
 1

groupTime: Preference-Based Group Scheduling
Mike Brzozowski1, Kendra Carattini2, Scott R. Klemmer1, Patrick Mihelich2, Jiang Hu3, and Andrew Y. Ng2
1 Stanford University HCI Group 2 Stanford University AI Lab 3 Stanford Dept. of Communication

353 Serra Mall, Stanford, CA 94305, USA
{zozo, kendrajc, srk, mihelich, ang}@cs.stanford.edu

450 Serra Mall, Stanford, CA 94305
huj@stanford.edu

ABSTRACT
As our business, academic, and personal lives continue to
move at an ever-faster pace, finding times for busy people
to meet has become an art. One of the most perplexing chal-
lenges facing groupware is effective asynchronous group
scheduling (GS). This paper presents a lightweight interac-
tion model for GS that can extend its reach beyond users of
current group calendaring solutions. By expressing avail-
ability in terms of preferences, we create a flexible frame-
work for GS that preserves plausible deniability while
exerting social pressure to encourage honesty among users.
We also propose an ontology that enables us to model user
preferences with machine learning, predicting user re-
sponses to further lower cognitive load. The combination
of visualization/direct manipulation with machine learning
allows users to easily and efficiently optimize meeting
times. We also suggest resulting design implications for this
class of intelligent user interfaces.

Author Keywords
Machine learning, supervised learning, intelligent user in-
terfaces, group scheduling, group calendaring

ACM Classification Keywords
H5.3. Information interfaces and presentation (e.g., HCI):
Group and Organization Interfaces. K.4.3. Organizational
Impacts: Computer-supported collaborative work.

INTRODUCTION
Ever since the advent of passenger rail spurred the adoption
of Greenwich Mean Time and established a coordinated
regular schedule [35], modern society has become obsessed
with allocating the precious resource of time. Schedules
today act as mediators between people [26], allowing them
to manage their time and barter it in transactions. People
ask if they could “have” each other’s time, and think of how
they “spend” or “waste” their time. A busy (or ostensibly
busy) schedule also acts as a scapegoat, allowing its owner
to blame it rather than declining a meeting directly [26].

People use calendar artifacts as memory prostheses for
events and tasks [23, 26]. A calendar serves as a “world-
word” [30] mapping, by describing a fixed schedule (e.g.,
“September 5 is Labor Day”), and as a “word-world” map-
ping, by prescribing things that should occur (e.g., “Pay
bills”). However, items on a calendar do not always directly
translate to actual activity [36].

In the context of group scheduling (GS), calendars serve as
communication tools; a form of “distributed cognition”
[20]. Finding a time that a group of people can meet to-
gether is often aided by some expression of each partici-
pant’s calendar, whether in spoken dialogue, email or
instant messaging text, or in some visual representation.

Current Group Calendaring Systems
Traditional group calendaring systems (GCS) such as Mi-
crosoft Outlook and Lotus Notes present an explicit repre-
sentation of users’ schedules (typically whether they are
free or busy) [3, 5]. For a group of users, finding a time to
meet is simply a matter of choosing a time that all users
appear to be free.

Yet, this binary view of availability is often inadequate to
describe users’ actual preferences. Palen’s research found
that scheduling has come to be viewed as “less an ‘optimiz-
ing’ task and more often a ‘satisficing’ task” [27]. As a re-
sult, suboptimal meeting times are selected. Worse, people
feel compelled to pollute their calendars with misinforma-
tion to avoid appearing “free” at times they’d really rather
not meet, employing “defensive scheduling” [26].

While these systems are prevalent, at least in workspaces
around the world, GCS is considered “the least useful
groupware application” [16]. Top among users’ explicit
concerns with such systems are privacy and the “prisoner’s
dilemma” that since such systems rely on complete knowl-
edge of a user’s schedule, they are only useful if everyone’s
schedule is accurate [16].

Another system that supports limited group scheduling is
Evite [11], which allows a meeting’s invitees to rate pro-
spective meeting times. This is an improvement over binary
scheduling, but is limited to five options, which must be
manually ranked for each meeting.

Our Approach
Group scheduling is a complex task; there are certainly
many other dimensions that could eventually be explored,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2006, April 22-28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

such as event interdependencies, task deadlines, and flexi-
bility. It could be considered a special case of activity syn-
chronization, which has often been framed as a constraint
satisfaction problem and is beyond the scope of this study.
Similarly, there exist domains where scheduling does not
occur in a 24 × 7 week. However, for the sake of study, we
have reduced the problem to a simpler one of scheduling
isolated meetings over the next week.

We focus on group scheduling rather than calendaring. We
set out to investigate whether we could use a calendar to
represent user preferences rather than availability, focusing
only on a world-word mapping. This is important because:

· User preferences are more complex than binary
“free/busy” availability. Some free times are more desir-
able than others, just as some busy times could be pre-
empted under some circumstances.

· By detaching the portrayal of a user’s preferences from
his or her actual schedule, we preserve a user’s privacy
and afford him or her “plausible deniability” to prevent
being scheduled for events against his or her will.

· By adding a layer of explicit user preferences, we no
longer require users to maintain complete online sched-
ules to gain value from such a system, potentially resolv-
ing the “prisoner’s dilemma.”

Of course, this task is much easier with face-to-face nego-
tiation or when there are few parties to consider; we focus
here on asynchronous group scheduling, because computer-
mediated scheduling is often required.

