Applying Online Search Techniques to Continuous-State
Reinforcement Learning

Scott Davies®

* School of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

In this paper, we describe methods for efficiently com-
puting better solutions to control problems in contin-
uous state spaces. We provide algorithms that exploit
online search to boost the power of very approximate
value functions discovered by traditional reinforcement
learning techniques. We examine local searches, where
the agent performs a finite-depth lookahead search, and
global searches, where the agent performs a search for
a trajectory all the way from the current state to a goal
state.

The key to the success of the local methods lies in tak-
ing a value function, which gives a rough solution to
the hard problem of finding good trajectories from ev-
ery single state, and combining that with online search,
which then gives an accurate solution to the easier
problem of finding a good trajectory specifically from
the current state.

The key to the success of the global methods lies in
using aggressive state-space search techniques such as
uniform-cost search and A*, tamed into a tractable
form by exploiting neighborhood relations and trajec-
tory constraints that arise from continuous-space dy-
namic control.

Introduction

A common approach to Reinforcement Learning in-
volves approximating the value function, and then ex-
ecuting the greedy policy with respect to the learned
value function.

However, particularly in high-dimensional continuous
state spaces, it can often be computationally expensive
to fit a highly accurate value function, even when our
agent is given a perfect model of the world. This prob-
lem is even worse when the agent is learning a model
of the world and is repeatedly updating its dynamic
programming solution online. What’s to be done?

In this paper, we investigate the idea that rather than
executing greedy policies with respect to approximated
value functions in continuous-state domains, we can use
online search techniques to find better trajectories. We
restrict our attention to deterministic domains. The

Copyright ©1998, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Andrew Y. Ngf

Andrew Moore*

t Artificial Intelligence Lab
Massachusetts Institute of Technology
Cambridge, MA 02139

paper consists of a progression of improvements to con-
ventional action-selection from value functions, along
the way using techniques from value function approx-
imation (Davies, 1997), real-time search (Korf, 1990),
constrained trajectories (Burghes and Graham 1980),
and robot motion planning (Latombe 1991, Boyan et
al. 1995, Boone 1997). All of the algorithms perform
search online to find a good trajectory from some cur-
rent state. Briefly, the progression is as follows:

e LS: Local Search. Takes a forward-dynamics model
and an approximate value function, and performs a
limited-depth lookahead search of possible trajecto-
ries from the current state before suggesting an ac-
tion.

e CLS: Constrained Local Search. Does a similar
job as LS, but considers only trajectories in which the
action is changed infrequently. This results in sub-
stantial computational savings that allow it to search
much deeper or faster.

e UGS: Uninformed Global Search. For least-
cost-to-goal problems, takes a forward-dynamics
model and plans an approximately-least-cost path
from the current state all the way to the goal, using
LS or CLS along with a neighborhood-based prun-
ing technique to permit tractable searches even when
they cover large areas of the continuous state space.

¢ IGS: Informed Global Search. Does a similar job
as UGS, but uses an approximate value function to
guide the search in a manner very similar to A* (Nils-
son 1971), thereby vastly reducing the search time
and (somewhat surprisingly) often dramatically im-
proving the solution quality as well.

o LLS: Learning Local Search. Learns a forward-
dynamics model, and uses it to generate approximate
value functions for the LS and CLS approaches.

e LGS: Learning Global Search. Learns a forward-
dynamics model, and uses it to generate approximate
value functions for the LS and CLS approaches.

In this paper, the approximate value functions are
obtained by k-dimensional simplex interpolation com-
bined with value iteration (Davies 1997), but the ap-
proaches are applicable for accelerating any model-

based reinforcement learning algorithm that produces
approximate value functions, such as an LQR solution
to a linearized problem or a neural net value function
computed with TD.

With such searches, we perform online computation
that is directed towards finding a good trajectory from
the current state; this is in contrast to, say, offline learn-
ing of a value function, which tries to solve the much
harder problem of learning a good policy for every point
in the state space. However, the global search algo-
rithms go beyond shallow lookahead methods and in-
stead use a pruned “bush” of search trajectories to find
continuous trajectories all the way to the goal.

We apply these search techniques to several
continuous-state problems, and demonstrate that they
often dramatically improve the quality of solutions at
relatively little computational expense.

