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Abstract

We propose an approach to speeding up object detection,

with an emphasis on settings where multiple object classes

are being detected. Our method uses a segmentation algo-

rithm to select a small number of image regions on which

to run a classifier. Compared to the classical sliding win-

dow approach, this results in a significantly smaller num-

ber of rectangles examined, and thus significantly faster ob-

ject detection. Further, in the multiple object class setting,

we show that the computational cost of proposing candi-

date regions can be amortized across objects classes, re-

sulting in an additional speedup. At the heart of our ap-

proach is a reduction to a directed Steiner tree optimization

problem, which we solve approximately in order to select

the segmentation algorithm parameters. The solution gives

a small set of segmentation strategies that can be shared

across object classes. Compared to the sliding window

approach, our method results in two orders of magnitude

fewer regions considered, and significant (10-15x) running

time speedups on challenging object detection datasets (La-

belMe and StreetScenes) while maintaining comparable de-

tection accuracy.

1. Introduction

Object detection has seen significant advances in the last

few years [7], but many algorithms are still slow and unsuit-

able for real-time performance. The standard sliding win-

dow approach to object detection analyzes a large number

of image regions (on the order of 50,000 for a 640x480 pixel

image) to see which of them may contain an object of inter-

est. For many applications, multiple object classes need to

be recognized in each scene, and so multiple binary clas-

sifiers are run over each region. Thus, if we are trying to

detect any of 10 object classes, we may need about 500,000

classifications per image.

In our approach, we propose only a small subset of

“promising” regions for each classifier to analyze. By shar-

ing the computation for selecting appropriate regions across

the different object classes, we show we can often achieve

a 10x computational speedup, without sacrificing accuracy.

At the heart of our approach is a reduction of a feature

selection problem to a directed Steiner tree optimization

problem, which is NP-hard [11] but can be efficiently ap-

proximated [3, 42]. Concretely, image segmentation, which

is used to select the “promising” windows, is expensive to

compute. Further, different segmentations are suited for

finding different sorts of objects; a segmentation into many

small segments may be more suited for small objects such

as coffee mugs, whereas a coarser segmentation may be bet-

ter for larger objects such as computer monitors. When we

are interested in detecting many object classes, we would

like to find a small number of segmentations that can be

shared across multiple object classes. We show how a di-

rected Steiner tree optimization formulation can be used to

select the segmentation parameters efficiently.

We apply these ideas to speeding up object detection, and

test our approach on eleven object classes from the LabelMe

and StreetScenes datasets, along with our own collected im-

ages, in conjunction with a classification algorithm inspired

by Torralba et al. [35]. We achieve significant run-time

improvement without sacrificing detection accuracy. More

broadly, however, we make three main contributions: (1)

we present a classifier-agnostic approach to speeding up the

sliding windows algorithm, (2) we address the task of effi-

ciently recognizing multiple object classes within the same

scene, and (3) we introduce a novel Steiner tree formulation

for parameter selection.

2. Related work

Efficient detection. The sliding window approach is com-

mon in object detection [5, 7, 35], and much work has been

done to improve its running time. Viola and Jones [36] (see

also Wu et al. [39], Rowley et al. [29], and, recently, Harza-

llah et al. [15]) sped up localization by quickly rejecting

many of the rectangles as not containing the object of inter-

est. In contrast, our algorithm works by proposing only the

rectangles that appear likely to contain an object, based on

the segmentation, without needing to analyze each sliding

window individually.

Some techniques for object localization avoid using slid-
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ing windows entirely by instead applying the generalized

Hough transform [10, 24, 37]. Among the latest such tools

is the work of Gall and Lempitsky on Hough Forests [10]

with running times of 6 seconds per 720x576 pixel image,

scaling linearly in the number of objects to be detected. Our

approach runs in roughly 1.5 seconds per image per ob-

ject with 9 objects and amortizes part of its running time

as more objects are added. Further, our method is classifier-

independent and can be used in conjunction with any type

of classifier, including Hough forests-based classifiers.