Because it is time-consuming for a user to supply a com-
plete set of preferences over all prospective times, we are
interested in designing interactions that are as lightweight
as possible. The specific method might vary depending on
deployment context; for office users who already maintain
digital schedule artifacts, this should likely be an extension
of their current PIM. Our prototype does not require an ex-
isting PIM; building it as a standalone app enabled us to
extend beyond traditional GCS users.

This paper introduces a machine learning approach that
implicitly learns how users prefer to schedule time and then
attempts to predict their responses. If successful, this re-
duces a user’s interaction to correcting our system’s
guesses. However, users need to remain firmly in the loop:
the reasoning behind these guesses should be exposed, and
users must retain a sense of agency.

We seek to explore the confluence of visualization of, direct
manipulation of, and machine learning on user preferences
and their application to the group scheduling problem (see
Figure 1). This paper will provide an overview of related
work; describe current scheduling practices; and detail our
preliminary prototype, efforts to build a machine learning
model, and the resulting groupTime system.

RELATED WORK
This section provides a partial overview of prior work on
the organizational and semantic study of calendaring, vari-
ous attempts to automate scheduling, and the application of
machine learning to assist in assessing users’ availability.

Calendaring
Prior work highlights the difficulty of creating an effective
GCS. Grudin [16] cites disparity between who is required to
do additional work (employees maintaining their calendars)
and who enjoys the benefits (managers who schedule meet-
ings) and the resulting prisoner’s dilemma problem as bar-
riers to widespread use of groupware. He argues that
challenges like this may explain why GS solutions tend to
fail unless backed by a strong organizational force. We are
interested in providing a system that is used and deemed
beneficial without managerial enforcement.

Yet Palen [26] found that users are willing to share a great
deal of information about their extended availability and
schedules with colleagues if they gain better scheduling
information and therefore can choose better meeting times.
This encouraged us to explore higher-bandwidth means of
expressing scheduling preferences.

Figure 1 Our approach employs machine learning to train on users’ past scheduling history and predict how they will respond.

 3

An early model for this is Beard et al.’s Visual Scheduler
[7], which introduced a “priority-based” scheduling system,
allowing users to mark any given time slot with five levels
of gray shading to indicate priorities. While they found this
to be more efficient and reliable than manual scheduling,
they made no attempt to prioritize free times.

Efforts have been made to formalize scheduling interaction
as well. The Coordinator formalized each step of the nego-
tiation by codifying acts like requests and commitments to
automate the process [37]. However, socially it proved too
rigorous for most users [33].

Intelligent Scheduling
While commercial systems such as Outlook and Notes stop
short of scheduling meetings on a user’s behalf, some re-
search systems have explored automated scheduling.

Higa et al. compared an automated group scheduler to face-
to-face and email coordination and found users were less
satisfied with automatically selected times even though they
actually resulted in fewer scheduling conflicts [17]. We
believe this may be because their system did not expose its
reasoning; it merely sent users a message with its answer.

Inspired by multi-agent systems, Sen et al. asked users to
explicitly describe their preferences along eight dimensions,
set thresholds, and assign them weights, configuring con-
tract-based autonomous agents to negotiate on their be-
halves [31]. While this succeeded in selecting meeting
times effectively, it remains to be seen whether “average”
users are willing to tweak such a system directly; our ap-
proach is to learn these preferences implicitly.

The notion that people’s scheduling interaction can be fully
automated, that each person’s desires can simply be dis-
tilled into an agent configured to act on his or her behalf,
confuses, in Suchman’s terms, plans and “situated actions”
[34]. People will bend their own rules as the situation war-
rants—and often do to compromise. Rationality gives way
to social pressures, as scheduling a meeting is inherently a
social transaction [9]. So we have decided to keep users in
control as much as possible.

While automated agents have been proposed as a general
solution to information overload [24], direct manipulation
beats out autonomous agents for some tasks [32]. Specifi-
cally, users like to feel in control of their schedules and tend
to resist systems that deprive them of agency in the schedul-
ing process [17, 26]. Our hybrid approach moves away
from the fully-automated extreme, where the cost of mis-
takes is very high [21], and the fully manual extreme, where
interaction is cumbersome.

Predicting User Behavior
Various different machine learning techniques have been
successfully applied to a variety of HCI problems, including
generating user interfaces [14], inferring structured activi-
ties from email [22], and mobile messaging [29]. Recent

research has explored machine learning for predicting us-
ers’ presence, interruptibility, and availability.

Dourish’s Portholes let users make inferences about col-
leagues’ presence and availability from direct observation
[10], inspiring later implementations of desktop instant
messaging such as [1] and [4]. Fogarty et al. took this a step
further by using sensors such as keyboard and mouse activ-
ity and audio levels to build statistical models of interrupti-
bility [12]. Horvitz et al. employed machine learning
techniques to forecast users’ short-term presence and pre-
dict their availability and interruptibility [18]. This work
demonstrates that user availability patterns are predictable
to some degree.

Tullio’s Augur system sought to predict user behavior by
using Bayesian networks to model whether users would
actually attend scheduled meetings [36]. This sheds light on
another crucial aspect of scheduling: the events on a user’s
calendar are not necessarily indicative of what he or she
will do; in reality some scheduled events are preemptible—
and which ones are to some extent predictable.

