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Summary. This paper describes an algorithm that tracks and localizes a helicopter
using a ground-based trinocular camera array. The three cameras are placed indepen-
dently in an arbitrary arrangement that allows each camera to view the helicopter’s
flight volume. The helicopter then flies an unplanned path that allows the cameras
to self-survey utilizing an algorithm based on structure from motion and bundle
adjustment. This yields the camera’s extrinsic parameters allowing for real-time po-
sitioning of the helicopter’s position in a camera array based coordinate frame. In
fielded experiments, there is less than a 2m RMS tracking error and the update rate
of 20Hz is comparable to DGPS update rates. This system has successfully been
integrated with an IMU to provide a positioning system for autonomous hovering.
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1 Introduction

Position estimation is of critical importance in autonomous robotics research
as it is the principal measurement used in machine control and localizing col-
lected data. [1] We utilize three ground based cameras to track and localize
one of the Stanford autonomous helicopters (Fig. 1). This system replaces
an onboard DGPS system, making the positioning system more robust dur-
ing aggressive flight maneuvers. DGPS is unreliable because directional GPS
antennas are prone to signal occlusions during rolls and omnidirectional an-
tennas are susceptible to multipath during upright flight. Also, by moving the
positioning equipment off the helicopter, the weight is reduced allowing the
helicopter more power for maneuvering. The cameras are placed on the ground
in unsurveyed positions that will allow them to see the helicopter at all times.
Because the rotation and translation relationship between each camera is un-
known, this extrinsic data will need to be extracted through self-surveying of
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Fig. 1. One of Stanford’s autonomous helicopters

the array. Once the extrinsic data has been determined, then the 3-D location
of the aerial vehicle can be accurately and robustly tracked in a camera array
based coordinate frame with standard least squares, LS, techniques.

The core problems in this project are the localization of the helicopter
in each image frame and the self-surveying of the extrinsic parameters for
the three cameras. Background differencing is used to locate the helicopter
in each image. Essentially, by identifying the background through an average
of previous scenes the moving helicopter can be identified as cluster of points
in the foreground image. The center of this cluster identifies the approximate
center of the helicopter.

Extrinsic information is usually obtained via calibration of the cameras in
the scene utilizing a calibration object, such as a cube with a checkerboard
pattern, or the cameras are fixed in locations and orientations with known
extrinsic parameters. [2] This is not ideal in a field environment because the
above methods would require a recalibration of the cameras with a large cal-
ibration aid every time a camera is jostled or would require a large structure
that would fix the cameras in relation to each other while providing enough
coverage to view the entire scene. Thus, the process of camera self-surveying
is crucial to the tracking problem. Through this, the camera array will be able
to estimate its geometry on the fly while deployed in the field without requir-
ing modifications to the scene or the helicopter. Our approach uses multiple
observations of the same scene motion to recover the extrinsic relationships
between the cameras. In particular, this is done using a variant of the structure
from motion (SFM) algorithm [3] and bundle adjustment [4].

Surveying and calibration will be used interchangeably throughout this
paper. When we talk about calibration however, we are only referring to cal-
ibrating the extrinsic parameters of our camera array.
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2 Background

There are several related localization approaches in the field. [5, 6, 7] Ap-
proaches like DGPS [5, 6] and radar provide high precision localization accu-
racy, but tend to be expensive, hard to relocate, prone to occlusion, or have
to be deployed on the vehicle. Like the directional GPS antenna, an on-board
camera system is also susceptible to occlusions when the helicopter rolls and
pitches.[7] Inertial techniques provide high fidelity, but introduce significant
drift error. Our system can be useful as a low-cost portable alternative to
standard positioning systems without adding hardware to the helicopter.

The self-surveying ability of our system allows us to place the cameras any-
where on a field such that the cameras cover the operating space where the
helicopter will fly and have the helicopter in focus. Self-calibration to acquire
extrinsic parameters has been done by groups in the past. [8, 9] The main
difference is that they move the stereo cameras in order to extract parame-
ters while we will be moving a point in the image to extract the same type
of information. For example, Knight and Reid use a stereo head that rotates
around an axis to give calibration and head geometry. [10] Zhang shows that
four points and several images from a stereo pair which has moved randomly,
but is constant with respect to each other, can be used to compute the rela-
tive location and orientation of the cameras along with the 3-D structure of
the points up to a scale factor. [11] Our self-surveying technique utilizes an
algorithm developed by Poelman and Kanade. They use one camera tracking
several feature points and take a stream of images while moving the cam-
era. With this data, they can determine the motion of the camera and the
coordinates of each of the feature points. [3]