Another approach to speeding up localization is to use

local optimization methods, by first identifying promising

regions of interest and then using iterative refinement to ob-

tain better region boundaries [4]. Lampert et al. [20] pro-

posed a branch-and-bound algorithm to repeatedly decrease

the region of interest from the entire image to a bounding

box around the desired object using a bag of words sparse

feature model. While their method is highly effective, our

technique applies to a much broader class of visual features;

for instance, the dense responses of the location-sensitive

patch-based classifiers of [35] that we consider in our ex-

periments cannot be used within their framework.

There are methods which use low-level features to create

a saliency map of the image [18, 19] and focus attention for

object localization that way; their techniques could be used

in our Steiner tree framework to replace the segmentation

algorithm and instead propose windows at various granular-

ities using the detected interest points. However, we believe

that merging together superpixel segmented regions is more

intuitive than combining interest points which are intended

to emphasize regions of high variability.

Joint segmentation and detection. There are many meth-

ods for using segmented superpixels and merging them to-

gether to form an object boundary [9, 12]. Russell et al. [30]

introduced the “soup of segments” idea, where multiple seg-

mentations of an image are obtained, and then all the seg-

ments are considered together as building blocks in tasks

such as object discovery [30], spatial support [25], or joint

object classification and segmentation [12, 27]. As dis-

cussed below, our framework also allows multiple combi-

nations of segmentation parameters for each object class.

Many algorithms exist as well for simultaneously per-

forming both image segmentation and object recognition

that combine bottom-up and top-down models [21, 22, 23,

38, 40]. These methods have generally focused on improv-

ing the accuracy of both segmentation and object detection,

rather than on minimizing the object detector running time.

Gu et al. [14] recently introduced a technique for using

regions for object detection instead of the sliding-window

approach, and reported significant run-time improvements.

They make the assumption that each segment corresponds

to a probabilistically recognizable object part, whereas our

algorithm is specifically designed to compensate for imper-

Figure 1. Sample images from our object detection dataset with

the desired objects outlined in green.

fections in the segmentation algorithms by automatically

considering a large number of schemes for merging super-

pixel regions to create an object. Further, their classifier di-

rectly utilizes the segmented regions while our techniques

can be used in conjunction with any classifier.

Multi-class classification. Sharing computation for multi-

class detection has been explored by [32, 34, 35] among

others; e.g., Todorovic and Ahuja [34] consider a taxonomy

of object subcategories (parts) which can be detected in im-

ages and then used to construct multiple object classes.

Steiner trees. We use the algorithm due to Charikar et

al. [3] in our parameter selection method to find the ap-

proximate minimal cost Steiner tree. It is impossible to do

justice to all Steiner tree literature here, but briefly [41] an-

alyzes the general directed acyclic case, [26] presents a new

primal-dual approximation algorithm, [6] discusses the ter-

minal Steiner tree problem, and [42] presents a solution us-

ing a linear program which is polynomial-time but too com-

putationally expensive for us to use in practice.

Also, Parikh et al. [28] recently applied Steiner trees to

the task of learning spatial hierarchy in images.

3. Fast object detection

A common way to detect object begins by building a

binary classifier that takes as input a small (say 32x40)

rectangular image patch, and classifies that image patch

as either containing a cup (or other object of interest) or

not [5, 15, 35]. Given a full-size image, object detection

is performed by running this classifier on every 32x40 sub-

image of this larger image. To detect the same object at

multiple sizes, we scale the image down and repeat.1

Given an image to analyze, our approach consists of

three main steps: (1) Segmentation, where we use a stan-

dard unsupervised algorithm to segment the image into

small locally coherent regions; (2) Rectangle selection,

1To detect the same object with varying aspect ratios, a fourth search

dimension is required in the sliding windows algorithm, greatly slowing

down the algorithm. While for this paper we restrict our attention to ob-

jects with fixed aspect ratios, our algorithm can easily be extended to the

more general cases since the bounding boxes extracted from segmentation

inherently represent the varying aspect ratios of the different objects.



where we take these irregular-shaped image segments, and

combine/reshape them as needed to obtain a small number

of rectangular windows; (3) Classification, where we apply

a binary classifier to each of these windows to decide if an

object of interest appears in it.

We may have to run the segmentation algorithm multi-

ple times and use different rectangle selection strategies for

the different objects, so as to generate the most appropriate

rectangles for each. For example, we may want to generate

square rectangles to detect objects with a square bounding

box (like monitors, mugs and wall-clocks), and longer rect-

angles to detect longer objects (like keyboards). Further, a

segmentation into many small segments may be necessary

for finding small objects such as coffee mugs, whereas a

coarser segmentation with fewer regions may be sufficient

for larger coherent objects such as computer monitors.

