
Robust textual inference via graph matching

Aria D. Haghighi
Dept. of Computer Science

Stanford University
Stanford, CA

aria42@stanford.edu

Andrew Y. Ng
Dept. of Computer Science

Stanford University
Stanford, CA

ang@cs.stanford.edu

Christopher D. Manning
Dept. of Computer Science

Stanford University
Stanford, CA

manning@cs.stanford.edu

Abstract

We present an automated system for de-
ciding whether a given sentence is entailed
from a body of text. Each sentence is
represented as a directed graph (extracted
from a dependency parser) in which the
nodes represent words or phrases, and the
links represent syntactic and semantic re-
lationships. A learned graph matching
cost is used to measure how much of the
semantic content of the sentence is con-
tained in the text. We present results
on the Recognizing Textual Entailment
(RTE) dataset (Dagan et al., 2005), com-
pare to other approaches, discuss common
classes of errors, and discuss directions for
improvement.

1 Introduction

A fundamental goal of NLP is the production of ro-
bust and accurate systems semantic inference. This
A fundamental stumbling block for several NLP ap-
plications is the lack of a robust and accurate se-
mantic inference. For instance, question answering
systems must be able to recognize, or infer, an an-
swer which may be expressed differently from the
query. Information extraction systems must also be
able to infer propositions and recognize the variabil-
ity of equivalent linguistic expressions. Document
Summarization systems must generate succinct sen-
tences which express the same content as the orig-
inal document. In Machine Translation evaluation,

we must be able to recognize legitimate translations
which structurally differ from our baseline.

One sub-task underlying these applications is the
ability to recognizesemantic entailment; whether
one piece of text follows from another. In con-
trast to recent work (Moldovan et al., 2003), which
have successfully utilized logic-based abductive ap-
proaches to inference, we utilize a graph-based rep-
resentation of sentences, and use graph matching
techniques to measure the semantic overlap of text.
Graph matching techniques have proved to be a use-
ful approach to tractable approximate matching in
other domains including computer vision. Addition-
ally in the domain of language, graphs provide a
natural way to express the lexical dependencies be-
tween words and phrases in a sentence. Further-
more, graph matching also has the advantage of
providing a framework for structural matching of
phrases that would be difficult to resolve at the level
of individual words.

2 Task Definition and Data

We describe our approach in the context of this years
“Recognizing Textual Entailment” (RTE) challenge
(Dagan et al., 2005), but note that our approach eas-
ily extends to other related inference tasks. The sys-
tem presented here was one component of our re-
search group’s RTE submission (Suppressed, 2005)
which was the top-ranking system according to one
of two evaluation metrics.

In this domain, we are given several pairs, each
consisting of two parts: 1) thetext, a small passage



Figure 1: An example parse tree and the correspond-
ing dependency graph. Each phrase of the parse tree
is annotated with its head word, and the parentheti-
cal edge labels in the dependency graph correspond
to semantic roles.

1, and thehypothesis, a single sentence. Our task
is to decide if the hypothesis is entailed by the text.
Here, entails does not mean strictlogical implica-
tion, but roughly means that a competent speaker
with minimal world-knowledge would infer the hy-
pothesis from the the text. For a flavor of the nature
(and difficulty) of the task, see Table 2.

For purposes of comparison, we give results on
the data provided for the RTE task which consists
of 567 development pairs and 800 test pairs. We
will use the following toy example to illustrate our
representation and matching technique:
Text: In 1994, Amazon.com was founded by Jeff Bezos.

Hypothesis: Bezos established a company.

3 Semantic Representation

Perhaps the most common representation of text for
assessing content is “Bag-Of-Words” or “Bag-of-N-
Grams” (Papineni et al., 2001). However, such rep-
resentations lose syntactic information which can
be essential to determining entailment. Consider a
Question Answer system searching for an answer
to When was Israel established ?A representation
which did not utilize syntax would probably enthu-
siastically return an answer from:The National In-
stitute for Psychobiology in Israel was established
in 1979.

In this example it’s important to try to match rela-
tionships as well as words. In particular, any answer
to the question should preserve the dependency be-
tweenIsrael andestablishedin the question. How-

1Usually a single sentence, but occasionally longer

ever, in the proposed answer, the expected depen-
dency is missing.