Gervasio et al. used support vector machines to learn user
preferences for scheduling [15]. Their PLIANT system
learns an ordering on pair-wise preferences by having users
choose the best out of five options. We hope to obtain a
richer dataset by obtaining absolute preferences over all
possible meeting times rather than limiting the universe of
discourse to five fixed meeting times.

CURRENT SCHEDULING PRACTICES
One of our goals is to extend group scheduling beyond tra-
ditional enterprise GCS users. We sought a user group who
did not have access to a commercial GCS server: college
students. We began with informal interviews with about 20
(primarily undergraduate) students from introductory HCI
and communications courses.

While students may be relatively inexperienced at project
management, they are certainly a community that could
significantly benefit from improved tools: we found stu-
dents to be heavily committed to a wide variety of obliga-
tions, and—unlike traditional office workers—are rarely
collocated with group members. The students we inter-
viewed have wildly varying and often chaotic schedules,
with their commitments spanning a range of academic, so-
cial, extracurricular, and work-related activities. They
schedule meetings with peers for a variety of purposes in-
cluding: working on group projects, collaborating on prob-
lem sets, handling business for student organizations,
rehearsing for an upcoming performance, and social gather-
ings. At our university, over 94% of undergraduates live on
campus, making evenings and weekends at least as avail-
able and preferable as weekdays; in contrast, office workers
ho usually find the workday more convenient for meetings.

Frequently, these meetings recur among the same defined
set of people (e.g., a study group or a committee). Often
these are organized on an ad-hoc basis, rather than as a

weekly commitment. One subject told us that her sorority is
constantly faced with the challenge of finding a time that
their 30 members can attend when they plan activities. This
type of problem is typical of social groups that wish to stay
connected for socializing or work. Such groups often find it
difficult or unnecessary to commit to a regular meeting time
each week, or occasionally need to schedule additional
meetings.

Calendaring Artifacts
All students have some elements of their schedule that are
part of a weekly routine. These include classes, rehearsals
and practices, staff meetings, worship services, work, and
volunteer commitments. Generally these schedules are so-
lidified within the first two weeks of each academic quarter
and don’t change afterward.

Most of the students we interviewed create some artifact of
their basic weekly schedules. This often takes the form of a
spreadsheet or text document, entry in a desktop calendar-
ing tool such as iCal [2] or Palm Desktop [6], or a paper
schedule. It appears that students are willing to expend
some effort at the beginning of each quarter to construct
this artifact, but that is the extent of most students’ interac-
tion with calendaring tools. Why bother maintaining an
online calendar if you can’t take it with you in a more con-
venient form than your notebook computer?

Many students rely purely on memory to keep track of this
week’s schedule. Others use a variety of artifacts—scraps
of paper, paper planners, and cell phones, since students are
relatively mobile. While most students do not maintain a
digital calendar, a minority use a PDA or a desktop PIM such
as Outlook, if they can sync it with a portable device.

Scheduling Methods
Students’ asynchronous scheduling primarily occurs via
email. Hu and Brzozowski conducted a preliminary study
[19] where they asked 20 students to schedule meetings
with groups of four randomly selected members via email.
They observed the exchanges that took place and debriefed
participants on how they normally schedule meetings with
other groups. Two basic strategies emerged:

Aggregation. One member acts as the “coordinator” (in our
study we designated one from the group at random). The
coordinator sends an email asking for a complete list of
everyone’s availabilities. Other members submit their free
times, either in an email body or on a spreadsheet. The co-
ordinator then manually combines everyone’s free times
and finds the intersection to choose a meeting time.

An advantage of this model is that the group has full disclo-
sure of people’s availabilities, each free slot on every par-
ticipant’s schedule being equally important. This ensures
that all possibilities are considered. The chief downside is
the investment of time required. Participants must enumer-
ate every free time on their schedule, whether or not it is

relevant, and the coordinator must take time to collect all
the responses.

However, some groups favor this model because it shifts
the burden onto one person, effectively absolving other
members of responsibility. Aggregation creates a power
dynamic whereby the organizer assumes control.

Negotiation. One member initiates an email thread by either
enumerating a list of times he or she is available, or describ-
ing a few constraints (e.g., “I’m free any day after 7”). Al-
ternately, the discussion starts with a proposal (“How’s
Tuesday night?”). This informally sets the universe of dis-
course for the discussion, and other members of the group
often focus on these blocks of time, even if there are others
that work better for them. In successive rounds, the other
members whittle down the universe of discourse by adding
additional constraints, or expand it by making counterof-
fers. Some groups favor this model because it seems more
democratic and requires no coordinator to step forward.

An advantage of this model is that if a group has compati-
ble schedules they potentially don’t have to discuss as many
possibilities; if someone proposes a time that works well for
everyone there is little debate.

A disadvantage is that expanding the universe of discourse
is costly; if someone wishes to propose a new time, at least
another full round of emails is required to gather everyone’s
assent. So it’s easier to “go with the flow” and add con-
straints, making scheduling a sort of greedy search suscep-
tible to local maxima rather than a true optimizing task.

In practice, it is common for groups to adopt a hybrid ap-
proach; for instance, a coordinator might assume authority
but still open the floor for debate, or a group might aggre-
gate their free times without an explicit coordinator.

PRELIMINARY PROTOTYPE
For our first prototype, we sought to blend aggregation and
negotiation in the context of scheduling a meeting to take
place over the next week. It aggregates users’ preferences
across an entire week, and lets them negotiate by updating
the best meeting times live in response to their feedback.
This was intended as an early “proof-of-concept” prototype.