The segmentation and rectangle selection steps are them-

selves computationally expensive. Thus, if we can share

parts of these computations among different object classes,

then their cost can be amortized, thus further reducing the

overall running time of the system. In section 5, we address

this optimization problem using directed Steiner trees.

4. Segmentation and rectangle selection

We begin by briefly describing the various parameters of

the segmentation and rectangle selection algorithms. The

goal is to identify promising regions of the image that may

contain an object, so that the classifier can analyze only

these regions. Our pipeline consists of five sequential steps,

diagrammed in Figure 3 left.

4.1. Segmentation

We use the segmentation algorithm of Felzenszwalb and

Huttenlocher [8], which has parameters s, k, andm. Briefly,

s controls how much we smooth the original image, k de-

termines roughly how many segments the image is broken

into, andm controls a post-processing step that ensures that

all resulting segments are of size at least m pixels. Even

though [8] gives suggestions for parameter settings that pro-

duce visually pleasing segmentations, we found that it was

impossible to find a single parameter setting that works well

for detecting all the objects of interest.

When the image is over-segmented (into a large num-

ber of regions, corresponding to small k), ski boots, which

are often very detailed in the image, tend to be broken into

many individual segments (Figure 2). It is then difficult

to automatically combine these segments together to find

a rectangle that correctly bounds the entire ski boot. Con-

versely, it is difficult for a segmentation algorithm to detect

the correct object boundaries around cups and mugs, and so

unless the image is over-segmented, these tend to be merged

with the background.

Figure 2. Left. Segmentation of the bottom left-hand image from

Figure 1 with the parameter k = 1600. It works remarkably very

well for ski boots (shown in blue) and contains only 88 segments,

most of them too small or too big to even be considered by the

classifier. However, there is no hope of recovering any of the

smaller objects, such as the coffee mugs and paper cups on the

table. Right. Segmentation of the same image with k = 100

(s = 0.8, m = 20). Notice that good bounding boxes around the

mugs and cups can now be reconstructed by combining a small

number of segments, yet ski boots are extremely over-segmented

and thus very difficult to reconstruct.

4.2. Rectangle selection

Given an image segmented into irregular regions, there

are various methods of using these regions to generate rect-

angular windows likely to contain objects. Three simple

ways are computing bounding boxes (1) around individual

segments, (2) around each segment and all of its neighbors,

and (3) around all pairs of adjacent segments. By analyzing

the typical segmentations of wide or tall objects (such as

keyboards or paper cups) we found it beneficial to also take

bounding boxes around triples of segments lined up either

vertically or horizontally.

These five merging schemes seem robust to a large range

of object shape, size and pose variations, which makes

it possible to use the same segmentation parameters for

groups of objects and partially amortize the large segmen-

tation cost. However, often no single merging scheme is

sufficient to detect a specific object class robustly. On the

other hand, employing all schemes together results in an

excessive number of boxes for the classifier to analyze, in-

creasing the running time and potentially decreasing object

detection precision if the classifier makes errors.

We introduce the parameter b which takes on one of

25 − 1 = 31 values and corresponds to generating all the
rectangles from any possible non-empty subset of these five

merging schemes. This allows the learning algorithm to au-

tomatically tradeoff speed and classification accuracy.

Note that the framework for using multiple combinations

of merging scenes can be extended to the other parameters

as well; for example, combinations of the segmentation pa-

rameter k could be considered, resulting in multiple seg-

mentations of the same image used to propose regions.

