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ABSTRACT 
As our business, academic, and personal lives continue to 
move at an ever-faster pace, finding times for busy people 
to meet has become an art. One of the most perplexing chal-
lenges facing groupware is effective asynchronous group 
scheduling (GS). This paper presents a lightweight interac-
tion model for GS that can extend its reach beyond users of 
current group calendaring solutions. By expressing avail-
ability in terms of preferences, we create a flexible frame-
work for GS that preserves plausible deniability while 
exerting social pressure to encourage honesty among users. 
We also propose an ontology that enables us to model user 
preferences with machine learning, predicting user re-
sponses to further lower cognitive load.  The combination 
of visualization/direct manipulation with machine learning 
allows users to easily and efficiently optimize meeting 
times. We also suggest resulting design implications for this 
class of intelligent user interfaces. 
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INTRODUCTION 
Ever since the advent of passenger rail spurred the adoption 
of Greenwich Mean Time and established a coordinated 
regular schedule [35], modern society has become obsessed 
with allocating the precious resource of time. Schedules 
today act as mediators between people [26], allowing them 
to manage their time and barter it in transactions. People 
ask if they could “have” each other’s time, and think of how 
they “spend” or “waste” their time. A busy (or ostensibly 
busy) schedule also acts as a scapegoat, allowing its owner 
to blame it rather than declining a meeting directly [26]. 

People use calendar artifacts as memory prostheses for 
events and tasks [23, 26]. A calendar serves as a “world-
word” [30] mapping, by describing a fixed schedule (e.g., 
“September 5 is Labor Day”), and as a “word-world” map-
ping, by prescribing things that should occur (e.g., “Pay 
bills”). However, items on a calendar do not always directly 
translate to actual activity [36]. 

In the context of group scheduling (GS), calendars serve as 
communication tools; a form of “distributed cognition” 
[20]. Finding a time that a group of people can meet to-
gether is often aided by some expression of each partici-
pant’s calendar, whether in spoken dialogue, email or 
instant messaging text, or in some visual representation. 

Current Group Calendaring Systems 
Traditional group calendaring systems (GCS) such as Mi-
crosoft Outlook and Lotus Notes present an explicit repre-
sentation of users’ schedules (typically whether they are 
free or busy) [3, 5]. For a group of users, finding a time to 
meet is simply a matter of choosing a time that all users 
appear to be free. 

Yet, this binary view of availability is often inadequate to 
describe users’ actual preferences. Palen’s research found 
that scheduling has come to be viewed as “less an ‘optimiz-
ing’ task and more often a ‘satisficing’ task” [27]. As a re-
sult, suboptimal meeting times are selected. Worse, people 
feel compelled to pollute their calendars with misinforma-
tion to avoid appearing “free” at times they’d really rather 
not meet, employing “defensive scheduling” [26].  

While these systems are prevalent, at least in workspaces 
around the world, GCS is considered “the least useful 
groupware application” [16]. Top among users’ explicit 
concerns with such systems are privacy and the “prisoner’s 
dilemma” that since such systems rely on complete knowl-
edge of a user’s schedule, they are only useful if everyone’s 
schedule is accurate [16]. 

Another system that supports limited group scheduling is 
Evite [11], which allows a meeting’s invitees to rate pro-
spective meeting times. This is an improvement over binary 
scheduling, but is limited to five options, which must be 
manually ranked for each meeting. 

Our Approach 
Group scheduling is a complex task; there are certainly 
many other dimensions that could eventually be explored, 
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such as event interdependencies, task deadlines, and flexi-
bility. It could be considered a special case of activity syn-
chronization, which has often been framed as a constraint 
satisfaction problem and is beyond the scope of this study. 
Similarly, there exist domains where scheduling does not 
occur in a 24 × 7 week. However, for the sake of study, we 
have reduced the problem to a simpler one of scheduling 
isolated meetings over the next week. 

We focus on group scheduling rather than calendaring. We 
set out to investigate whether we could use a calendar to 
represent user preferences rather than availability, focusing 
only on a world-word mapping. This is important because: 

· User preferences are more complex than binary 
“free/busy” availability. Some free times are more desir-
able than others, just as some busy times could be pre-
empted under some circumstances. 

· By detaching the portrayal of a user’s preferences from 
his or her actual schedule, we preserve a user’s privacy 
and afford him or her “plausible deniability” to prevent 
being scheduled for events against his or her will. 

· By adding a layer of explicit user preferences, we no 
longer require users to maintain complete online sched-
ules to gain value from such a system, potentially resolv-
ing the “prisoner’s dilemma.” 

Of course, this task is much easier with face-to-face nego-
tiation or when there are few parties to consider; we focus 
here on asynchronous group scheduling, because computer-
mediated scheduling is often required. 