Implementation
Since a number of our users told us they use Excel to main-
tain a basic weekly schedule, we built a prototype in an
Excel workbook (see Figure 2). Each sheet of the workbook
has a grid representing the following week, with cells offer-
ing half-hour granularity (except for hour-long cells be-
tween midnight and 8 AM).

Each cell can be marked with one of four weighted labels
inspired by [11]—Can’t Make It (0), Rather Not (1), Is OK
(2), or Works Great (3)—by selecting a block of cells and
clicking a tool from a floating toolbar. We chose a four-
point rating scale because it offers more precision than a
binary free/busy scheme, yet still forces users to take a

 5

stand: there is no neutral ground. Note that this model does
not have any knowledge of a user’s actual schedule; the
user decides whether to mark a conflict as Can’t Make It,
Rather Not, or ignore it entirely.

Algorithm
Each labeling corresponds to a numeric value. Cells that the
user has not colored in are assumed to be OK by default,
since users who don’t care enough to mark a cell Can’t
Make It or Rather Not probably don’t mind meeting then.
To determine the best time for a meeting, our system aver-
ages each user’s rating for each cell to obtain its score. The
best time to meet is then simply the block of consecutive
cells of the desired meeting length with the lowest average
score (weighted to compensate for the hour-long cells).

Simple averaging assumes each participant is equally im-
portant to the meeting but does not attempt to maximize the
number of attendees; if a time is convenient for all but one
member of a group, it takes the strict utilitarian view that
that time is best. One may also envisage other algorithms.

Method
Twenty undergraduates from an introductory communica-
tion class participated in our user study. The 12 men and 8
women were randomly assigned to five groups of four stu-
dents.

As with our structured interviews, we asked each group to
use email to find two possible times for what we described
as a “focus group.” Upon reaching consensus, we asked
representatives to forward all their scheduling mail to us.
We weren’t sure whether groups adopting the aggregation
style would “reply to all” or just direct messages to their
coordinator, so we wanted to preserve this behavior rather
than give them mailing lists so we could observe in situ.

At the meeting they scheduled, we asked members of each
group to take turns using our prototype to schedule an hour-

long meeting for the coming week. Due to compatibility
issues with Excel, we were not able to deploy it to “the
wild” so we simulated an asynchronous scheduling process
by having users complete these tasks in rounds:

1 Starting with a blank spreadsheet, color in the cells corre-
sponding to your basic quarterly schedule (i.e., the com-
mitments that do not change week-to-week).

2 Starting with the spreadsheet you colored previously,
now with the best times to meet outlined, recolor cells
“until you’re satisfied with the meeting times.”

3 (as necessary) Revise your ratings in response to your
group’s responses.

Finally, the participants filled out an online questionnaire to
compare this scheduling process with email.

Results
Over email, our users all elected a negotiation strategy
rather than aggregation. Each participant read an average of
seven messages before a meeting time was selected. Over-
all, users were comfortable with the notion of expressing
absolute preferences for times as in our prototype. We ex-
pected users to color in the bare minimum of cells neces-
sary to obtain the outcome required but a number of them
painted in every cell of the week even though we told them
they didn’t have to. These users were less likely to have to
revise their ratings on a second pass.

We also observed that users were surprisingly cooperative.
Several times people who initially described themselves as
busy most of the week actually reconsidered once they saw
that the best times for everyone else were times they had
said they Can’t Make It or would Rather Not. The visibility
of group members’ availability exerts a form of social pres-
sure to encourage compromise and honesty.

We also saw participants use the Works Great label as a
tool to suggest alternate times. Since Works Great has a

Figure 2 (Left) An individual user’s view of our first prototype; he or she can paint preferences onto the grid. (Right) The five
best times to meet are outlined with dashed lines and listed in text, updated live in response to the user’s changes.

higher value than the default, the system is likely to call
attention to it as one of the best times, unless other users
rated it a bad time.

Marking the best times on the schedule provided live feed-
back to users; if the “best time” on the schedule was one
that didn’t work for them they would label it Can’t Make It
or Rather Not. If it was still the “best time”, the only way to
change it would be to propose a better time by marking it
Works Great, or to elevate one of the other candidate “best
times” by rating them Is OK or Works Great.

Our users generally indicated they found our prototype
“easy to use” and would be likely to use an application
based on it and to recommend it to friends. However, this
prototype was limited in scope and did not reflect “real-
world” use conditions, as the users were collocated to use
our prototype after they met each other [28]. So this result
should be considered circumstantial.

LEARNING PREFERENCES
Having seen what we could do without any knowledge of
actual user schedules (beyond users’ ratings) we wondered:
what if we did know about their commitments? Could we
infer users’ preferences from looking at their schedules and
past behavior? In this case, we’d be able to “paint” the en-
tire schedule with our guesses, and reduce the interaction to
correcting the system’s guesses. We set out to build a
model of users’ scheduling behavior to do just that: predict
how a user would respond to any given meeting request.

At its most basic level, scheduling is a constraint satisfac-
tion problem. One approach is to ask users to explicitly
declare the rules governing their preferences, as in [31].
However, this assumes that scheduling decisions are purely
rational and that users can easily explain their reasoning.
Interviewing our subjects made it clear that a wide variety
of factors affect user preferences, not all of which could be
easily elucidated. For instance, subjects had difficulty de-
vising a rank ordering of their commitments’ importance.
Enumerating a complete set of rules is also rather laborious
for users. For these reasons, a simple rule-based engine
seems a poor model for user behavior; we employ a prob-

abilistic model that learns preferences implicitly, and can
make predictions along with a confidence metric.