3 Tracking Approach

A background differencing method is utilized to extract the location of the
helicopter in images coordinates from the black and white pictures. First, the
statistical model of the background is built by updating a running average of
the image sequence over time, with I as a pixel intensity value:

Ibackground
j (u, v) = (1− α)Ibackground

j−1 (u, v) + αIcurrent
j (u, v) (1)

where α regulates updating speed. [4] Next, the algorithm takes an image
difference of the current image and the background image, and then thresholds
out the image difference caused by noise:

Idifference
j (u, v) = { I = Icurrent

j (u, v)− Ibackground
j (u, v) |I ≥ Ithreshold

0 |I < Ithreshold }
(2)

Finally, the estimate of a moving object in the image coordinate (uj , vj) is
estimated by the population mean of the non-zero pixel distribution of the
image difference:
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uj =
1
k

∑
m

∑
n

mIdifference
j (m,n) (3)

vj =
1
k

∑
m

∑
n

nIdifference
j (m,n) (4)

Here, the search window (m,n) is a square mask, containing k pixels, centered
at the helicopter location in the previous time step. This eliminates unrealistic
abrupt jumps in the helicopter location estimate caused by noise and other
moving objects elsewhere in the image.

This simple windowed background differencing method works when the
helicopter is the principal actively moving object in the search window. Al-
though slow-moving disturbances like clouds in the sky can be distinguished
from the helicopter by tuning α and the threshold to appropriate values, this
algorithm may be confused when other fast moving objects are in its windowed
view, such as swaying trees or airplanes in the background.

As suggested in related literature, the tracking performance can be greatly
improved by taking the probabilities of the predicted target dynamics into
consideration, for instance, using Kalman filtering [2], the condensation algo-
rithm [12], or multiple hypothesis tracking [13]. In this research, the Kalman
filter approach is implemented to improve robustness in maintaining a lock
on the helicopter in this specific helicopter tracking environment. However,
in the experimental setup used in section 5.3 (in which the helicopter flies
above the treeline in each of the camera views), the algorithm does well even
without a Kalman filter.

4 Self-Calibration Algorithm

4.1 Structure From Motion

To calibrate the extrinsic parameters of the system, a structure from motion
technique based on the algorithm defined by Poelman and Kanade in 1997
will be used for an initial estimate. [3] As opposed to taking a single camera
and taking a stream of images of an object as we move the camera, we will
use static cameras and take a stream of images as we move the object in the
scene. This will provide the data necessary to utilize the algorithm described
below.

The equation below shows the standard camera conversion equations:

pj = Ri(Pj + ti) (5)

Ri =




ii
ji

ki


 , ti =




tix
tiy
tiz


 , pj =




pjx

pjy

pjz


 , Pj =




Pjx

Pjy

Pjz


 (6)
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M : number of cameras (3)
N : length of flight
i : camera (1,2,...,M)
j : sampling epoch (1,2,...,N)
ti : the location of the camera i in the world frame
Pj : the helicopter trajectory in the world frame
pij : the helicopter trajectory in camera i frame
Ri : rotation matrix for camera i

uij , vij : pixel values of the helicopter at epoch j in camera i

To convert from 3-D camera frame coordinates to a 2-D image frame coor-
dinate system, a scaled orthographic projection, also know as “weak perspec-
tive,” will be used. This projection technique, shown in the equation below,
approximates perspective projections when the object in the image is near
the image center and does not vary a large amount in the axis perpendicular
to the camera’s image plane. The equations below assume unit focal length
and that the world’s origin is now fixed at the center of mass of the objects
in view.

xi =
ti · ii
zi

, yi =
ti · ji

zi
, zi = ti · ki (7)

uij =
pjx

zi
= mi · Pj + xi (8)

vij =
pjy

zi
= ni · Pj + yi (9)

mi =
ii
zi

, ni =
ji

zi
(10)

W = R∗P + t∗ (11)

W =




u11 ... u1N

v11 ... v1N

: :
uM1 ... uMN

vM1 ... vMN




, R∗ =




m1

n1

:
mM

nM




, t∗ =




x1 ... x1

y1 ... y1

: :
xM ... xM

yM ... yM




(12)

Using the helicopter’s trajectory in each of the cameras, (uij , vij), we can
solve for the measurement matrix W ∗. Taking the singular value decomposi-
tion of W ∗ and ignoring any right or left singular eigenvectors that correspond
with the 4th or higher singular values (that appear due to noise) results with:

xi =
1
N

N∑

j=1

uij , yi =
1
N

N∑

j=1

vij (13)

W ∗ = W − t∗ = R∗P ≈ U2M×3Σ3×3V
T
3×N = R̃P̃ (14)

R̃ = U, P̃ = ΣV T (15)
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R̃ and P̃ represent the affine camera positions and the affine structure of
the points in the scene respectively which can then be transferred back to
Euclidian space with a matrix Q. To determine Q we will use the 2M + 1
linear constraints defined below. The last constraint will avoid the trivial
solution satisfied by everything being zero.