Because it is time-consuming for a user to supply a com-
plete set of preferences over all prospective times, we are 
interested in designing interactions that are as lightweight 
as possible. The specific method might vary depending on 
deployment context; for office users who already maintain 
digital schedule artifacts, this should likely be an extension 
of their current PIM. Our prototype does not require an ex-
isting PIM; building it as a standalone app enabled us to 
extend beyond traditional GCS users. 

This paper introduces a machine learning approach that 
implicitly learns how users prefer to schedule time and then 
attempts to predict their responses. If successful, this re-
duces a user’s interaction to correcting our system’s 
guesses. However, users need to remain firmly in the loop: 
the reasoning behind these guesses should be exposed, and 
users must retain a sense of agency. 

We seek to explore the confluence of visualization of, direct 
manipulation of, and machine learning on user preferences 
and their application to the group scheduling problem (see 
Figure 1). This paper will provide an overview of related 
work; describe current scheduling practices; and detail our 
preliminary prototype, efforts to build a machine learning 
model, and the resulting groupTime system. 

RELATED WORK 
This section provides a partial overview of prior work on 
the organizational and semantic study of calendaring, vari-
ous attempts to automate scheduling, and the application of 
machine learning to assist in assessing users’ availability. 

Calendaring 
Prior work highlights the difficulty of creating an effective 
GCS. Grudin [16] cites disparity between who is required to 
do additional work (employees maintaining their calendars) 
and who enjoys the benefits (managers who schedule meet-
ings) and the resulting prisoner’s dilemma problem as bar-
riers to widespread use of groupware. He argues that 
challenges like this may explain why GS solutions tend to 
fail unless backed by a strong organizational force. We are 
interested in providing a system that is used and deemed 
beneficial without managerial enforcement. 

Yet Palen [26] found that users are willing to share a great 
deal of information about their extended availability and 
schedules with colleagues if they gain better scheduling 
information and therefore can choose better meeting times. 
This encouraged us to explore higher-bandwidth means of 
expressing scheduling preferences. 

Figure 1 Our approach employs machine learning to train on users’ past scheduling history and predict how they will respond.  
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An early model for this is Beard et al.’s Visual Scheduler 
[7], which introduced a “priority-based” scheduling system, 
allowing users to mark any given time slot with five levels 
of gray shading to indicate priorities. While they found this 
to be more efficient and reliable than manual scheduling, 
they made no attempt to prioritize free times. 

Efforts have been made to formalize scheduling interaction 
as well. The Coordinator formalized each step of the nego-
tiation by codifying acts like requests and commitments to 
automate the process [37]. However, socially it proved too 
rigorous for most users [33]. 

Intelligent Scheduling 
While commercial systems such as Outlook and Notes stop 
short of scheduling meetings on a user’s behalf, some re-
search systems have explored automated scheduling.  

Higa et al. compared an automated group scheduler to face-
to-face and email coordination and found users were less 
satisfied with automatically selected times even though they 
actually resulted in fewer scheduling conflicts [17]. We 
believe this may be because their system did not expose its 
reasoning; it merely sent users a message with its answer.  

Inspired by multi-agent systems, Sen et al. asked users to 
explicitly describe their preferences along eight dimensions, 
set thresholds, and assign them weights, configuring con-
tract-based  autonomous agents to negotiate on their be-
halves [31]. While this succeeded in selecting meeting 
times effectively, it remains to be seen whether “average” 
users are willing to tweak such a system directly; our ap-
proach is to learn these preferences implicitly. 

The notion that people’s scheduling interaction can be fully 
automated, that each person’s desires can simply be dis-
tilled into an agent configured to act on his or her behalf, 
confuses, in Suchman’s terms, plans and “situated actions” 
[34]. People will bend their own rules as the situation war-
rants—and often do to compromise. Rationality gives way 
to social pressures, as scheduling a meeting is inherently a 
social transaction [9]. So we have decided to keep users in 
control as much as possible. 

While automated agents have been proposed as a general 
solution to information overload [24], direct manipulation 
beats out autonomous agents for some tasks [32]. Specifi-
cally, users like to feel in control of their schedules and tend  
to resist systems that deprive them of agency in the schedul-
ing process [17, 26]. Our hybrid approach moves away 
from the fully-automated extreme, where the cost of mis-
takes is very high [21], and the fully manual extreme, where 
interaction is cumbersome. 

Predicting User Behavior 
Various different machine learning techniques have been 
successfully applied to a variety of HCI problems, including 
generating user interfaces [14], inferring structured activi-
ties from email [22], and mobile messaging [29]. Recent 

research has explored machine learning for predicting us-
ers’ presence, interruptibility, and availability. 