Our approach is to view sentences as graphs be-
tween words and phrases, where dependency rela-
tionships are characterized by the path between the
words. This approach has been successfully used
to characterize semantic relationships such as hyper-
nyms (Snow et al., 2004).

Given this representation, we judge entailment by
measuring not only how many of thehypothesisver-
tices are matched to thetext but also how well the
relationships between vertices in thehyposthesisare
preserved in their counter parts in the text. For the
remainder of the section we outline how we produce
graphs from text, and in the next section we intro-
duce our graph matching model.

3.1 From Text To Graphs

Starting with raw English text, we use a version of
the parser described in (Klein and Manning, 2003),
to obtain a parse tree. Then, using a slightly modi-
fied versions of Collins’ head propagation (Collins,
1999), we derive a dependency tree representation of
the sentence. The labels of the edges in the depen-
dency graph are given according to a hand-created
set of tgrep expressions. These edges represent
“surface” syntax relationships such assubj for sub-
ject andamod for adjective modifier, similar to the
relations inMinipar (Lin and Pantel, 2001). The de-
pendency graph is the basis for our graphical repre-
sentation, but it is enhanced in the following ways:

1. Collapse Collocations and Named-Entities: We
“collapse” dependency nodes which represent
named entities (e.g.,Jeff Bezosin Figure 2) and
also collocations, including verbs and their par-
ticles ( e.g. ,blow off in He blew off his work).

2. Dependency Folding : As in (Lin and Pantel,
2001), we found it useful to fold dependencies
(such as modifying prepositions) so that mod-
ifiers became labels connecting the modifier’s
governor and dependent directly. For instance,
in Figure 2, we have changedin from a word
into a relation between its head verb and the
head of its NP complement.

3. Semantic Role Labeling: We also augment the
graph with the output of the Semantic Role La-



Task Text Hypothesis Entailed
Question
Answer
(QA)

Prince Charles was previously married to
Princess Diana, who died in a car crash in
Paris in August 1997.

Prince Charles and Princess Diana got
married in August 1997.

False

Machine
Translation
(MT)

Sultan Al-Shawi, a.k.a the Attorney, said
during a funeral held for the victims,
”They were all children of Iraq killed dur-
ing the savage bombing.”.

The Attorney, said at the funeral, ”They
were all Iraqis killed during the brutal
shelling.”.

True

Comparable
Documents
(CD)

Napster, which started as an unauthorized
song-swapping Web site, has transformed
into a legal service offering music down-
loads for a monthly fee.

Napster illegally offers music downloads. False

Paraphrase
Recognition
(PP)

Kerry hit Bush hard on his conduct on the
war in Iraq.

Kerry shot Bush. False

Information
Retrieval
(IR)

The country’s largest private employer,
Wal-Mart Stores Inc., is being sued by
a number of its female employees who
claim they were kept out of jobs in man-
agement because they are women.

Wal-Mart sued for sexual discrimination. True

Table 1: Some Textual Entailment examples. The first last three demonstrate some of the harder instances

beler of (Toutanova et al., 2005). Each pred-
icate adds an arc labeled with the appropri-
ate semantic role to the head of the argument
phrase. This helps to create links between
words which share a deep semantic relation not
evident through the surface syntax. Addition-
ally, modifying phrases are labeled with their
semantic types (e.g., theTemporaledge in the
Figure 2) which should be useful Question An-
swering type tasks.

4. Coreference Links: Using a co-rereference
resolution tagger,coref links are added
throughout the graph. These links allowed con-
necting the referent entity to the vertices of the
referring vertex. Also in the case of multiple
sentence texts, it is our only “link” in the graph
entities in the two sentences.

For the remainder of the paper, we will refer to
the text asT and hypothesis asH, and will speak
of them in graph terminology. In addition we will
useHV andHE to denote the vertices and edges,
respectively, ofH.

4 Entailment by Graph Matching

We take the view that a hypothesis is entailed from
the text when the cost of matching the hypothesis
graph to the text graph is low. For the remainder of
this section, we outline a general model for assign-
ing a match cost to graphs.