MOUNTAIN-PARKING: An example of a
continuous-space dynamic control task

Figure 1 depicts a car (idealized as a frictionless puck)
on a very steep hill. The car can accelerate forward or
backward with a limited maximum thrust. The goal is
to park the car in a space near the top of the hill (that is,
occupy the space while having a near-zero velocity). Be-
cause of gravity, there is a region near the center of the
hill at which the maximum forward thrust is not strong
enough to accelerate up the slope. This is depicted on
the two-dimensional diagram in Figure 2. Thus if the
goal is at the top of the slope, a strategy that proceeded
by greedily choosing actions to thrust towards the goal
would get stuck. Figure 3 shows a sample minimum-
time path for one possible initial state. This task, al-
though trivial to solve by dynamic programming on a
very fine grid, will be used as an illustration during the
exposition because its state space can be drawn as a
two-dimensional diagram. In the Experiments section
we will see empirical results for problems that would
be intractably expensive for dynamic programming on
a fine grid.

LS: Local Search

Given a value function, agents typically execute a
greedy policy using a one-step lookahead search, pos-
sibly using a learned model for the lookahead. The
computational cost per step of this is O(|A|) where A
is the set of actions. This can be thought of as per-
forming a depth 1 search for the 1-step trajectory T'
that gives the highest Rp + vV (s7), where Ry is the
reinforcement, sp is the state (possibly according to a
learned world model) reached upon executing 7', and v
is the discount factor. A natural extension is then to
perform a search of depth d, to find the trajectory that
maximizes Ry +7v¢V (sr), where discounting is incorpo-
rated in the natural way into Rp. The computational
expense is O(d|A]9).

During execution, the LS algorithm iteratively finds
the best trajectory T of length d with the search algo-

Figure 1: A car acted on by gravity and lim-
ited forward /backward thrust. The car must
park in the goal area as quickly as possible.

7 ////%353%3&35522%
///////%/?zzs&ssszz%///
%??%?5::::;;;§§::::5?/

///rk\\\\\\\\\»(//
VA2ENNN

2o
v

N

NN
\\\\\aﬂqAA//:
B R NN
e AR
I SN
M O

K
—
—

,
’
1
Ay
N
N
SSRNNAN

-
.

e

@

o)

SR
SETTLRETRNNN

Velocity
e

L

NN s

Lhhe e e s

NN N aanap
NN NN e e
NN e e e
AR TS
AR R TSI
NN N e e s

~
N
:
¢
v
e
e
e

,/
e =
{diiaeenn

N

N
Ay
i
4
e

\‘,///////,4\\\

~— e e
;; PECAEN

e R A
\\\~A////////Aa\\ .

\\ AN

S s
NS IS
\ﬁp»>OOO¢¢¢A,44§\\
\‘ R S S SIS
\»y&¢¢¢¢¢¢44,qq§€§§\

-1 0 1
Position

(/6 e

e

e e

P

e
//VV?VVV
S s

Pl

g

=

o

o

.

Figure 2: The state transition function for
a car constantly thrusting to the right with
maximum thrust. A point on the diagram
represents a state of the car. Horizontal po-
sition denotes the physical car position. Ver-
tical diagram position denote the car’s veloc-

ity.

Velocity

L : 5 - 1
Position

Figure 3: A minimum-time path for the car
on the hill. The optimal value function is
shown by dots. The shorter the time to goal,
the larger the black dot.

rithm above, executes the first action on that trajectory,
and then does a new search from the resulting state. If
B is the “parallel backup operator” (Bertsekas 1995)
so that BV (s) = mazeeaR(s,a) + vV (d(s,a)), then
executing the full |A|? search is formally equivalent to
executing the greedy policy with respect to the value
function B4"'V. Noting that, under mild regularity
assumptions, as k — oo, BFV becomes the optimal
value function, we can generally expect B~V to be
a better value function than V. For example, in dis-
counted problems, if the largest absolute error in V is
g, the largest absolute error in B4~V is v%~l¢.