Dourish’s Portholes let users make inferences about col-
leagues’ presence and availability from direct observation 
[10], inspiring later implementations of desktop instant 
messaging such as [1] and [4]. Fogarty et al. took this a step 
further by using sensors such as keyboard and mouse activ-
ity and audio levels to build statistical models of interrupti-
bility [12]. Horvitz et al. employed machine learning 
techniques to forecast users’ short-term presence and pre-
dict their availability and interruptibility [18]. This work 
demonstrates that user availability patterns are predictable 
to some degree. 

Tullio’s Augur system sought to predict user behavior by 
using Bayesian networks to model whether users would 
actually attend scheduled meetings [36]. This sheds light on 
another crucial aspect of scheduling: the events on a user’s 
calendar are not necessarily indicative of what he or she 
will do; in reality some scheduled events are preemptible—
and which ones are to some extent predictable. 

Gervasio et al. used support vector machines to learn user 
preferences for scheduling [15]. Their PLIANT system 
learns an ordering on pair-wise preferences by having users 
choose the best out of five options. We hope to obtain a 
richer dataset by obtaining absolute preferences over all 
possible meeting times rather than limiting the universe of 
discourse to five fixed meeting times. 

CURRENT SCHEDULING PRACTICES 
One of our goals is to extend group scheduling beyond tra-
ditional enterprise GCS users. We sought a user group who 
did not have access to a commercial GCS server: college 
students. We began with informal interviews with about 20 
(primarily undergraduate) students from introductory HCI 
and communications courses. 

While students may be relatively inexperienced at project 
management, they are certainly a community that could 
significantly benefit from improved tools: we found stu-
dents to be heavily committed to a wide variety of obliga-
tions, and—unlike traditional office workers—are rarely 
collocated with group members. The students we inter-
viewed have wildly varying and often chaotic schedules, 
with their commitments spanning a range of academic, so-
cial, extracurricular, and work-related activities. They 
schedule meetings with peers for a variety of purposes in-
cluding: working on group projects, collaborating on prob-
lem sets, handling business for student organizations, 
rehearsing for an upcoming performance, and social gather-
ings. At our university, over 94% of undergraduates live on 
campus, making evenings and weekends at least as avail-
able and preferable as weekdays; in contrast, office workers 
ho usually find the workday more convenient for meetings. 

Frequently, these meetings recur among the same defined 
set of people (e.g., a study group or a committee). Often 
these are organized on an ad-hoc basis, rather than as a 



 

weekly commitment. One subject told us that her sorority is 
constantly faced with the challenge of finding a time that 
their 30 members can attend when they plan activities. This 
type of problem is typical of social groups that wish to stay 
connected for socializing or work. Such groups often find it 
difficult or unnecessary to commit to a regular meeting time 
each week, or occasionally need to schedule additional 
meetings. 

Calendaring Artifacts 
All students have some elements of their schedule that are 
part of a weekly routine. These include classes, rehearsals 
and practices, staff meetings, worship services, work, and 
volunteer commitments. Generally these schedules are so-
lidified within the first two weeks of each academic quarter 
and don’t change afterward.  

Most of the students we interviewed create some artifact of 
their basic weekly schedules. This often takes the form of a 
spreadsheet or text document, entry in a desktop calendar-
ing tool such as iCal [2] or Palm Desktop [6], or a paper 
schedule. It appears that students are willing to expend 
some effort at the beginning of each quarter to construct 
this artifact, but that is the extent of most students’ interac-
tion with calendaring tools. Why bother maintaining an 
online calendar if you can’t take it with you in a more con-
venient form than your notebook computer? 

Many students rely purely on memory to keep track of this 
week’s schedule. Others use a variety of artifacts—scraps 
of paper, paper planners, and cell phones, since students are 
relatively mobile. While most students do not maintain a 
digital calendar, a minority use a PDA or a desktop PIM such 
as Outlook, if they can sync it with a portable device. 

Scheduling Methods 
Students’ asynchronous scheduling primarily occurs via 
email. Hu and Brzozowski conducted a preliminary study 
[19] where they asked 20 students to schedule meetings 
with groups of four randomly selected members via email. 
They observed the exchanges that took place and debriefed 
participants on how they normally schedule meetings with 
other groups. Two basic strategies emerged: 

Aggregation. One member acts as the “coordinator” (in our 
study we designated one from the group at random). The 
coordinator sends an email asking for a complete list of 
everyone’s availabilities. Other members submit their free 
times, either in an email body or on a spreadsheet. The co-
ordinator then manually combines everyone’s free times 
and finds the intersection to choose a meeting time.  

An advantage of this model is that the group has full disclo-
sure of people’s availabilities, each free slot on every par-
ticipant’s schedule being equally important. This ensures 
that all possibilities are considered. The chief downside is 
the investment of time required. Participants must enumer-
ate every free time on their schedule, whether or not it is 

relevant, and the coordinator must take time to collect all 
the responses. 