W ∗ = R̃QQ−1P̃ (16)

|mi|2 = |ni|2 =
1
z2
i

⇒ |mi| − |ni| = 0 (17)

mi · ni = 0 (18)

|m1| = 1 (19)

With these constraints and the Jacobi Transformation of Q the affine system
can then be converted back into Euclidian space. If the resulting Q is not
positive definite, then distortions, possibly due to noise, perspective effects,
insufficient rotation in the system, or a planar flight path, has overcome the
third singular value of W . [3]

We multiply all the rotation matrices and the newly found matrix of points
by R−1

1 to convert everything into a coordinate frame based on the camera 1
image frame.

After this process, the only remaining extrinsic parameters still unknown is
ti . To find ti, LS can be used by expanding the equation below to encompass
all the points in each camera.




uij

vij

zi


−




ii · pj

ji · pj

0


 = Riti (20)

The minimum number of points required to self-survey with structure from
motion is defined by

2MN > 8M + 3N − 12 (21)

Given that three cameras will be used, a minimum of four points will be neces-
sary to self-survey. Because our cameras are static, we can fly the helicopter to
four different locations and record images at each location. This will provide
the minimum points necessary to self-survey. [14]

4.2 Camera Frame to World Frame

The resulting extrinsic parameters of the camera array are unscaled and given
in the camera 1 image frame. To extract the unknown scale factor inherent to
these type of vision problems, the distance L between camera 1 and camera
2 is measured. The ratio of that distance to the unscaled distance between
camera 1 and camera 2 is defined as the scale factor.

To rotate the extrinsic parameters from the camera 1 image frame to a
world frame, a rotation matrix is created based on the following assumptions
(see also Fig. 2(b)):
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(a) Point Grey Firefly2 camera. (b) World frame

Fig. 2. Camera setup

1. Camera 1 is at the origin of the world frame.
2. The vector from camera 1 to camera 2 is the x axis.
3. All the cameras are in the x− y plane.
4. The y axis is defined as towards the helicopter, but orthogonal to the x

axis and in the x− y plane.
5. The z axis is then defined by the right hand rule (approximately straight

up)

This results in:

t1 =




0
0
0


 , t2 =




L
0
0


 , t3 =




x3

y3

0


 (22)

4.3 Bundle Adjustment

Given the SFM solution as initial estimate, the calibration parameters can be
refined further by solving nonlinear perspective equations directly via iterative
LS, bundle adjustment. [4] The bundle adjustment technique optimizes the
calibration parameters, exploring the best array geometry that matches to the
set of visual tracking measurements collected during a calibration flight.

The calibration parameters estimated by the LS batch process include the
camera locations in the world, the camera orientations, and the helicopter
trajectory. Specifically, the following extrinsic parameters are the unknowns
to be estimated: ti, Pj , and the Euler angles associated with Ri, (αi, βi, and
γi).

The set of normalized 2-D tracking points, (uij , vij), in the image coor-
dinates is the sole measurement used in this calibration process (except for
the measurement L). The following perspective geometry equations relate all
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the unknown parameters to the 2-D tracking points via a nonlinear perspec-
tive model. [2] (23) is different than (8) and (9) because here we are using a
perspective model for the cameras.

uij =
Pjx

Pjz
, vij =

Pjy

Pjz
(23)

Ri =




cos γi sin γi 0
− sin γi cos γi 0

0 0 1







cosβi 0 − sin βi

0 1 0
sin βi 0 cos βi







1 0 0
0 cos αi sin αi

0 − sin αi cosαi


 (24)

The bundle adjustment method linearizes the perspective equations (5),
(23), and (24) into a Jacobian form, and then batch-estimates the unknown
calibration parameters via the iterative LS by taking the pseudo-inverse of
the Jacobian matrix J of the linearized measurement equations (25):

δ

[
u′ij
v′ij

]
= Jδ




ti
αi

βi

γi

Pj



⇒ δ




ti
αi

βi

γi

Pj




= (JT J)−1JT δ

[
u′ij
v′ij

]
(25)

For all the unknowns to be observable, the Jacobian matrix J must be well-
conditioned. Capturing a certain geometry change by tracking the helicopter
simultaneously at the three cameras yields enough observability for the LS
estimate. Also, to ensure proper convergence in the nonlinear LS iteration,
bundle adjustment is seeded with multiple sets of initial estimates centered
around the SFM solution to avoid converging to a local minimum.