This approach, a form of receding horizon control,
has most famously been applied to minimax game play-
ing programs (Russell and Norvig 1995) and has also
been used in single-agent systems on discrete domains
(e.g. (Korf1990)). In game-playing scenarios it has also
been used in conjunction with automatically learned
value functions, such as in Samuel’s celebrated check-
ers program (Samuel 1959) and Tesauro’s backgammon
player (Tesauro and Galperin, 1997).

CLS: Constrained Local Search

To make deeper searches computationally cheaper, we
might consider only a subset of all possible trajectories
of depth d. Especially for dynamic control, often an op-
timal trajectory repeatedly selects and then holds a cer-
tain action for some time, such as suggested by (Boone
1997). Therefore, a natural subset of the |A|? possi-
ble trajectories are trajectories that switch their actions
rarely. When we constrain the number of switches be-
tween actions to be s, the time for such a search is
then O(d (¢) |A|**!)——considerably cheaper than a full
search if s < d. We also suggest that s is easily chosen
for a particular domain by an expert, by asking how

Figure 4: Constrained Local Search (CLS)
example: a twenty-step search with at most
one switch in actions

often action switches can reasonably be expected in an
optimal trajectory, and then picking s accordingly to
allow an appropriate number of switches in a trajec-
tory of length d. Figure 4 shows CLS performed in the
MOUNTAIN-PARKING task using d = 20 and s = 1.

Since LS is the same as CLS with the maximum-
number-of-switches parameter s set to d — 1, we may
use “LS” or “local search” to refer generically to both
CLS and LS at certain points throughout the rest of
the paper.

UGS: Uninformed Global Search

Local searches (LS and CLS) are not the only way to
more effectively use an approximated value function.
Here, we describe global search for solving least-cost-
to-goal problems in continuous state spaces with non-
negative costs. We assume the set of goal states is
known.

Why not continue growing a search tree until it finds
a goal state? The answer is clear—the combinatorial
explosion would be devastating. In order to deal with
this problem, we borrow a technique from robot motion
planning (Latombe 1991). We first divide the state
space up into a fine uniform grid. A sparse representa-
tion is used so that only grid cells that are visited take
up memory?.

A local search procedure (LS or CLS) is then used to
find paths from one grid element to another. Multiple
trajectories entering the same grid element are pruned,
keeping only the least-cost trajectory into that grid el-
ement (breaking ties arbitrarily). The point at which
this least-cost trajectory first enters a grid element is
used as the grid element’s “representative state,” and

!This has a flavor not dissimilar to the hashed sparse
coarse encodings of (Sutton 1996).

iy
\
o
\

\
_ay

Figure 5: Uninformed Global Search (UGS)
example. Velocity on z-axis, car position on
y axis. Large black dot is starting state; the
small dots are grid elements’ “representative

states.”

acts as the starting point for the local search. The ra-
tionale for the pruning is an assumed similarity among
points in the same grid element. In this manner, the al-
gorithm attempts to builds a complete trajectory to the
goal using the learned or provided world model. When
the planner finds a trajectory to the goal, it is executed
in its entirety.

The overall procedure is essentially a lowest-cost-first
search over a graph structure in which the graph nodes
correspond to grid elements, and in which the edges be-
tween graph nodes correspond to trajectories between
grid elements as found by the CLS procedure. A graph
showing such a search for the MOUNTAIN-PARKING do-
main is depicted in Figure 5.

IGS: Informed Global Search
We can modify Uninformed Global Search (UGS) by us-

ing an approximated value function to guide the search
expansions in the style of A* search (Nilsson 1971),
as written out in detail below. The search proceeds
from the most promising-looking states first, where the
“promise” of a state is the cost to get to the state (along
previously searched trajectories) plus the remaining-
cost-to-go as estimated with the value function. With
the perfect value function, this causes the search to tra-
verse exactly the optimal path to the goal; with only
an approximation to the value function, it can still dra-
matically reduce the fraction of the state space that is
searched.

As in UGS, the grid is represented sparsely. No-
tice also that like LS and CLS, we are performing on-
line computation in the sense that we are performing a
search only when we know the “current state,” and to
find a trajectory specifically from the current state; this

is in contrast to offline computation for finding a value
function, which tries to solve the much more difficult
problem of finding a good trajectory to the goal from
every single point in the state space.