However, some groups favor this model because it shifts 
the burden onto one person, effectively absolving other 
members of responsibility. Aggregation creates a power 
dynamic whereby the organizer assumes control. 

Negotiation. One member initiates an email thread by either 
enumerating a list of times he or she is available, or describ-
ing a few constraints (e.g., “I’m free any day after 7”). Al-
ternately, the discussion starts with a proposal (“How’s 
Tuesday night?”). This informally sets the universe of dis-
course for the discussion, and other members of the group 
often focus on these blocks of time, even if there are others 
that work better for them. In successive rounds, the other 
members whittle down the universe of discourse by adding 
additional constraints, or expand it by making counterof-
fers. Some groups favor this model because it seems more 
democratic and requires no coordinator to step forward. 

An advantage of this model is that if a group has compati-
ble schedules they potentially don’t have to discuss as many 
possibilities; if someone proposes a time that works well for 
everyone there is little debate. 

A disadvantage is that expanding the universe of discourse 
is costly; if someone wishes to propose a new time, at least 
another full round of emails is required to gather everyone’s 
assent. So it’s easier to “go with the flow” and add con-
straints, making scheduling a sort of greedy search suscep-
tible to local maxima rather than a true optimizing task. 

In practice, it is common for groups to adopt a hybrid ap-
proach; for instance, a coordinator might assume authority 
but still open the floor for debate, or a group might aggre-
gate their free times without an explicit coordinator. 

PRELIMINARY PROTOTYPE 
For our first prototype, we sought to blend aggregation and 
negotiation in the context of scheduling a meeting to take 
place over the next week. It aggregates users’ preferences 
across an entire week, and lets them negotiate by updating 
the best meeting times live in response to their feedback. 
This was intended as an early “proof-of-concept” prototype. 

Implementation 
Since a number of our users told us they use Excel to main-
tain a basic weekly schedule, we built a prototype in an 
Excel workbook (see Figure 2). Each sheet of the workbook 
has a grid representing the following week, with cells offer-
ing half-hour granularity (except for hour-long cells be-
tween midnight and 8 AM). 

Each cell can be marked with one of four weighted labels 
inspired by [11]—Can’t Make It (0), Rather Not (1), Is OK 
(2), or Works Great (3)—by selecting a block of cells and 
clicking a tool from a floating toolbar. We chose a four-
point rating scale because it offers more precision than a 
binary free/busy scheme, yet still forces users to take a 
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stand: there is no neutral ground. Note that this model does 
not have any knowledge of a user’s actual schedule; the 
user decides whether to mark a conflict as Can’t Make It, 
Rather Not, or ignore it entirely. 

Algorithm 
Each labeling corresponds to a numeric value. Cells that the 
user has not colored in are assumed to be OK by default, 
since users who don’t care enough to mark a cell Can’t 
Make It or Rather Not probably don’t mind meeting then. 
To determine the best time for a meeting, our system aver-
ages each user’s rating for each cell to obtain its score. The 
best time to meet is then simply the block of consecutive 
cells of the desired meeting length with the lowest average 
score (weighted to compensate for the hour-long cells).  

Simple averaging assumes each participant is equally im-
portant to the meeting but does not attempt to maximize the 
number of attendees; if a time is convenient for all but one 
member of a group, it takes the strict utilitarian view that 
that time is best. One may also envisage other algorithms. 

Method 
Twenty undergraduates from an introductory communica-
tion class participated in our user study. The 12 men and 8 
women were randomly assigned to five groups of four stu-
dents. 

As with our structured interviews, we asked each group to 
use email to find two possible times for what we described 
as a “focus group.” Upon reaching consensus, we asked 
representatives to forward all their scheduling mail to us. 
We weren’t sure whether groups adopting the aggregation 
style would “reply to all” or just direct messages to their 
coordinator, so we wanted to preserve this behavior rather 
than give them mailing lists so we could observe in situ. 

At the meeting they scheduled, we asked members of each 
group to take turns using our prototype to schedule an hour-

long meeting for the coming week. Due to compatibility 
issues with Excel, we were not able to deploy it to “the 
wild” so we simulated an asynchronous scheduling process 
by having users complete these tasks in rounds: 

1 Starting with a blank spreadsheet, color in the cells corre-
sponding to your basic quarterly schedule (i.e., the com-
mitments that do not change week-to-week). 

2 Starting with the spreadsheet you colored previously, 
now with the best times to meet outlined, recolor cells 
“until you’re satisfied with the meeting times.” 

3 (as necessary) Revise your ratings in response to your 
group’s responses. 