5 Field Demonstration

5.1 Experimental Setup

The current prototype system consists of a helicopter platform and a ground-
based camera array, Fig. 3. The camera array includes three compact digital
cameras (Point Grey Firefly2 cameras, Fig. 2(a), using a Firewire interface)
all connected to a single PC. An image from each camera is captured, nearly
simultaneously, at a resolution of 640× 480 in an 8-bit grayscale format at a
rate of 20Hz.

5.2 Tracking

The tracking algorithm based on the background differencing method was
implemented in the field on each camera to track a common helicopter. Fig.
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Fig. 3. Experimental setup

4(a) shows an image from one of the cameras during the test. The black box is
the tracking marker centered at the estimated helicopter location and the thin
white larger box is the search window of the background differencing method.

This particular flight test was conducted in an open field on Stanford’s
campus next to a road where moving cars and walking people constantly
came in and out of the scene. While the windowed background differencing-
only method frequently failed to track a low flying helicopter in such a busy
environment, the Kalman filter was able to maintain the lock on the helicopter
during the flight.

Fig. 4(b) shows the resulting helicopter trajectory in the image coordinate
for camera 1. The solid lines show the helicopter trajectory tracked by the
Kalman filter. The dashed lines show the helicopter trajectory manually post-
traced in the logged images as true reference. Although the Kalman filter was
able to keep tracking the helicopter, the tracking markers were sometimes
lagging in tracking the helicopter when the helicopter accelerated faster than
the pre-defined dynamic model in the Kalman filter equations; we believe that
fine tuning the process noise covariance will further improve performance. The
mean errors between the Kalman filter and the true references were roughly
7.5 pixels, as shown in Table 1(a).

Table 1. Error tables

(a) Tracking errors in pixels

mean(pixel) std(pixel)

Camera 1 6.9 5.0

Camera 2 7.2 5.2

Camera 3 8.3 6.2

(b) Localization error

x(m) y(m) z(m)

mean -0.17 1.39 0.27

std 1.07 0.99 0.52
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(a) View of a camera actively tracking. (b) Results of tracking.

Fig. 4. Tracking the helicopter in a busy scene.

5.3 Localization

To check the validity of the localization algorithm the results from the cal-
ibration algorithm are compared with DGPS data, Fig. 5(a) and Fig. 5(b).
Fig. 5(a) shows the results from SFM which is used to feed bundle adjust-
ment. As the plot shows, care needs to be taken in picking points to initialize
SFM because of the near-perspective assumption. Fig. 5(b) shows that the re-
sult from bundle adjustment follows DGPS pretty well. There are some small
offsets that are probably due to the assumptions made in section 4.2. There
is also some small variations in the trajectory reported by the vision system
which likely result from small errors in the helicopter tracking system. Over-
all, the vision results match fairly well with the DGPS data. The errors are
reported in Table 1(b).

6 Conclusions

The self-surveying and tracking camera array presented in this paper produces
an effective localization system that extends ideas from SFM and bundle ad-
justment. This is then combined with stereo tracking methods to generate a
least squares measurement of the helicopter’s location.

The results presented document the tracking performance of this method
in a field environment for a series of cameras whose extrinsic parameters are
not known a priori. The calibration performance was tested against DGPS
and was found to have less than a 2m RMS tracking error. The 20Hz update
rate of the system is comparable to DGPS, and we obtain a tracking latency
of less than 100ms. This makes it feasible to use this system as part of an
autonomous flight controller.
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Fig. 5. 3-D plots of DGPS vs. ...

Because of the near-perspective assumption, it is better to run SFM on
fewer points where the helicopter is near the center of the image as opposed
to a large set of data where the helicopter’s route spans the entire image. To
make this procedure more robust, a paraperspective SFM [3] or a perspective
SFM [13] can be used to initialize bundle adjustment.

Recent autonomous hover flights have demonstrated the capability of this
system for real-time fielded operations. [15] Future work will test its use for
acrobatic flights, find ways to maximize the flight volume, and make the sys-
tem more robust to dropouts where the helicopter leaves one camera’s field of
view.
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