For hypothesis graphH, and text graphT , a
matchingM is a mapping from the vertices ofH
to those ofT . For vertexv in H, we will useM(v)
to denote its “match” inT . As is common in ma-
chine translation, we allow nodes inH to map to a
fictitious NIL vertex inT if necessary. Suppose the
cost of matchingM is Cost(M). If M is the set of
such matchings, we define the cost of matchingH
to T :

MatchCost(H,T ) = min
M∈M

Cost(M) (1)

Suppose we have a model, VertexSub(v,M(v)),
which gives us a cost in[0, 1], for substituting vertex
v in H for M(v). One natural cost model is to use
the normalized cost for each of the substitutions our



matching makes:

Cost(M) =
1
Z

∑
v∈HV

w(v)VertexSub(v,M(v))

(2)
Here,w(v) represents the weight or relative im-

portance for vertexv, and Z =
∑

v∈HV
w(v) is

a normalization constant. In our implementation,
the weight of each vertex was based on the part-of-
speech tag of the word or the type of named entity, if
applicable. However, there are several other possi-
bilities including using tf-idf weights for words and
phrases.

Notice that when Cost(M) takes the form of
(2), computing MatchCost(H,T ) is equivalent to
finding the minimal cost bipartite graph-matching,
which can be efficiently computed using linear pro-
gramming.

As (Punyakanok et al., 2004) demonstrated, mod-
els which also match syntactic relationships be-
tween words can outperform bag-of-words models
for TREC QA answer extraction. So it should be ad-
vantageous for our cost-model to incorporate some
measure of how relationships inH are preserved in
T underM . Ideally, a matching, should preserve
all local relationships; i.e, ifv → v′ ∈ H, then
M(v) → M(v′) ∈ T . When this condition holds
for all edges inH, H andT are isomorphic.

What we would like is aapproximatenotion of
isomorphism, where we penalize the distortion of
each edge relation inH. Consider an edgee =
(v, v′) ∈ HE , and letM(e) be the path fromM(v)
to M(v′) in T .

Again, suppose we have a model,
PathCost(e,M(e)) for assessing the “cost” of
substituting a direct relatione ∈ M for its coun-
terpart,M(e), under the matching. This leads to a
formulation similar to (2), where we consider the
normalized cost of substituting each edge relation
in H with a path inT :

RelationCost(M) =
1
Z

∑
e∈HE

w(e)PathSub(e,M(e))

(3)
whereZ =

∑
e∈HE

w(e) is a normalization con-
stant. As in the vertex case, we have weights
for each hypothesis edge,w(e), based upon the
edge’s label; typically subject and object relations

Figure 2: Example graph matching (α = 0.55) for
example pair. Dashed lines represent mapping.

are more important to match than others. Our fi-
nal matching cost is given by a convex mixture of
the vertex and relational match costs: Cost(M) =
αVertexCost(M) + (1− α)RelationCost(M).

Notice that minimizing Cost(M) is computa-
tionally hard since if our PathSub model as-
signs zero cost only for preserving edges, then
RelationCost(M) = 0 if and only if H is isomor-
phic to a subgraph ofT . As an approximation, we
can efficiently find the matchingM∗ which mini-
mizes VertexCost(·); we then perform local greedy
hill-climbing search, beginning fromM∗, to approx-
imate the minimal matching. In practice, this ap-
proximation appears to perform rather well.

4.1 Relationship to Machine Translation

The model presented in this section bears many
resemblances to a syntactic translation alignment
model, where the source text is the target and the
hypothesis the source. In particular, we can think of
the matching as an alignment, and our equation (1)
is a typical approximation of the translation model
alignment probability.

5 Node and Edge Substitution Models

In the previous section we described our graph
matching model in terms our VertexSub model,
which gives a cost for substituting one graph vertex
for another, and PathSub, which gives a cost for sub-



stituting the path relationship between two paths in
one graph for that in another. We now outline these
models.

Our VertexSub(v,M(v)) model is based upon a
sliding scale, where progressively higher costs are
given based upon the following conditions:

• Exact Match: v and M(v) are identical
words/phrases

• Stem Match: v andM(v)’s stems match or one
is a derivational form of the other e.g., matching
coachesto coach.

• Synonym Match: v andM(v)’s are synonyms
according toWordNet(Fellbaum, 1998). In par-
ticular we use the top 3 senses of both words to
determine synsets.

• Hypernym Match: v is a hypernym ofM(v)
according toWordNet. Note that this feature is
assymmetric. We do not matchv to a hyponym
M(v).

• WordNet Similarity: v and M(v) are
similar according toWordNet::Similarity
(Pedersen et al., 2004). In particular, we use the
measure described in (Resnik, 1995). We found
it useful to only use similarities above a fixed
threshold to ensure precision.