Written out in full, the search algorithm is:

1. Suppose g(so) is the grid element containing the current
state sg. Set g(so)’s “representative state” to be sg, and
add g(so) to a priority queue P with priority V'(so), where
V is an approximated value function.

2. Until a goal state has been found, or P is empty:

o Remove a grid element g from the top of P. Suppose
s is g’s ‘“representative state.”

e Starting from s, perform LS or CLS as described in
the Local Search section, except search trajectories are
pruned once they reach a state in a different grid el-
ement ¢’'. If ¢’ has not been visited before, add ¢’
to P with a priority p(¢') = Rr(s0,...,s')+ 7|T|V(s'),
where R is the reward accumulated along the recorded
trajectory 1" from so to s’, and set ¢g'’s “representative
state” to s’. Similarly, if ¢’ has been visited before, but
r(g') < Rr(soy. .., s')—l—'lelv(s')7 then update p(g’) to
the latter quantity and set g”’s “representative state”
to s’. Either way, if ¢'’s “representative state” was set
to s’, record the sequence of actions required to get
from s to s’, and set s'’s predecessor to s.

3. If a goal state has been found, execute the trajectory.
Otherwise, the search has failed, because our grid was
too coarse, our state transition model inaccurate, or the
problem insoluble.

The above procedure is very similar to a standard
A* search, with two important differences. First, the
heuristic function used here is an automatically gen-
erated approximate value function rather than a hand-
coded heuristic. This has the advantage of being a more
autonomous approach requiring relatively little hand-
encoding of domain-specific knowledge. On the other
hand, it also typically means that the heuristic func-
tion used here may sometimes overestimate the cost
required to get from some points to the goal, which
can sometimes lead to suboptimal solutions — that 1is,
the approximated value function is not necessarily an
optimistic or admissible heuristic (Russell and Norvig
1995). However, within the context of the search pro-
cedure used above, inadmissible but relatively accurate
value functions can lead to much better solutions than
those found with optimistic but inaccurate heuristics.
(Note that UGS is essentially IGS with an optimistic
but inaccurate heuristic “value function” of 0 every-
where.) This is due to the second important difference
between our search procedure above and a standard
A* search in a discrete-state domain: IGS uses the ap-
proximated value function not only to decide what grid
element to search from next, but also from what par-
ticular point in that grid element it will search for local
trajectories to neighboring grid elements.

The above algorithm is also similar in spirit to al-
gorithms presented in (Atkeson, 1994). Atkeson’s al-
gorithms also found continuous trajectories from start
states to goals. The search for such trajectories was

W\
\

— />\<\
\
\

| a /

\ \\\ \

A\ \\\\ \\ \
AR
Figure 6: Informed Global Search (IGS)

example on MOUNTAIN-PARKING, with a
crudely approximated value function.

performed either within the context of a regular grid
(as in the algorithm above) or a pair of constant-cost
contours gradually grown out from the start and goal
states. Our algorithms differ from Atkeson’s in that
our algorithm works with a small set of discrete actions
and can handle some discontinuities in the dynamics,
whereas Atkeson’s algorithm requires smooth dynam-
ics (continuous first and second derivatives) with con-
tinuous actions. Unlike Atkeson’s work, our algorithm
does not yet locally optimize the trajectories found by
our search algorithms. However, also unlike Atkeson’s
work, we first compute a crude but quick approximation
to the value function (except in the case of uninformed
global search), and using this approximate value func-
tion speeds up the search considerably.

An example of IGS on the MOUNTAIN-PARKING do-
main is shown in Figure 6. The value function was ap-
proximated with a simplex-based interpolation (Davies
1997) on a coarse 7 by 7 grid, with all other parameters

the same as in Figure 5. Much less of state space is
searched than by UGS.

In Figure 7, the value function was approximated
more accurately with a simplex-based interpolation on
a 21 by 21 grid. With this accurate a value function,
the search goes straight down a near-optimal path to
the goal. Naturally, in such a situation the search is
actually unnecessary, since merely greedily following
the approximated value function would have produced
the same solution. However, when we move to higher-
dimensional problems, such as problems examined in
the next section, high-resolution approximated value
functions become prohibitively expensive to calculate,
and IGS can be a very cost-effective way of improving
performance.