Implementation
Based on our interviews with students we constructed a
basic ontology of how people prefer to schedule meetings.

Scheduling Ontology
There are two separate but related questions at play here:
how people deal with scheduling conflicts and how people
prefer to schedule their “free” time. The answers vary
widely from person to person but we hope to distill out
some common decision factors.

To address the first, we considered that users somehow
prioritize the events on their calendar and their commit-
ments. People will skip or reschedule an appointment or
meeting if something more important comes along. Codify-
ing that precisely is difficult, however, since people are not
entirely rational in social interactions [9]. Rather than seek
explicit prioritization from users, we wanted to get a sense
of this priority scheme implicitly.

We sought to capture generically the nature and degree of
obligation a user feels to attend an event on his or her cal-
endar. Our subjects’ schedules reflect a variety of commit-
ments competing for their time: academic, extracurricular,
economic, personal, and social. Within each type of com-
mitment, we tried to capture varying costs of missing a
scheduled event. Often this comes down to who gets hurt by
an absence and how serious the repercussions are.

After much discussion with students, we settled on the
event types shown in Table 1. This schema accounts for the
subtle differences, for example, between a frat party where
the user’s absence won’t be appreciably noticed and a date,
for which the consequences of not attending are much
greater. We chose these factors:

Conflicts. If a meeting would conflict with a scheduled
event, the type of event and whether it’s a recurring or
one-time-only event.

Day and time. Some people are “morning people”; others
 Type Description Costs of missing

Lecture Attendance-optional lecture for a class Primary course material
Project Meeting to work on a team project for a grade Letting down a team; grade
Section Optional discussion section for a class Supplementary course material
Seminar Mandatory class session Grade; supplementary material

Academic

Study, group Group study session (presence not required) Indirect effect on grade
Rehearsal Rehearsal or athletic practice (usually mandatory) Letting down a team/group Activities
Meeting Non-class-related meeting Letting down a group
Interview A (difficult to obtain) job interview Career opportunities Economic
Work Work as part of a paying job Wages; may get fired
Interest An optional event of personal interest (not with friends) Self-edification
Study, alone Planned study time (flexible) Grade

Personal

Sleep Planned sleep time (flexible) Health
Social, private Small social event with one or more friends Letting down friends Social
Social, public Large social event (no one will notice user’s absence) Opportunity to meet people

Table 1 Our ontology of college students’ commitments captures a wide range of obligations, allowing us to learn users’
priorities implicitly rather than asking for an explicit ranking.

 7

prefer to meet later at night. This also gives us the ability
to infer when a user is usually busy even if he or she
chooses not to explicitly tell us of a commitment.

Adjacent events. Some people prefer to have large chunks
of free time in their schedules and stack events up back-
to-back; others prefer to space their commitments out
more. Additionally, there are special cases for some types
of prior or succeeding events; for instance, right before a
job interview or right after a study group meeting.

Type of meeting. People are more flexible (or more willing
to sacrifice) depending on the type of meeting.

Note that this ontology is designed for its user group, based
on our users. Our approach could be adapted for other
populations with further study to develop additional ontolo-
gies. For instance, Tullio demonstrated an ontology suc-
cessful at predicting behavior in an office setting [36].
There may not be a universal ontology for all users, but
different models could be used for different groups.

Algorithm
For each potential meeting time, our system extracts sched-
ule-agnostic features from each user’s calendar using our
ontology. This enables us to compare behavior from one
situation to another without relying on the original sched-
ule. It uses softmax regression [25] (a generalization of
logistic regression) to assign a set of weights to each feature
that can be used to predict the rating of a potential meeting
time.

Other machine learning algorithms, such as support vector
machines [8] and Bayesian networks [13], can also be ap-
plied to this task. We chose softmax regression mainly for
the sake of simplicity, but also because it makes predictions
by assigning weights to each feature, and thus its output can
be intuitively explained to users, adding introspectability.

To derive weights, our algorithm extracts features from a
user’s calendar and creates a set of training examples for
each potential meeting time that he or she has rated. To
predict a user response to a new training example, our algo-
rithm takes the dot product of the weights for each rating j,

jθ , and the features of a given training example. Using

softmax, the probability that the user will rate a meeting
with features x with rating i given weights � is [25]:

() ()
()�

=
j

T
j

T
i

x
x

xip
θ

θθ
exp

exp
;

The prediction is the rating i that maximizes this expres-
sion, and the confidence is its probability. Each feature con-
tributes some factor to this value that is determined by the
weights.

Gathering Schedule Data
We sought to validate our model and see whether it can
learn user preferences based on their schedules. We solic-

ited users’ complete schedules for the following week. Us-
ers were asked to categorize each of their commitments
according to the types we defined in Table 1, and indicate
whether they were recurring or one-time-only events. We
then presented a series of 40 hypothetical hour-long meet-
ings and asked them to rate five different meeting time op-
tions for each.