Finally, the participants filled out an online questionnaire to 
compare this scheduling process with email. 

Results 
Over email, our users all elected a negotiation strategy 
rather than aggregation. Each participant read an average of 
seven messages before a meeting time was selected. Over-
all, users were comfortable with the notion of expressing 
absolute preferences for times as in our prototype. We ex-
pected users to color in the bare minimum of cells neces-
sary to obtain the outcome required but a number of them 
painted in every cell of the week even though we told them 
they didn’t have to. These users were less likely to have to 
revise their ratings on a second pass. 

We also observed that users were surprisingly cooperative. 
Several times people who initially described themselves as 
busy most of the week actually reconsidered once they saw 
that the best times for everyone else were times they had 
said they Can’t Make It or would Rather Not. The visibility 
of group members’ availability exerts a form of social pres-
sure to encourage compromise and honesty. 

We also saw participants use the Works Great label as a 
tool to suggest alternate times. Since Works Great has a 

 

 
Figure 2  (Left) An individual user’s view of our first prototype; he or she can paint preferences onto the grid. (Right) The five 
best times to meet are outlined with dashed lines and listed in text, updated live in response to the user’s changes. 



 

higher value than the default, the system is likely to call 
attention to it as one of the best times, unless other users 
rated it a bad time. 

Marking the best times on the schedule provided live feed-
back to users; if the “best time” on the schedule was one 
that didn’t work for them they would label it Can’t Make It 
or Rather Not. If it was still the “best time”, the only way to 
change it would be to propose a better time by marking it 
Works Great, or to elevate one of the other candidate “best 
times” by rating them Is OK or Works Great. 

Our users generally indicated they found our prototype 
“easy to use” and would be likely to use an application 
based on it and to recommend it to friends. However, this 
prototype was limited in scope and did not reflect “real-
world” use conditions, as the users were collocated to use 
our prototype after they met each other [28]. So this result 
should be considered circumstantial. 

LEARNING PREFERENCES  
Having seen what we could do without any knowledge of 
actual user schedules (beyond users’ ratings) we wondered: 
what if we did know about their commitments? Could we 
infer users’ preferences from looking at their schedules and 
past behavior? In this case, we’d be able to “paint” the en-
tire schedule with our guesses, and reduce the interaction to 
correcting the system’s guesses. We set out to build a 
model of users’ scheduling behavior to do just that: predict 
how a user would respond to any given meeting request. 

At its most basic level, scheduling is a constraint satisfac-
tion problem. One approach is to ask users to explicitly 
declare the rules governing their preferences, as in [31]. 
However, this assumes that scheduling decisions are purely 
rational and that users can easily explain their reasoning. 
Interviewing our subjects made it clear that a wide variety 
of factors affect user preferences, not all of which could be 
easily elucidated. For instance, subjects had difficulty de-
vising a rank ordering of their commitments’ importance. 
Enumerating a complete set of rules is also rather laborious 
for users. For these reasons, a simple rule-based engine 
seems a poor model for user behavior; we employ a prob-

abilistic model that learns preferences implicitly, and can 
make predictions along with a confidence metric. 

Implementation 
Based on our interviews with students we constructed a 
basic ontology of how people prefer to schedule meetings.  

Scheduling Ontology 
There are two separate but related questions at play here: 
how people deal with scheduling conflicts and how people 
prefer to schedule their “free” time. The answers vary 
widely from person to person but we hope to distill out 
some common decision factors. 

To address the first, we considered that users somehow 
prioritize the events on their calendar and their commit-
ments. People will skip or reschedule an appointment or 
meeting if something more important comes along. Codify-
ing that precisely is difficult, however, since people are not 
entirely rational in social interactions [9]. Rather than seek 
explicit prioritization from users, we wanted to get a sense 
of this priority scheme implicitly. 

We sought to capture generically the nature and degree of 
obligation a user feels to attend an event on his or her cal-
endar. Our subjects’ schedules reflect a variety of commit-
ments competing for their time: academic, extracurricular, 
economic, personal, and social. Within each type of com-
mitment, we tried to capture varying costs of missing a 
scheduled event. Often this comes down to who gets hurt by 
an absence and how serious the repercussions are. 

After much discussion with students, we settled on the 
event types shown in Table 1. This schema accounts for the 
subtle differences, for example, between a frat party where 
the user’s absence won’t be appreciably noticed and a date, 
for which the consequences of not attending are much 
greater. We chose these factors: 

Conflicts. If a meeting would conflict with a scheduled 
event, the type of event and whether it’s a recurring or 
one-time-only event. 

