
their error is much higher (7.533 for relative depth error). both HEH and our algorithm is evaluated as qualitatively
We compare the algorithms on the following metrics: (a)correct on animage, one result could still be superior. &her
Average depth error on a log-10 scale, (b) Average relativdore, we asked the person to compare the two methods, and
depth error, (We give these numerical errors on only the 134lecide which one is better, or is a fidable 2 shows that our
test images that we collected, because ground-truth deptladgorithm performs better than HEH #2.1% of the cases.
are not available for internet images.) (c) % of models qualfull documentation describing the details of the unbiased
itatively correct, (d) % of major planes correctly identifi¢  human judgment process, along with the 3-d flythroughs
Table 1 shows that both of our models (Point-wise MRFproduced by our algorithm and HEH, is available online at:
and Plane Parameter MRF) outperform both SCN and HEH  http://ai.stanfor d.edu/~asaxena/r econstr uction3d
in quantitative accuracy in depth prediction. Plane Parame Some of our models, e.g. in Fig. 9j, have cosmetic

ter MRF gives better relative depth accuracy, and producegeects e g. stretched texture: better texture rendegicty t
shgrper de_pthmaps. (F'g: 7) Table 1 also shows that by CaRiques would make the models more visually pleasing. In
turing the image properties of connected structure, coplagy e cases, a small mistake (i.e., one person being detected
narity and colinearity, the models produced by the algarith ¢ far-away i1n Fig. 9h) makes the }nodel look bad: and hence
become significantly better. In addition to reducing quan+,, oyaluated as “incorrect.” ’

titative errors, PP-MRF does indeed produce significantly Our algorithm, trained on images taken in a small

better 3-d models. When producing 3-d flythroughs, even oo ohical area in our university, was able to predict

small number of erroneous planes make the 3-d model vi-

sually unacceptable, even though the quantitative numbers #To compare the algorithms, the person was asked to count thearumb

of errors made by each algorithm. We define an error when a majoeph
3We define a model as correct when for 70% of the major planes in theéhe image (occupying more than 15% area in the image) is in wanagibn

image (major planes occupy more than 15% of the area), the psaime i with respect to its neighbors, or if the orientation of tharg is more than

correct relationship with its nearest neighbors (i.e.,rélative orientation ~ 30 degrees wrong. For example, if HEH fold the image at incopéce

of the planes is within 30 degrees). Note that changing tmebmus, such  (see Fig. 8, image 2), then it is counted as an error. Simildinye predict

as 70% to 50% or 90%, 15% to 10% or 30%, and 30 degrees to 20 or 4&p of a building as far and the bottom part of building nearkimg the

degrees, gave similar trends in the results. building tilted—it would count as an error.
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screen shot 1  HEH screen shot image

screen shot 2

Figure 8. Typical results from HEH and our algorithrRow 1. Original Image. Row 2. 3-d model generated by HEHRow 3 and

4: 3-d model generated by our algorithm. (Note that the screenshot®iche simply obtained from the original image by an affine
transformation.) Inmage 1, HEH makes mistakes in some parts of the foreground rock, while oaritdgh predicts the correct model;
with the rock occluding the house, giving a novel view. itmage 2, HEH algorithm detects a wrong ground-vertical boundary; while
our algorithm not only finds the correct ground, but also captures af lobn-vertical structure, such as the blue slideinage 3, HEH

is confused by the reflection; while our algorithm produces a corretn®del. Inimage 4, HEH and our algorithm produce roughly
equivalent results—HEH is a bit more visually pleasing and our modeliisadre detailed. Inmage 5, both HEH and our algorithm fail;
HEH just predict one vertical plane at a incorrect location. Our algorithadlicts correct depths of the pole and the horse, but is unable to
detect their boundary; hence making it qualitatively incorrect.