T

Figure 7: Informed Global Search (IGS) ex-
ample on MOUNTAIN-PARKING, with a more
accurately approximated value function.

Experiments

We tested our algorithms on the following domains?:

e MOUNTAIN-PARKING (2 dimensional): As described
in the Introduction. This is slightly more difficult
than the normal mountain-car problem, as we require
a velocity near 0 at the top of the hill (Moore and
Atkeson 1995). State consists of z-position and ve-
locity. Actions are accelerate forward or backward.

e ACROBOT (4 dimensional): An acrobot is a two-link
planar robot acting in the vertical plane under gravity
with only one weak actuator at its elbow joint. The
goal is to raise the hand at least one link’s height
above the shoulder (Sutton 1997). State consists of
joint angles and angular velocities at the shoulder and
elbow. Actions are positive or negative torque.

e MOVE-CART-POLE (4 dimensional): A cart-and-pole
system (Barto et al. 1983) starting with the pole up-
right is to be moved some distance to a goal state,
keeping the pole upright (harder than the stabiliza-
tion problem). It terminates with a huge penalty
(—10°) if the pole falls over. State consists of the
cart position and velocity, and the pole angle and
angular velocity. Actions are accelerate left or right.

e SLIDER (4 dimensional): Like a two-dimensional
mountain car, where a “slider” has to reach a goal re-
gion in a two-dimensional terrain. The terrain’s con-
tours are shown in Figure 8. State is two-dimensional
position and two-dimensional velocity. Actions are
acceleration in the NE; NW, SW, or SE directions.

All four are undiscounted tasks. MOVE-CART-POLE’S
cost on each step is quadratic in distance to goal. The

2C code for all 4 domains (implemented with numeri-
cal integration and smooth dynamics) will shortly be made

available on the Web.

(d [1 | 2 | 3 | 4 [5 [6 [7 [8 |9 [10 |
cost | 49994 | 42696 | 31666 | 14386 | 10339 | 27766 | 11679 | 8037 | 9268 | 10169 |
fime | 0.66 | 0.64 | 1.24 | 1.02 | 1.13 | 2.07 | 3.32 | 3.84 | 7.30 | 15.50 |

Table 1: Local search

(LS) on MOVE-CART-POLE

(d [1T] 23 476 [8 [12]16] 24 |
cost | 187 | 180 | 188 | 161 | 140 | 133 | 133 | 134 | 112
fime | 0.02 | 0.05 | 0.10 | 0.16 | 0.36 | 0.70 | 2.08 | 4.62 | 12.44

Table 2: Constrained Local search (CLS) on MOUNTAIN-PARKING

surface

0.4 |

Contours from0.05 to 1 in increments of 0.05

IKe :.0.05 0.25 0.85 I

Figure 8: SLIDER’s terrain. Goal at upper
left.

other three domains cost a constant —1 per step. All
results are averages of 1000 trials with a start state
chosen uniformly at random in the state space, with
the exception of the MOVE-CART-POLE, in which only
the pole’s initial distance from its goal configuration is
varied.

For now, we consider only the case where we are given
a model of the world, and leave the model-learning case
to the next section. In this case, the value functions
used during search (except by the Uniformed Global
Search) are calculated using the simplex-interpolation
algorithm described in (Davies 1997); once generated,
they need not be updated during the search process.

Local Search

Here, we look at the effects of different parameter set-
tings for Local Search. We first consider MOVE-CART-
poLE. Empirically, good trajectories in this domain
“switch” actions very often; therefore, we chose not
to assume much “action-holding,” and set s = d — 1.
The approximate value function was found using a four-
dimension simplex-interpolation grid with quantization
134, which is about the finest resolution simplex-grid
that we could reasonably afford to use. (Calculating

the approximate value function even with this seem-
ingly low resolution can take minutes of CPU time and
most of the system’s memory.) See Table 1; as we in-
crease the depth of the search from 1 (greedy policy
with respect to V) up to 10 (greedy policy with respect
to B°V), we see that performance is significantly im-
proved, but with CPU time per trial (on a 100MHz HP
(300 9000, given in seconds) increasing exponentially.