4.3. Trimming parameter

Finally, the rectangles generated from this segmentation

and merging process are often too large, in a specific and



Figure 3. Left. Illustration of the five sequential steps of our segmentation and rectangle selection pipeline described in section 4. (1)

Smooth the original image (s = 1 shown). (2) Segment (k = 150 shown). (3) Merge small segments together (m = 160 shown). (4)

Propose rectangular bounding boxes around groups of segments (only boxes around individual segments are shown). (5) Trim each of the

bounding boxes using parameter p to eliminate long sparse tails (p = 40 here). The bounding box shown is obtained by merging three

vertically aligned segments (purple, brown and blue, top to bottom). The new bounding box is tight enough for the classification algorithm

to detect the paper cup. (Classification) Finally, evaluate each proposed rectangle with the object classifier. Note that the picture shown

here is for illustration purposes only; there is no single assignment to the five segmentation and rectangle selection parameters that would

allow the classifier to perform well on all 3 object types in this image. Right. Illustration of the directed graph G generated by the Steiner

tree algorithm, described in section 5.

repeatable way. For example, a mug on a table may be

segmented almost correctly except that the segmentation

merges the mug with the edge of the table (which is very

long and thin; see level 5 in Figure 3 left). This effect

seems common to many segmentation algorithms, includ-

ing [8, 33]. The bounding rectangle around this segment

would be much larger than the object itself, making it very

difficult for the classifier to recognize the object. To account

for it, we introduce the final parameter p that determines

how aggressively we trim down the generated boxes.2

5. Steiner Trees for Parameter Selection

Since the segmentation and rectangle selection steps de-

scribed above are computationally expensive, we want to

share these computations among different object classes.

This sharing can occur at multiple levels; e.g., if two ob-

ject detection algorithms can share the image segmentation

computation but not the rectangle selection step (which is

based on the segmentation), then that would still be prefer-

able to sharing neither segmentation nor rectangle selection.

We show how the problem of parameter selection reduces to

a directed Steiner tree.

2Specifically, consider a segment (or a few segments merged together

as described above) and its bounding box. We compute the number of pix-

els within the left-most column of the bounding box that are also contained

within the segment. If this number is smaller than p% of the bounding box

height, we consider the column “sparse” and, if it helps bring the aspect

ratio of the bounding box closer to the desired value, remove the column.

We run the same process repeatedly on right/top/bottom edges as well.

5.1. Directed Steiner Trees

In the directed Steiner tree problem [41], we are given

a directed graph G = (E, V ) with weights w(E) on the
edges, a set of Steiner nodes S ⊆ V , and a root node

r ∈ V . Our goal is to find a directed tree that is rooted at r

so that the tree spans all vertices in S, while minimizing the

total weight of all the edges in the tree. Note that this is a

somewhat different problem from the standard Steiner tree

problem [17], where the graph is undirected and there is no

special “root” node.

The directed Steiner tree problem is NP-hard;3 however,

there are efficient approximation algorithms. Below, we

describe how our problem can be formulated as a directed

Steiner tree; we then discuss approximation algorithms.

5.2. Constructing the Steiner Tree

We now show how to construct the Steiner tree for our

problem. An illustration of the graphG that we use is shown

in Figure 3 right. Recall that our segmentation and rectan-

gle selection approach comprises five sequential steps with

parameters s, k,m, b and p. The interpretation of the graph

is as follows. The root node has five children, correspond-

ing to the five possible (discretized) values of s that we will

consider. Each of these edges from the root has a cost equal

to performing the first step of the algorithm using the se-

lected parameter s. Traversing the graph from the root r

3For example, when all terminals of G are exactly 2 edges away from

the root r and all costs are 1, this reduces to theminimum set cover prob-

lem [11].



to a node at level 5 corresponds to assigning values to each

of the parameters s, k, m, b, and p. The cost of each edge

corresponds to the running time of performing the corre-

sponding step of the pipeline using the parameter selected.

The number of Steiner nodes |S| in our tree is equal to
the number of object classes we are trying to recognize (i.e.,

the number of classification problems we would like to do

well on). The Steiner nodes are square in the figure, and

together comprise the bottom-most 6th level of the graph.
A node at level 5 of the graph, which corresponds to a set

of rectangles generated using a specific set of parameters

s, k, m, b, and p, will be connected to a Steiner node at

level 6 only if that set of rectangles, when analyzed with

the classifier corresponding to that Steiner node, achieves a

minimum desired level of performance. Further, the cost of

this edge is the running time of the classifier applied to the

corresponding set of rectangles (which is roughly linear in

the number of rectangles examined).

By construction of the graph G and the associated costs,

we see that if we are able to find a minimum cost Steiner

tree, then we will have found the set of parameters that min-

imize the overall computational cost, while achieving the

desired classification performance for each of our objects.