Day and time. Some people are “morning people”; others 
 Type Description Costs of missing 

Lecture Attendance-optional lecture for a class Primary course material 
Project Meeting to work on a team project for a grade Letting down a team; grade 
Section Optional discussion section for a class Supplementary course material 
Seminar Mandatory class session Grade; supplementary material 

Academic 

Study, group Group study session (presence not required) Indirect effect on grade 
Rehearsal Rehearsal or athletic practice (usually mandatory) Letting down a team/group Activities 
Meeting Non-class-related meeting Letting down a group 
Interview A (difficult to obtain) job interview Career opportunities Economic 
Work Work as part of a paying job Wages; may get fired 
Interest An optional event of personal interest (not with friends) Self-edification 
Study, alone Planned study time (flexible) Grade 

Personal 

Sleep Planned sleep time (flexible) Health 
Social, private Small social event with one or more friends Letting down friends Social 
Social, public Large social event (no one will notice user’s absence) Opportunity to meet people 

Table 1  Our ontology of college students’ commitments captures a wide range of obligations, allowing us to learn users’ 
priorities implicitly rather than asking for an explicit ranking. 
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prefer to meet later at night. This also gives us the ability 
to infer when a user is usually busy even if he or she 
chooses not to explicitly tell us of a commitment. 

Adjacent events. Some people prefer to have large chunks 
of free time in their schedules and stack events up back-
to-back; others prefer to space their commitments out 
more. Additionally, there are special cases for some types 
of prior or succeeding events; for instance, right before a 
job interview or right after a study group meeting. 

Type of meeting. People are more flexible (or more willing 
to sacrifice) depending on the type of meeting. 

Note that this ontology is designed for its user group, based 
on our users. Our approach could be adapted for other 
populations with further study to develop additional ontolo-
gies. For instance, Tullio demonstrated an ontology suc-
cessful at predicting behavior in an office setting [36]. 
There may not be a universal ontology for all users, but 
different models could be used for different groups. 

Algorithm 
For each potential meeting time, our system extracts sched-
ule-agnostic features from each user’s calendar using our 
ontology. This enables us to compare behavior from one 
situation to another without relying on the original sched-
ule. It uses softmax regression [25] (a generalization of 
logistic regression) to assign a set of weights to each feature 
that can be used to predict the rating of a potential meeting 
time.  

Other machine learning algorithms, such as support vector 
machines [8] and Bayesian networks [13], can also be ap-
plied to this task. We chose softmax regression mainly for 
the sake of simplicity, but also because it makes predictions 
by assigning weights to each feature, and thus its output can 
be intuitively explained to users, adding introspectability. 

To derive weights, our algorithm extracts features from a 
user’s calendar and creates a set of training examples for 
each potential meeting time that he or she has rated. To 
predict a user response to a new training example, our algo-
rithm takes the dot product of the weights for each rating j, 

jθ , and the features of a given training example. Using 

softmax, the probability that the user will rate a meeting 
with features x with rating i given weights � is [25]: 

( ) ( )
( )�

=
j

T
j

T
i

x
x

xip
θ

θθ
exp

exp
;   

The prediction is the rating i that maximizes this expres-
sion, and the confidence is its probability. Each feature con-
tributes some factor to this value that is determined by the 
weights. 

Gathering Schedule Data 
We sought to validate our model and see whether it can 
learn user preferences based on their schedules. We solic-

ited users’ complete schedules for the following week. Us-
ers were asked to categorize each of their commitments 
according to the types we defined in Table 1, and indicate 
whether they were recurring or one-time-only events. We 
then presented a series of 40 hypothetical hour-long meet-
ings and asked them to rate five different meeting time op-
tions for each. 

We ran our feature extraction algorithm on their responses 
and calendars to generate 200 examples. For each user, we 
evaluated our algorithm’s ability to learn their preferences 
by averaging over ten random 70/30 train/test splits; that is, 
for each user we ran ten trials where we trained on a ran-
domly selected 70% of his or her examples and then tested 
on the remaining 30% by comparing our prediction to the 
user’s actual response. 

Results 
Forty-six students completed our experiment. While results 
varied widely, for a third of the users the system predicted 
the correct rating at least 70% of the time; for half of them 
it predicted the correct rating at least 62% of the time. More 
frequently, our model could guess either the correct rating 
or one rating adjacent (e.g., Is OK instead of Works Great). 
For half the users, our model was either correct or one rat-
ing off 90% or more of the time.  

Users whose predictions were more error-prone (at least 
two standard deviations above the mean) all had provided 
us with relatively sparse calendar data, indicating the model 
works better with more knowledge of a user’s schedule. 

We also attempted to generate a basic set of weights for all 
users, to help us make predictions for users who have never 
provided us with training examples. Some examples of 
these features are shown in Figure 3.  