The next experiment we consider here is MOUNTAIN-
PARKING on a coarse (72) grid. Empirically, entire tra-
jectories (of > 100 steps) to the goal can often be exe-
cuted with 2 or 3 action switches, and the optimal tra-
jectory to the goal from the bottom of the hill at rest
requires only about 3 switches. Thus, for the depth
of searches we performed, we very conservatively chose
s = 2. In Table 2, our experimental results again show
solution quality significantly increased by Local Search,
but with running times growing much more slowly with
d than before.

Comparative Experiments

Table 3 summarizes our experimental results3. cost is
average cost per trial, teme is average CPU seconds per
trial, and #LS is the average number of local searches
performed by the global search algorithms (which indi-
cates the amount of state space considered).

Trends we draw attention to are: Local Search consis-
tently beat No Search, but at the cost of increased com-
putational time. Informed Global Search (IGS) signifi-
cantly beats No Search; and it also searches much less
of state space than Uninformed Global Search (UGS),
resulting in correspondingly faster running times. In
fact, because the solutions found by IGS are often of
much shorter length than when using no search at all,
the computational time per trial is sometimes essen-
tially the same for IGS and No Search, while the qual-
ity of the solution found by IGS is many times better
— for example, a factor of 4 in the SLIDER domain. (It
performs a factor of 10 better in the MOVE-CART-POLE

°The parameters for the 4 domains were, in or-
der: value function simplex interpolation grid resolution:
72,13%,13%,13*%; Local Search: d = 6,5 = 2,d = 5,5 =
4,d = 5,s = 4,d = 10,s = 1; Global Search Grid resolu-
tion: 502, 50%,50%,20%; Local search within Global search:
d =20,s =1 for all 4.

No Search
cost | time

Uninformed Global

Local Search
cost | time

cost | #LS | time

Informed Global
cost | #LS | time

MOUNTAIN-PARKING 187 0.02 140 0.36 FAIL — — 151 259 0.14
ACROBOT 454 0.10 305 1.2 407 14250 | 5.8 198 914 | 0.47
MOVE-CART-POLE 49993 | 0.66 || 10339 | 1.13 3164 7605 | 3.45 || 5073 | 1072 | 0.64
SLIDER 212 1.9 197 51.72 104 23690 94 54 533 2.0

Table 3: Summary of comparative experimental results

domain, but that is largely a function of the particu-
lar penalty associated with the pole falling over.) Also
note that because of the sparse representation of Global
Search grids, we can comfortably use grid resolutions as
high as 50* without running out of memory.

While relatively simple, MOUNTAIN-PARKING demon-
strates interesting phenomena. Despite the use of a 502
grid for the global search, UGS often surprisingly fails
to find a path to the goal, where IGS, despite searching
much less of the state space, succeeds. This is because
IGS uses a value function to guide its pruning of multi-
ple trajectories entering the same grid cell, and there-
fore makes better selection of “representative states” for
grid elements. This also helps explain IGS finding bet-
ter solutions than UGS on 2 of the 3 four-dimensional
domains.

When the Global Search grid resolution is increased
to 1002 for MOUNTAIN-PARKING, both UGS and IGS
consistently succeed. But, UGS (mean cost 109) now
finds better solutions than IGS (mean cost 138). The
finer search grid causes good selection of representa-
tive states to be less important; meanwhile, inaccu-
racies in the value function guiding Informed Global
Search causes it to miss certain good trajectories. This
is a phenomenon that often occurs in A*-like searches
when one’s heuristic evaluation function is not strictly
optimistic (Russell and Norvig 1995). This is not a
problem for UGS, which is effectively using the max-
imally optimistic “constant 0” evaluation function. It
is interesting to note that in the MOVE-CART-POLE do-
main, in which UGS found better solutions than IGS,
the step size was large enough and the dynamics nonlin-
ear enough that single steps often crossed multiple grid
elements, and each grid element was typically reached
no more than once during the search. Thus, this was
a case in which IGS’s ability to discriminate between
good and bad states within the same grid element was
not relevant.