We ran our feature extraction algorithm on their responses
and calendars to generate 200 examples. For each user, we
evaluated our algorithm’s ability to learn their preferences
by averaging over ten random 70/30 train/test splits; that is,
for each user we ran ten trials where we trained on a ran-
domly selected 70% of his or her examples and then tested
on the remaining 30% by comparing our prediction to the
user’s actual response.

Results
Forty-six students completed our experiment. While results
varied widely, for a third of the users the system predicted
the correct rating at least 70% of the time; for half of them
it predicted the correct rating at least 62% of the time. More
frequently, our model could guess either the correct rating
or one rating adjacent (e.g., Is OK instead of Works Great).
For half the users, our model was either correct or one rat-
ing off 90% or more of the time.

Users whose predictions were more error-prone (at least
two standard deviations above the mean) all had provided
us with relatively sparse calendar data, indicating the model
works better with more knowledge of a user’s schedule.

We also attempted to generate a basic set of weights for all
users, to help us make predictions for users who have never
provided us with training examples. Some examples of
these features are shown in Figure 3.

GROUPTIME SYSTEM
Armed with these results, we created the complete Web-
based groupTime prototype to explore the utility of partial
sharing. As it was Web-based, people could use our proto-
type asynchronously outside of a lab setting. We also
wanted to try to democratize the process as much as possi-
ble, so that no voice in a group outweighs any other.

0% 25% 50% 75% 100%

Conf licts w ith rehearsal

Public social event

Before an interview

At 11 AM

Can't Make It Rather Not Is OK Works Great
Figure 3 A few examples of features and the probability
distributions they imply. Some features are strong indicators
of a particular rating, while others are weaker.

Implementation
groupTime is a Web application, powered by servlets. Us-
ers interact with Web pages and a Java applet to respond to
meeting invitations. Much like setting up a meeting in Evite
or Outlook, someone starts the process by scheduling a new
meeting, specifying the meeting’s type, length, and by
when it must happen (see Figure 4). However, the organizer
does not get to specify any meeting time explicitly.

Each guest receives an email inviting him or her to the
meeting, with a link to respond. Each user, including the
organizer, uses the applet shown in Figure 5 to indicate his
or her preferences by selecting one of the color-coded pref-
erences tools and “painting” them onto the grid. The organ-
izer has the added power to veto blocks of time he or she
deems not to be up for discussion, for instance late nights
for an office meeting or daytime for a movie night.

Users have the opportunity to add as many or as few events
from their schedules as they wish; events added by a user
are stored for any other meetings he or she is involved in.
Using the default weights and any events the user adds, we
dynamically predict ratings for them. The system can use
any weights that we wish, generated by any learning algo-
rithm, allowing it to update the user’s weights as it trains on
his or her responses. For predictions where it doesn’t have
at least 75% confidence, it falls back to a binary classifica-
tion task: if it’s more likely that the user can’t make it or
would rather not, it guesses Rather Not; otherwise it

guesses Is OK. This smoothes out fluctuations generated by
our model when it has too little information.

We faced a critical design challenge in that groupTime pro-
duces multivariate data. For any given time we have a la-
beling, a confidence (or a user’s explicit choice), and
responses from other users. This creates a tension between
conveying as much information as possible and making
interaction lightweight and intuitive. We chose to present
only two dimensions of data, user labeling and group ag-
gregate (a strip along the left), to make the interaction more
lightweight. In more mission-critical decision tools, a de-
signer may choose to expose additional axes of data.

Our classifier will no longer change any cell a user has
rated, even if other events are added, to avoid appearing to
change things behind his or her back. All cells have some
guesses, and users have an opportunity to correct those
guesses by rating cells. Once a user clicks Done, the system
takes all ratings, whether guessed or explicitly stated, as the
user’s preferences, and does not change them even in the
face of new information.

In addition to the utilitarian algorithm used in our prelimi-
nary prototype, we added an algorithm that attempts to
maximize the number of attendees (perhaps at the expense
of someone’s happiness). Meeting times are ordered by
how many people can attend and then by the average rating.

Once everyone has responded, the system emails everyone
with the best time according to everyone’s preferences. If
anyone is unhappy with the time chosen, he or she can click
a link in this message to return to the response page and
update his or her preferences, effectively renegotiating the
meeting time. Each message has the semantic meaning of
“unless there are any objections, we’re meeting then”; each
participant has the ability to object right until the start of the
meeting.

Methodology
We recruited 35 volunteers from the Stanford community to
participate in a 30-minute user study in groups. Users were

Figure 4 The organizer of the meeting provides a general
description and a deadline.

Figure 5 Responding to an invitation with our second prototype. The left strip in each column shows the aggregate of the
group’s preferences. Like our first prototype, groupTime provides live feedback of the best times to meet (marked with #s).

 9

encouraged to sign up for the study in groups with friends
or colleagues when possible to exploit the social dynamics
of pre-existing groups who already get together regularly.

Our groups included circles of friends, residential computer
consultants from the same region, and a workgroup, as well
as three groups of randomly assigned people. We added one
group of office workers to see how expectations differ in a
business context. Our subjects consisted of approximately
26% undergraduates, 52% graduate students, and 22% of-
fice workers. About 68% of participants scheduled meet-
ings with groups of 3 to 4 people at least once a week.
Groups ranged from three to five members in size.

We divided subjects up into control and experimental sets.
The control set was asked to schedule their user study en-
tirely by email, while the experimental set used our new
prototype. We told everyone that all members of their group
must be present at the user study to receive compensation.
We appointed a representative from each group, charged
with reporting the desired meeting time back to us; repre-
sentatives were the subjects who signed up their group and
were randomly chosen in the unaffiliated groups.