GROUPTIME SYSTEM 
Armed with these results, we created the complete Web-
based groupTime prototype to explore the utility of partial 
sharing. As it was Web-based, people could use our proto-
type asynchronously outside of a lab setting. We also 
wanted to try to democratize the process as much as possi-
ble, so that no voice in a group outweighs any other. 

0% 25% 50% 75% 100%

Conf licts w ith rehearsal

Public social event

Before an interview

At 11 AM

Can't Make It Rather Not Is OK Works Great  
Figure 3  A few examples of features and the probability 
distributions they imply. Some features are strong indicators 
of a particular rating, while others are weaker.  



 

Implementation 
groupTime is a Web application, powered by servlets. Us-
ers interact with Web pages and a Java applet to respond to 
meeting invitations. Much like setting up a meeting in Evite 
or Outlook, someone starts the process by scheduling a new 
meeting, specifying the meeting’s type, length, and by 
when it must happen (see Figure 4). However, the organizer 
does not get to specify any meeting time explicitly. 

Each guest receives an email inviting him or her to the 
meeting, with a link to respond. Each user, including the 
organizer, uses the applet shown in Figure 5 to indicate his 
or her preferences by selecting one of the color-coded pref-
erences tools and “painting” them onto the grid. The organ-
izer has the added power to veto blocks of time he or she 
deems not to be up for discussion, for instance late nights 
for an office meeting or daytime for a movie night. 

Users have the opportunity to add as many or as few events 
from their schedules as they wish; events added by a user 
are stored for any other meetings he or she is involved in. 
Using the default weights and any events the user adds, we 
dynamically predict ratings for them. The system can use 
any weights that we wish, generated by any learning algo-
rithm, allowing it to update the user’s weights as it trains on 
his or her responses. For predictions where it doesn’t have 
at least 75% confidence, it falls back to a binary classifica-
tion task: if it’s more likely that the user can’t make it or 
would rather not, it guesses Rather Not; otherwise it 

guesses Is OK. This smoothes out fluctuations generated by 
our model when it has too little information. 

We faced a critical design challenge in that groupTime pro-
duces multivariate data. For any given time we have a la-
beling, a confidence (or a user’s explicit choice), and 
responses from other users. This creates a tension between 
conveying as much information as possible and making 
interaction lightweight and intuitive. We chose to present 
only two dimensions of data, user labeling and group ag-
gregate (a strip along the left), to make the interaction more 
lightweight. In more mission-critical decision tools, a de-
signer may choose to expose additional axes of data. 

Our classifier will no longer change any cell a user has 
rated, even if other events are added, to avoid appearing to 
change things behind his or her back. All cells have some 
guesses, and users have an opportunity to correct those 
guesses by rating cells. Once a user clicks Done, the system 
takes all ratings, whether guessed or explicitly stated, as the 
user’s preferences, and does not change them even in the 
face of new information. 

In addition to the utilitarian algorithm used in our prelimi-
nary prototype, we added an algorithm that attempts to 
maximize the number of attendees (perhaps at the expense 
of someone’s happiness). Meeting times are ordered by 
how many people can attend and then by the average rating. 

Once everyone has responded, the system emails everyone 
with the best time according to everyone’s preferences. If 
anyone is unhappy with the time chosen, he or she can click 
a link in this message to return to the response page and 
update his or her preferences, effectively renegotiating the 
meeting time. Each message has the semantic meaning of 
“unless there are any objections, we’re meeting then”; each 
participant has the ability to object right until the start of the 
meeting. 

Methodology 
We recruited 35 volunteers from the Stanford community to 
participate in a 30-minute user study in groups. Users were 

  
Figure 4  The organizer of the meeting provides a general 
description and a deadline.   

 

 

 
Figure 5  Responding to an invitation with our second prototype. The left strip in each column shows the aggregate of the 
group’s preferences. Like our first prototype, groupTime provides live feedback of the best times to meet (marked with #s). 
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encouraged to sign up for the study in groups with friends 
or colleagues when possible to exploit the social dynamics 
of pre-existing groups who already get together regularly. 

Our groups included circles of friends, residential computer 
consultants from the same region, and a workgroup, as well 
as three groups of randomly assigned people. We added one 
group of office workers to see how expectations differ in a 
business context. Our subjects consisted of approximately 
26% undergraduates, 52% graduate students, and 22% of-
fice workers. About 68% of participants scheduled meet-
ings with groups of 3 to 4 people at least once a week. 
Groups ranged from three to five members in size. 

We divided subjects up into control and experimental sets. 
The control set was asked to schedule their user study en-
tirely by email, while the experimental set used our new 
prototype. We told everyone that all members of their group 
must be present at the user study to receive compensation. 
We appointed a representative from each group, charged 
with reporting the desired meeting time back to us; repre-
sentatives were the subjects who signed up their group and 
were randomly chosen in the unaffiliated groups. 