7.3. Results using Object I nformation

We also performed experiments in which information
from object recognizers was incorporated into the MRF for
inferring a 3-d model (Section 6). In particular, we im-
plemented a recognizer (based on the features described in
Section 5) for ground-plane, and used the Dalal-Triggs De-
tector [2] to detect pedestrains. For these objects, we en-
coded the (a), (b) and (c) constraints described in Section 6
Fig. 10 shows that using the pedestrian and ground detector
F'QUfe 10. (Left) Original Images, (Middle) Snapshot of the 3- -dimproves the accuracy of the 3-d model. Also note that using
model without using object information, (Right) Snapshot of the«gqfi» constraints in the MRE (Section 6), instead of “hard”
3-d model that uses object information. constraints, helps in estimating correct 3-d models even if

the object recognizer makes a mistake.
qualitatively correct 3-d models for a large variety of
environments—for example, ones that have hills, lakes, an§. Conclusions
ones taken at night, and even paintings. (See Fig. 9 and the We presented an algorithm for inferring detailed 3-d
website.) We believe, based on our experiments varying thetructure from a single still image. Compared to previ-
number of training examples (not reported here), that havous approaches, our model creates 3-d models which are

ing a larger and more diverse set of training images wouldoth quantitatively more accurate and more visually pleas-
improve the algorithm significantly. ing. We model both the location and orientation of small
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Figure 9. Typical results from our algorithm. Original image (top), asdr@enshot of the 3-d flythrough generated from the image (bottom
of the image). The first 7 images (a-g) were evaluated as “corredtttanlast 3 (h-j) were evaluated as “incorrect.”

homogenous regions in the image, called “superpixels,” us-[3] E.Delage, H. Lee, and A. Ng. Automatic single-image 3d restaic-
ing an MRF. Our model, trained via supervised learning, _ tions of indoor manhattan world scenes.|8RR 2005.

estimates plane parameters using image features, and aldgl E:Pelage. H. Lee, and A. Y. Ng. A dynamic bayesian networldsio
. . . . for autonomous 3d reconstruction from a single indoor image. |
reasons about relationships between various parts of the im  cypR 2006.

age. MAP inference for our model is efficiently performed [5] P. Felzenszwalb and D. Huttenlocher. Efficient grapkeahimage
by solving a linear program. Other than assuming that _ SegmentationlJCV, 59, 2004.

. . [6] D. A. Forsyth and J. Ponce&Computer Vision : A Modern Approach
the environment is made of a number of small planes, we Prentice Hall, 2003.

do not make any explicit assumptions about the structure7; p. Hoiem, A. Efros, and M. Hebert. Automatic photo pop-um |

of the scene, such as the “ground-vertical” planes assump- ACM SIGGRAPH2005.

tion by Delage et al. and Hoiem et al.; thus our model is (8] g'\/%%ezr?JbAe' Efros, and M. Hebert. Putting objects in pasive. In

able_' to generallze well, even to _scenes with §|gn|f|cant ncm_['é)] D. Hoiem, A. Efros, and M. Herbert. Geometric context frorsiragle

vertical structure. We created visually pleasing 3-d medel image. InICCV, 2005.

autonomously fo64.9% of the 588 internet images, as com- [10] R. Koch, M. Pollefeys, and L. V. Gool. Multi viewpointeseo from

pared to Hoiem et al.'s performance f.1%. Our models " /L_'\”C’\‘;I"'c't(’:r;tlgdr‘;'dgo ;Z‘ﬂ”g”‘;ersffi\rf dlig?/Van Mult-coridital
e K L . um, C. , G. Druck, . g. Multi-

are also quam'tatlve'y more aCF“rate than pnor art'_ H:ynal learning: generative/discriminative training for clusterand classi-

we also extended our model to incorporate information from  fication. InAAAI, 2006.

object recognizers to produce better 3-d models. [12] J. Michels, A. Saxena, and A. Y. Ng. High speed obstaetedance
using monocular vision & reinforcement learning. &ML, 2005.
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