This allows trading off between classification performance

and running time; for example, by relaxing the constraints

on the performance requirements of the classifiers, many

more edges between level 5 and 6 nodes will be added to

G, and thus the minimal Steiner tree of G will likely have

smaller cost – implying that the corresponding classifiers

have faster running times.

Choosing subsets of merging methods. One final detail is

necessary to correctly compute the costs on the edges. For

the sake of simplicity, we will describe this detail ignoring

level 5 of the tree (i.e., as if there was no parameter p), and

imagine that level 4 nodes were directly connected to the

level 6 Steiner nodes.

Recall the five different merging schemes for the rect-

angle selection step discussed in section 4. If one object

requires taking the union of all the rectangles from merg-

ing schemes (i) and (ii), and another requires the rectangles

from (i) and (iii), then we should not separately “charge”

the algorithm twice for computing the rectangles for (i). In-

stead, we want to allow the algorithm to choose a value for

parameter b that corresponds to generating all the rectangles

using methods (i), (ii) and (iii). Then, having paid the cost

on the incoming edge corresponding to this value of b, we

want to allow it to use any subset of methods (i), (ii) and

(iii)’s boxes to perform different classification tasks. To ac-

complish this, the level 4 node corresponding to b will be

connected to a Steiner node n whenever any subset of b’s

merging schemes (in this example, 23 − 1 = 7 subsets)
results in satisfactory classifier accuracy on the correspond-

ing object. Furthermore, the cost on this edge from b to n

will be the minimum of the classifier running times for ob-

taining satisfactory accuracy on this object (where in this

example the minimum is taken over the 7 possible subsets

of b’s merging schemes).

5.3. Approximation Algorithms

Even though the directed Steiner tree problem is NP-

complete even on planar graphs [11], there exist a variety of

approximation algorithms. For our application, we used the

algorithm of Charikar et al. [3]. This algorithm is extremely

efficient in practice for our formulation (because of our tree-

like G), and gives good results for our problem sizes with

running times ranging from a few seconds to just under half

an hour when the total number of vertices in the graph is on

the order of 20, 000 (MATLAB implementation).
Briefly, the algorithm, which is parameterized by i,

works as follows. For i = 1, it simply computes the shortest
paths from the root to each of the terminals, and combines

them to output a spanning tree. This gives a trivial |S|-
approximation (where |S| is the number of objects). Be-
cause there is at most one directed path from any node v to

any other node u in our input graph G, these shortest path

computations can be done extremely efficiently. The algo-

rithm is recursive, and for higher values of i it successively

finds better approximations, using the output of the algo-

rithm with parameter i− 1 run on different subgraphs of G.
(See [3] for details.)

6. Experiments

Given the setup described above we test our algorithm

on (1) a combination of 359 images of indoor office scenes

from the LabelMe dataset [31], combined with our own col-

lected dataset of 557 indoor images, and (2) the outdoor

StreetScenes dataset [1].

6.1. Training stage 1: Object classifiers

We analyze the performance of our algorithm on 9 com-

mon indoor objects (cans, clocks, computer monitors, door

handles, keyboards, paper cups, ski boots, and wastebas-

kets) and 2 outdoor objects (cars and pedestrians). For each

object we wish to recognize, we train a binary classifier us-

ing the method of Torralba et al. [35]. Briefly, for each

object of interest, we obtain a set of positive and negative

training examples, all cropped to the same default window

size chosen based on the object’s aspect ratio (e.g. mugs

and clocks were scaled to fit into a 32 × 32 window, key-
boards 96 × 32, cups 32 × 40). We build a patch dictio-
nary for each object by extracting a set of random patches

from the positive training examples, and recording the loca-

tion within the image that each patch originated from. The

patches are extracted from the intensity and gradient mag-

nitude images. For each patch and for each training image,



we then compute the corresponding feature by finding the

maximum normalized cross-correlation between the patch

and the training example within a small window around the

original location of the patch. Given these features, we use

the Gentle AdaBoost algorithm to train a binary decision

tree classifier.

We used the implementation of [13] for this stage of

training. The indoor object detectors were trained using

214 of our collected scenes of office environments, and took

around 2-4 hours each to train. For the outdoor images we

used 80% of the 3547 StreetScene images, along with the
INRIA dataset [5], to train the classifiers.