Our preliminary study found virtually all email traffic went
to the whole group, so we gave each control set group a
mailing list to use, allowing us to monitor their discussions.
At the user study, groups in the control set were shown a
demonstration of the prototype and had the opportunity to
ask questions. Subjects completed a questionnaire pertain-
ing to their scheduling experience (whether email or our
prototype) and participated in a focus group discussion
about their scheduling experience and the prototype system.

Results
Subjects showed great enthusiasm for our approach to pref-
erence-based scheduling, particularly in comparison to
email, but raised implementation issues that help us better
understand desirable attributes of intelligent user interfaces.

Attendance
Of the 35 volunteers who signed up, 25 committed to at-
tending a meeting. Ten people did not agree to a specific
meeting time. One control group failed to find a meeting
time because its representative did not contact his group.
Another control group member tried to spur discussion over
email but without decisive leadership, they never chose a
specific time. Several experimental groups had one member
who never responded to group emails or our system’s invi-
tation; after attempts to contact them, we dropped them
from their respective groups. All but two of the 25 subjects
showed up at their meetings: one subject misread the time
in his email; another was sick on the day of the meeting.

User Reactions
Subjects were more likely to say email scheduling “requires
many rounds of negotiation” than our prototype (p = .05). “I
know that I don’t have to deal with 15 minutes of ‘How
about Friday? I can’t I’m busy then…,” remarked one. With

our prototype users were slightly more likely to say they
“could influence the outcome,” though not statistically sig-
nificantly so (p = .22). One user remarked, “It takes out the
social engineering of forceful personalities domineering a
meeting to their own ends.”

Subjects expressed a desire in particular to use our proto-
type to schedule meetings with large groups and commit-
tees that don’t have frequent contact. In general, subjects
said they were most likely to use our prototype to schedule
meetings with groups of five or more people. While 83% of
subjects said they were likely to use our prototype to sched-
ule a “group project meeting,” only 36% were comfortable
using it to plan a “social gathering.”

Democratic Interaction
People liked the egalitarian nature of the groupTime algo-
rithm; one told us, “I like how the choice of timing is kind
of out of any one person’s hands, which makes it more
likely to be what’s best for the group as a whole.” However,
pure democracy can break down. One group in the experi-
mental set had difficulty because one member had his
schedule change 20 minutes before the appointed meeting
time. He logged in to register his changes but it was too
late; half of his group never got his email. Several people
expressed a desire to have the coordinator or the system
“lock down” a meeting time some time before the actual
meeting, to make it seem “firm.”

Others felt disconnected from the pulse of their group be-
cause our prototype doesn’t disclose how individual mem-
bers responded. Users wanted to know why cells were
colored the way they were, particularly when someone else
was responsible. Some felt compelled to explain themselves
and wanted the ability to post comments to the group. Some
people had trouble because they weren’t able to check their
email regularly, and suggested sending SMS messages to
their cell phones to remind them.

In general, groupTime yielded successful meetings. The
study also indicated two important design considerations.
First, users desire more structure and slightly more disclo-
sure than we previously thought. Second, most subjects
agreed that groupTime should tip the balance of power in
favor of the organizer more.

CONCLUSION AND FUTURE WORK
We demonstrated the viability of using preferences rather
than explicit calendar sharing to schedule group meetings,
but showed that calendars still provide valuable information
that can be used to predict users’ preferences. We also pre-
sent four design considerations for semi-automated GS:

1 Let the user know what’s going on. Users lose some
agency when they let machines negotiate for them.
Whether making a prediction based on past behavior or
making a decision, the user should have some easy way
to see why the system did what it did.

2 Don’t make changes behind the user’s back. Users prefer
to have veto power over an agent and expect their deci-
sions to be final. A system should not override users’ ex-
plicit preferences, even in the face of new information,
nor should it schedule a meeting without user input.

3 Users seek predictability. A system should always make
it clear if and when a meeting is scheduled. In intelligent
user interfaces, optimal results are desirable but a sense
of predictability and consistency are also important [32].

4 Use social pressure. To avoid having one user “game the
system” and appear deceitfully inflexible, let users see
who the culprit is and let them explain themselves. Users
who genuinely are busier than their colleagues shouldn’t
have to feel guilty if they have good reason, nor should
cheaters get away with it.

While this methodology shows promise, more extensive
study is required to validate this system in a larger context.
We are currently preparing a longer-term deployment and a
longitudinal study to ascertain how well we can adapt to
individual users’ unique priorities over time.

ACKNOWLEDGMENTS
We thank the participants of our three studies and members
of the Stanford HCI Group for their feedback. We also thank
Tom Dietterich, Melinda Gervasio, and Leslie Kaelbling for
helpful conversations. Brzozowski and Carattini were par-
tially supported by the U.S. Department of the Inte-
rior/DARPA under contract number NBCHD030010. Intel
donated hardware for our server and our user studies. Hu-
man subject research was governed by Stanford University
IRB-approved protocols 902 and 3439.