Our preliminary study found virtually all email traffic went 
to the whole group, so we gave each control set group a 
mailing list to use, allowing us to monitor their discussions. 
At the user study, groups in the control set were shown a 
demonstration of the prototype and had the opportunity to 
ask questions. Subjects completed a questionnaire pertain-
ing to their scheduling experience (whether email or our 
prototype) and participated in a focus group discussion 
about their scheduling experience and the prototype system. 

Results 
Subjects showed great enthusiasm for our approach to pref-
erence-based scheduling, particularly in comparison to 
email, but raised implementation issues that help us better 
understand desirable attributes of intelligent user interfaces. 

Attendance 
Of the 35 volunteers who signed up, 25 committed to at-
tending a meeting. Ten people did not agree to a specific 
meeting time. One control group failed to find a meeting 
time because its representative did not contact his group. 
Another control group member tried to spur discussion over 
email but without decisive leadership, they never chose a 
specific time. Several experimental groups had one member 
who never responded to group emails or our system’s invi-
tation; after attempts to contact them, we dropped them 
from their respective groups. All but two of the 25 subjects 
showed up at their meetings: one subject misread the time 
in his email; another was sick on the day of the meeting. 

User Reactions 
Subjects were more likely to say email scheduling “requires 
many rounds of negotiation” than our prototype (p = .05). “I 
know that I don’t have to deal with 15 minutes of ‘How 
about Friday? I can’t I’m busy then…,” remarked one. With 

our prototype users were slightly more likely to say they 
“could influence the outcome,” though not statistically sig-
nificantly so (p = .22). One user remarked, “It takes out the 
social engineering of forceful personalities domineering a 
meeting to their own ends.”  

Subjects expressed a desire in particular to use our proto-
type to schedule meetings with large groups and commit-
tees that don’t have frequent contact. In general, subjects 
said they were most likely to use our prototype to schedule 
meetings with groups of five or more people. While 83% of 
subjects said they were likely to use our prototype to sched-
ule a “group project meeting,” only 36% were comfortable 
using it to plan a “social gathering.” 

Democratic Interaction 
People liked the egalitarian nature of the groupTime algo-
rithm; one told us, “I like how the choice of timing is kind 
of out of any one person’s hands, which makes it more 
likely to be what’s best for the group as a whole.” However, 
pure democracy can break down. One group in the experi-
mental set had difficulty because one member had his 
schedule change 20 minutes before the appointed meeting 
time. He logged in to register his changes but it was too 
late; half of his group never got his email. Several people 
expressed a desire to have the coordinator or the system 
“lock down” a meeting time some time before the actual 
meeting, to make it seem “firm.”  

Others felt disconnected from the pulse of their group be-
cause our prototype doesn’t disclose how individual mem-
bers responded. Users wanted to know why cells were 
colored the way they were, particularly when someone else 
was responsible. Some felt compelled to explain themselves 
and wanted the ability to post comments to the group. Some 
people had trouble because they weren’t able to check their 
email regularly, and suggested sending SMS messages to 
their cell phones to remind them. 

In general, groupTime yielded successful meetings. The 
study also indicated two important design considerations. 
First, users desire more structure and slightly more disclo-
sure than we previously thought. Second, most subjects 
agreed that groupTime should tip the balance of power in 
favor of the organizer more. 

CONCLUSION AND FUTURE WORK 
We demonstrated the viability of using preferences rather 
than explicit calendar sharing to schedule group meetings, 
but showed that calendars still provide valuable information 
that can be used to predict users’ preferences. We also pre-
sent four design considerations for semi-automated GS: 

1 Let the user know what’s going on. Users lose some 
agency when they let machines negotiate for them. 
Whether making a prediction based on past behavior or 
making a decision, the user should have some easy way 
to see why the system did what it did. 



 

2 Don’t make changes behind the user’s back. Users prefer 
to have veto power over an agent and expect their deci-
sions to be final. A system should not override users’ ex-
plicit preferences, even in the face of new information, 
nor should it schedule a meeting without user input. 

3 Users seek predictability. A system should always make 
it clear if and when a meeting is scheduled. In intelligent 
user interfaces, optimal results are desirable but a sense 
of predictability and consistency are also important [32]. 

4 Use social pressure. To avoid having one user “game the 
system” and appear deceitfully inflexible, let users see 
who the culprit is and let them explain themselves. Users 
who genuinely are busier than their colleagues shouldn’t 
have to feel guilty if they have good reason, nor should 
cheaters get away with it. 

While this methodology shows promise, more extensive 
study is required to validate this system in a larger context. 
We are currently preparing a longer-term deployment and a 
longitudinal study to ascertain how well we can adapt to 
individual users’ unique priorities over time. 
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