Run-time object detection. During test time, the standard

approach is to apply the classifier to every subwindow of a

full-size image to determine if this subwindow outlines the

object of interest. To detect objects of multiple sizes, this is

done for a discrete set of scales, e.g., by repeatedly making

the image 1.2 times smaller.

As suggested by [35], in this case the feature computa-

tion step can be significantly sped up by pre-computing con-

volutions over the entire image. At each scale σ, one first

computes, for each patch gf , the response image I
f
σ (x, y) =

(Iσ ⊗ gf ), where ⊗ is the normalized cross-correlation and
Iσ is the image at that scale. These full-sized response im-

ages are then used to analyze each subwindow (in 4 pixel

shifts) within Iσ using our trained classifier.

When running detection on the sparse candidate set of

regions obtained using our segmentation and rectangle se-

lection method, full-image convolutions are no longer ef-

fective. Thus we have to compute the features individually

within each promising window. Despite this, we are able to

reduce the number of windows so drastically that our algo-

rithm still shows significant run-time improvements.

6.2. Training stage 2: Steiner trees

In the second stage of training, we learn the best pa-

rameter settings for our object detection pipeline using the

Steiner tree formulation. For every possible setting of the 5

segmentation and rectangle selection parameters, we obtain

a set of windows to analyze, and then evaluate the perfor-

mance of each of the object classifiers on these regions. To

provide a more controlled comparison to sliding windows,

our algorithm is constrained to only return boxes which

would have been considered by sliding windows (so shifts

of 4 pixels, and successive changed in scales of 1.2). Each

bounding box proposed by the segmentation and rectangle

selection pipeline is mapped to 8 sliding window location

boxes (4 at the smaller scale and 4 at the larger scale). This

part of Steiner tree training takes on the order of 8 hours par-

allelized over 20 machines for around 500 704x480 training

images.

We report results using the Steiner approximation algo-

rithm [3] with i = 2. We also experimented with i = 3,

since larger values of i give better approximations, but due

to the structure of our graph, i = 3 typically gave identical
results to i = 2, while increasing the training time of this
stage from 1-2 minutes to up to half an hour.

6.3. Evaluation

During the object detection test phase, for each object

we generate proposed windows in the test set images us-

ing the chosen segmentation and rectangle selection param-

eter, making sure to reuse computation whenever possible

between objects (i.e., if the Steiner tree learned the same

segmentation parameter setting for both monitors and key-

boards, but different rectangle selection parameters, then we

will only segment the image once but then will run multi-

ple rectangle selection methods). These windows are then

evaluated using our binary classifiers, and the results are re-

ported below.

6.3.1 Indoor scenes

To analyze our approach, we use a combination of the re-

maining 343 images from our collected dataset (which were

not used for classifier training) along with 359 images from

LabelMe [31], all scaled to 704x480 resolution. 70% of
these images are used for Steiner tree training and 30%
for testing. We employ the evaluation criteria of Pascal

VOC [7], so a detection is considered positive only if its

intersection with a ground truth bounding box divided by

their union is greater than 50%, and at most a single detec-
tion per groundtruth object is considered correct.

We compare the test set classification accuracy and the

test set running times (Table 1) to those of the sliding win-

dow detector. The reported running times include feature

computation, and represent the average processing time per

image per object. As mentioned in section 6.1, the image

features in the sliding window approach can be simulta-

neously computed very efficiently on the full image using

convolutions and integral images. In contrast, our approach

computes the features separately for each selected window.

For the first experiment, we simply choose, for each ob-

ject independently, the parameter setting which achieves the

best performance (area under the PR curve) on the training

set. We refer to this method as “100B”, and use it as a base-

line to compare against the Steiner tree-based algorithm. In

this setting, there is very little sharing amongst objects (the

single best performing parameter setting for one object is in

practice very different from the best performing parameter

setting on each of the other objects). Even with this simple

method, which does not take advantage of the Steiner tree

formulation, just from using the segmentation algorithm we

obtained a 31x reduction in the number of windows con-
sidered, resulting in running 4 times faster than standard

sliding windows (despite the added computational cost of



Detection accuracy (area under PR curve)

Method Time(s) Windows Avg. Boot Can Clock Cup Handle Keyboard Monitor Mug Trashcan