REFERENCES
 1 AOL Instant Messenger, 2005. America Online, Inc.: Dulles,

VA. www.aim.com
 2 iCal, 2005. Apple Computer, Inc.: Cupertino, CA.

www.apple.com/macosx/features/ical/
 3 Lotus Notes, 2005. IBM Corporation: Armonk, NY.

www.ibm.com/software/lotus/
 4 MSN Messenger, 2005. Microsoft Corp.: Redmond, WA.

messenger.msn.com/
 5 Outlook, 2003. Microsoft Corp.: Redmond, WA. of-

fice.microsoft.com
 6 Palm Desktop, 2004. PalmSource, Inc.: Sunnyvale, CA.

www.palmos.com/dev/tools/desktop/
 7 Beard, D., M. Palaniappan, A. Humm, et al. A visual calendar

for scheduling group meetings. Proc. of CSCW 1990: ACM
Press. pp. 279-90, 1990.

 8 Boser, B. E., I. M. Guyon, and V. N. Vapnik. A training algo-
rithm for optimal margin classifiers. Proc. Workshop on Com-
putational Learning Theory: ACM Press. pp. 144-52, 1992.

 9 Dourish, P., Social Computing, in Where the Action Is: The
Foundations of Embodied Interaction. MIT Press: Cambridge,
MA. pp. 55-98, 2001.

 10 Dourish, P. and S. Bly. Portholes: supporting awareness in a
distributed work group. Proc. CHI 1992: ACM Press. pp. 541-
47, 1992.

 11 Evite, www.evite.com. 2005.

 12 Fogarty, J., S. E. Hudson, and J. Lai. Examining the robustness
of sensor-based statistical models of human interruptibility.
Proc. CHI 2004: ACM Press. pp. 207-14

 13 Friedman, N., D. Geiger, and M. Goldszmidt. Bayesian Net-
work Classifiers. Machine Learning 29(2-3). pp. 131-63, 1997.

 14 Gajos, K. and D. S. Weld. SUPPLE: automatically generating
user interfaces. Proc. IUI 2004: ACM Press. pp. 93-100, 2004.

 15 Gervasio, M. T., M. D. Moffitt, M. E. Pollack, et al. Active
preference learning for personalized calendar scheduling assis-
tance. In Proc. IUI 2005: ACM Press. pp. 90-97, 2005.

 16 Grudin, J. Groupware and social dynamics: Eight challenges
for developers. Communications of the ACM 37(1), 1994.

 17 Higa, K., B. Shin, and V. Sivakumar. Meeting Scheduling: An
Experimental Investigation. In Proc. IEEE International Con-
ference on Systems, Man., and Cybernetics, 1996.

 18 Horvitz, E., P. Koch, C. M. Kadie, and A. Jacobs. Coordinate:
Probabilistic Forecasting of Presence and Availability. In Proc.
Conf. on Uncertainty and AI: Morgan Kaufmann, 2002.

 19 Hu, J. and M. Brzozowski. Preference-Based Group Schedul-
ing. In Proc. Interact 2005, 2005.

 20 Hutchins, E., Cognition in the Wild. Cambridge, MA: MIT
Press 1995.

 21 Isbell, C. L. and J. S. Pierce. An IP Continuum for Adaptive
Interface Design. In Proc. HCI International, 2005.

 22 Kushmerick, N. and T. Lau, Automated email activity man-
agement: an unsupervised learning approach, in IUI 2005.
2005, ACM Press: San Diego, CA.

 23 Lamming, M., P. Brown, K. Carter, et al. The Design of a
Human Memory Prosthesis. The Computer Journal 37(3). pp.
153-63, 1994.

 24 Maes, P. Agents that reduce work and information overload.
Commun. ACM 37(7). pp. 30-40, 1994.

 25 McCullagh, P. and J. A. Nelder, Generalized Linear Models.
2nd ed. London: Chapman and Hall 1989.

 26 Palen, L., Calendars on the New Frontier: Challenges of
Groupware Technology, University of California, Irvine, 1998.

 27 Palen, L. Social, individual and technological issues for
groupware calendar systems. Proc. CHI 1999: ACM Press. pp.
17-24, 1999.

 28 Rocco, E., Trust breaks down in electronic contexts but can be
repaired by some initial face-to-face contact, in CHI 1998.
1998, ACM Press/Addison-Wesley.

 29 Schmandt, C., N. Marmasse, S. Marti, et al. Everywhere mes-
saging. IBM Syst. J. 39(3-4). pp. 660-77, 2000.

 30 Searle, J., Speech acts: an essay in the philosophy of language.
London: Cambridge University Press 1969.

 31 Sen, S., T. Haynes, and N. Arora. Satisfying user preferences
while negotiating meetings. Int. J. of Human-Computer Studies
47(3). pp. 407-27, 1997.

 32 Shneiderman, B. and P. Maes. Direct manipulation vs. inter-
face agents. interactions 4(6). pp. 42-61, 1997.

 33 Suchman, L. Speech acts and voices: response to Winograd et
al. Comput. Supported Coop. Work 3(1). pp. 85-95, 1995.

 34 Suchman, L. A., Plans and Situated Actions: The Problem of
Human-Machine Communication: Cambridge University
Press. 203 1987.

 35 Thrift, N., The Making of a Capitalist Time Consciousness, in
The Sociology of Time, J. Hassard, Editor. St. Martin's Press:
New York, 1990.

 36 Tullio, J. Intelligent groupware to support communication and
persona management. Proc. UIST 2003, 2003.

 37 Winograd, T. A Language/Action Perspective on the Design of
Cooperative Work. HCI 3(1). pp. 3-30, 1988.