• LSA Match: v and M(v) are distributionally
similar according to a freely available Latent Se-
mantic Indexing package, or for verbs similar
according toVerbOcean(Chklovski and Pantel,
2004).2

• No Match: M(v) is NIL

Although the above conditions often produce rea-
sonable matchings between text and hypothesis, we
found that the recall of these lexical resources to be
far from adequate. More robust lexical resources
would almost certainly boost performance a signifi-
cant amount.

Our PathSub model is also based upon a sliding
scale cost based upon the following conditions:

• Exact Match: M(v) → M(v′) is an en edge in
T with the same label.

• Partial Match: M(v) → M(v′) is an en edge in
T , not necessarily with the same label.

2Available athttp://infomap.stanford.edu

• Ancestor Match: M(v) is an ancestor ofM(v′).
We use an exponential increasing cost for longer
distance relationships.

• Kinked Match: M(v) andM(v′) share a com-
mon parent or ancestor inT . We use an exponen-
tially increasing cost based on the maximum of
the node’s distances to their least common ances-
tor in T .

These conditions capture many of the common
way in which relationships between entities are dis-
torted in semantically related sentences.

Give Justification for these conditions

5.1 Learning Weights

Is it possible to learn weights for the relative impor-
tance of the conditions in the VertexSub and PathSub
models? Consider the case where match costs are
given only by equation (2) and vertices are weighted
uniformly (w(v) = 1). Suppose thatΦ(v,M(v))
is a vector of features3 indicating the cost accord-
ing to each of the conditions listed for matchingv
to M(v). Also let w be weights for each element
of Φ(v,M(v)). Then we can model the substitution
cost for a given matching as :

VertexSub(v,M(v)) =
exp (wT Φ(v,M(v)))

1 + exp (wT Φ(v,M(v)))

Letting s(·) be the 1-sigmoid function used in the
right hand side of the equation above, our final
matching cost as a function ofw is given by

c(H,T ;w) = min
M∈M

1
|HV |

∑
v∈H

s(wT Φ(v,M(v)))

(4)
Suppose we have a set of text/hypothesis pairs,

{(T (1),H(1)), . . . , (T (n),H(n))}, with labels y(i)

which are1 if H(i) is entailed byT (i) and0 other-
wise. Then we would like to choosew to minimize
costs for entailed examples and maximize it for non-
entailed pairs:

`(w) =
∑

i:y(i)=1

log c(H(i), T (i);w) +

∑
i:y(i)=0

log(1− c(H(i), T (i);w))

3In the case of our “match” conditions, these features will
be binary



Unfortunately,̀ (w) is not a convex function. No-
tice that the cost of each matching,M , implicitly
depends on the current setting of the weights,w. It
can be shown that since eachc(H,T ;w) involves
minimizing M ∈ M, which depends onw, it is not
convex (??). Therefore, we can’t hope to globally
optimize our cost functions overw.

One approach is to use coordinate ascent overM
andw. Suppose that we begin with arbitrary weights
and given these weights chooseM (i) to minimize
eachc(H(i), T (i);w). Then we use a relaxed form of
the cost function where we use the matchings found
in the last step:

ĉ(H(i), T (i);w) =
1

|HV |
∑
v∈H

s(wT Φ(v,M (i)(v)))

Then we maximizew with respect tò (w) witch
eachc(·) replaced with the cost-function̂c(·). This
step involves only logistic regression. We repeat this
procedure until our weights converge.

Our preliminary experiments revealed that this
procedure did not yield weights which improved
performance very much our hand-set initializations.
We believe this to be the case largely because of the
presence of several local maxima and ridges in the
parameter space. In the future, we hope to find bet-
ter approximation techniques to this problem.

6 Checks

One systematic source of error coming from our ba-
sic approach is the implicit assumption of upwards
monotonicity of entailment; i.e., ifT entailsH then
addingmorewords toT should also give us a sen-
tence which entailsH. This assumption, also made
by recent abductive approaches (Moldovan et al.,
2003; Harabagiu et al., 2000), does not hold for sev-
eral classes of examples. Below we outline the most
common types of cases4 that we check for after
graph matching:

Negation Check

Text: Clinton’s book is not a bestseller

Hypothesis: Clinton’s book is a bestseller

To catch such examples, we check that each hy-
pothesis verb is not matched to a text word which
is negated (unless the verb pairs are antonyms) and

4All are actual, or slightly altered, RTE examples

vice versa. In this instance, theis in H, denoted by
isH , is matched toisT which has a negation modi-
fier, notT , absent forisH . So the negation check is
failed.
Factive Check
Text: Clonaid claims to have cloned 13 babies worldwide.