SLW 18.85 52398 0.443 0.322 0.455 0.793 0.514 0.089 0.452 0.647 0.564 0.152

100B 4.62 1685 0.489 0.550 0.486 0.722 0.532 0.173 0.535 0.695 0.590 0.120

95B 2.43 917 0.462 0.572 0.452 0.618 0.470 0.173 0.526 0.665 0.547 0.132

90B 1.72 570 0.446 0.555 0.391 0.736 0.421 0.182 0.457 0.664 0.473 0.134

80B 1.29 394 0.421 0.565 0.359 0.629 0.383 0.247 0.456 0.630 0.392 0.125

Table 1. Test set performance of each parameter selection method on the supplemented LabelMe dataset. Detection time (“Time”) and the

average number of windows analyzed (“Windows”) are reported per image per object. The “Avg.” column contains the average area under

the PR curve over all 9 objects. Performance superior to the sliding windows approach (“SLW”) is bold-faced.

computing features independently for each window). Fur-

ther, because the segmentation eliminated many false posi-

tive windows which were previously considered by the clas-

sifier, this method yielded a 10% improvement in average
area under the PR curve over the 9 objects we considered.

For “100B” we chose (for each object independently) the

parameter setting that gives the best classification perfor-

mance on the training set; in the next set of experiments,

we consider any parameter setting that performs within 5%,
10%, and 20% of this optimum (referred to as methods
“95B”, “90B”, and “80B” respectively). This results in

more connections between the 5th and 6th levels in the
graph G, and thus in minimal Steiner trees of lower cost.

With these methods, the detection accuracy slowly de-

grades down to 5% below the performance of sliding win-
dows, while the reduction in the number of windows ana-

lyzed and the speedup in the detection running time increase

to 133x and 14.5x respectively. Most notable is the 90B

algorithm which achieves an 11x improvement in running

time (92x fewer windows considered) without sacrificing

average detection accuracy.

6.3.2 Outdoor scenes

We also evaluated the performance of our approach on the

StreetScenes dataset [1]. The 710 images remaining after

classifier training were split in half and used for training

and evaluating our detection approach. The images were

scaled down to 320x240 resolution. For each ground truth

object at most one detection was considered correct. A de-

tection was considered positive when its intersection with

the ground truth bounding box divided by their union was

at least 20%.4

We used all parameter settings that performed within

99% of optimal as measured by maximum F-score, and ob-
tained the PR curves shown in Figure 4. Since objects are

often occluded, it is very difficult to obtain a good segmen-

tation of this dataset, and the ability to combine multiple

4This criteria was used e.g., by [16], and was chosen because the object

size in the images is so small: the smallest car in the test set is just 7 × 7

pixels, and the smallest pedestrian is 7×14 pixels. Our classifiers expected

the input size of 40×20 and 32×64, which helps explain the poor baseline

recognition performance on this dataset.

Figure 4. Accuracy of our algorithm on 355 images from the

StreetScenes dataset. The blue line corresponds to the sliding win-

dows algorithm, and the red bold line is our algorithm.

segments in various ways to generate better bounding boxes

was key to getting good performance.

The number of regions classified per object class on

average went down from 9548 per image to 158 (60.4x).

The running time of the sliding windows algorithm was

7.95 seconds per image per object; we are able to run in

0.524 seconds per object (15.2x). In this case only two ob-

ject classes are being detected; our approach is designed to

achieve even greater speed-ups with more classes.

7. Conclusion

We have described a method for speeding up object de-

tection algorithms to enable them to be used in real-time

applications. We present an approach that segments the

image and uses the resulting segments to propose image

windows most likely to contain the objects of interest. We

then use object classifiers to analyze only these proposed

regions. Central to our approach is a method for choosing

a small subset of segmentation parameters to use for all ob-

ject classes, so that the cost of segmentation is amortized

across multiple object classes. This is done using a directed

Steiner tree formulation. Our method results in a signifi-

cant (10x) speedup compared to the standard sliding win-

dow technique, without sacrificing overall accuracy, and a

15x speedup with a slight drop in accuracy.

More generally, the directed Steiner tree formulation

also applies to other multitask learning scenarios [2] in

which features have different costs to compute or measure,

and certain computations may be prerequisites of others, but

where we would like to find the minimum cost set of the

features while maximizing classification performance.
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