Hypothesis: Clonaid has cloned 13 babies.

Non-factive verbs (claim, think, charged, etc.) in
contrast to factive verbs (know, regret, etc.) have
sentential complements which do not represent true
propositions. We detect such cases, by checking that
each verb inH that is matched inT does not have a
non-factive verb for a parent.

Superlative Check

Text: The Osaka World Trade Center is the tallest building in

Western Japan.

Hypothesis: The Osaka World Trade Center is the tallest build-

ing in Japan.

In general superlative modifiers, (most, biggest,
etc.), invert the typical monotinicity of entailment
and must be handled as special cases. For any noun,
n, with a superlative modifier (part-of-speech JJS)
in H, we must ensure that all modifier relations of
M(n) are preserved inH. In this example,build-
ingH has a superlative modifiertallestH , so we must
ensure that each modifier relation ofJapanT , a noun
dependent ofbuildingT , has aWestrenT modifier not
in H. So its fails the superlative check.

During error analysis on the development set, we
spotted the following cases where our VertexSub
function erroneously labeled vertices as similair, and
required special case consideration:

• Antonym Check: We consistently found that the
WordNet::Similarity modules gave high-
similarity to antonyms5. We explicitly check
whether a matching involved antonyms and reject
unless one of the vertices had a negation modifier.

• Numeric Mismatch: Since numeric expressions
typically have the same part-of-speech tag (CD),
they were typically matched when exact matches
could not be found. However, mismatching nu-
merical tokens usually indicated thatH was not
entailed, and so pairs with a numerical mismatch
we rejected.

5Which isn’t necessarily incorrect, but simply not suitable
for textual inference



Method Accuracy CWS
Random 50.0% 0.500

Bag-Of-Words 49.5% 0.548
TF-IDF 51.8% 0.560

GM-General 56.8% 0.614
GM-ByTask 56.8% 0.621

Table 2: Accuracy and confidence weighted score
(CWS) for test set using various techniques.

7 Experiments and Results

For our experiments we used the devolpement and
test sets from the Recognizing Textual Entailment
challenge (Dagan et al., 2005). We give results for
our system as well as for the following systems:

• Bag-Of-Words: We tokenize the text and hypoth-
esis and strip the functional words, and stem the
resulting words. The cost is given by the fraction
of hypothesis not matched in the text.

• TF-IDF: Similar to Bag-Of-Words except that
there is a tf-idf weight associated with each hy-
pothesis word so that more “important” words are
higher weight for matching.

We also present results for two graph matching
(GM) systems. The GM-General system fits a sin-
gle global threshold from the devolement set and
the GM-ByTask system fits a different threshold for
each of the “task”.

Our results are summarized in Table 66 As the
result indicates, the task is particularly hard; all RTE
participants scored between 50% and 60% (Dagan
et al., 2005). Both GM systems perform better than
either Bag-Of-Words or TF-IDF according to both
raw accuracy and CWS.

We also present results on a per-task basis in Ta-
ble 7. Interestingly, there is a large variation in per-
formance depending on the task, suggesting the en-
tailment task may be inherently more difficult than
others.

6CWS (confidence weighted score) represents the aver-
age precision among our most confident predictions. If
{c1, . . . , cn} are our confidence outputs then CWS=∑n

i=1
1
n

(number of correct predications inc1, . . . , ci)

Task General ByTask
Accuracy CWS Accuracy CWS

CD 72.0% 0.742 76.0% 0.7714
IE 55.9% 0.583 55.8% 0.595
IR 52.2% 0.5644 51.1% 0.572
MT 50.0% 0.497 43.33% 0.489
PP 58.0% 0.741 58.0% 0.746
QA 53.8% 0.537 55.4% 0.556
RC 52.1% 0.539 52.9% 0.523

Table 4: Accuracy and confidence weighted score
(CWS) split by task on the RTE test set.

8 Conclusion

We have presented a graph matching based approach
to determining semantic entailment.
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