LLS and LGS: Learning a Model Online

Occasionally, the state transition function is not known
but rather must be learned online. This does not pre-
clude the use of online search techniques; as a toy exam-
ple, Figure 9 shows cumulative reward learning curves
for MOUNTAIN-PARKING. For each action, a kd-tree
implementation of 1-nearest-neighbor (Friedman et al.
1977) is used to learn the state transitions, and to en-
courage exploration, states sufficiently far from points
stored in both trees are optimistically assumed to be

T T T
“noSearchLearmingCurve” —

"localSearchLearningCurve’ ----

“globalSearchLearningCurve" -

-2000 -

-4000 -

-6000 -

Cumulative Reward

-8000 -

-10000

-12000
0

25 3‘0 3‘5 11‘0 11‘5 50
Trial
Figure 9: Cumulative reward curves on
MOUNTAIN-PARKING with model learning.

(Shallow gradients are good.)

zero-cost absorbing states. A 7-by-7 simplex interpola-
tion grid used for the value function approximator is up-
dated online with the changing state transition model.
Without search, the learner eventually attains an aver-
age cost per trial of about 212; with Learning Global
Search (LGS) (search grid resolution 50%), it quickly
(after about 5 trials) achieves an average cost of 155;
with Learning Local Search (LLS) (d = 20,s = 1), it
achieves an average cost of 127 (also after about 5 tri-
als).

As before, when the planner finds a trajectory to the
goal, it is executed in its entirety in an open-loop fash-
ion. But in the case where we are learning a model
of the world, it is possible to successfully plan a con-
tinuous trajectory using the learned world model, but
for the agent to fail to reach the goal when it tries to
follow the planned trajectory. In this case, failure to
follow the successfully planned trajectory can directly
be attributed to inaccuracies in the agent’s model; and
in executing the path anyway, the agent will naturally
reach the area where the actual trajectory diverges from
the predicted/planned trajectory and thereby improve
its model of the world in that area.

However, several interesting issues do arise when
the state transition function is being approximated on-
line. Inaccuracies in the model may cause the Global
Searches to fail in cases where more accurate mod-
els would have let them find paths to the goal. Op-
timistic exploration policies can be used to help the
system gather enough data to reduce these inaccura-
cies, but in even moderately high-dimensional spaces

such exploration would become very expensive. Fur-
thermore, trajectories supposedly found during search
will certainly not be followed exactly by an open-loop
controller; adaptive closed-loop controllers may help al-
leviate this problem to some extent. Finally, using the
models to predict state transitions should be compu-
tationally cheap, since we will be using them to up-
date the approximated value function with the changing
model, as well as to perform searches.

Future Research

How well will these techniques extend to non-
deterministic systems? They may work for problems
in which certain regularity assumptions are reasonable,
but more sophisticated state transition function ap-
proximators may be required when learning a model
online.

How useful is Local Search in comparison with build-
ing a local linear controller for trajectories? During
execution some combination of the two may be best.
Local Search also plays an important role in the inner
loop of global search; it is unclear how local linear con-
trol could do the same.

The experiments presented here are low-dimensional.
It is encouraging that informed search permits us to
survive 50* grids, but to properly thwart the curse of
dimensionality we can conclude that

1. Informed Global Search (IGS) is often much more
tractable than Uninformed Global Search (UGS),
even with relatively crudely approximated value func-
tions.

2. However, more accurate (yet computationally
tractable) value function approximators may be
needed than the simplex-grid-based approximators
used here.

3. Variable resolution methods (e.g. extensions
to (Moore and Atkeson 1995)) would probably be
needed for the Global Search’s state-space partitions
rather than the uniform grids used here.

The algorithms tested in this paper calculated the
approximate value functions used by their search proce-
dures independently of any particular trajectories that
were subsequently searched or executed. However, it
might be better to use points along such trajectories to
further update the value function in order to concen-
trate computational time and value function approxi-
mator accuracy on the most relevant parts of the state
space. The resulting algorithm would be reminiscent of
Korf’s RT A* (Korf 1990) and Barto’s RT DP (Barto et
al. 1995).

The trajectories found by the algorithms described
in this paper use a small discrete set of actions, and do
not always switch between these actions in a completely
locally optimal manner. In domains where the action
space is actually continuous, it would be useful to use a
local trajectory optimization routine such as that used
in (Atkeson, 1994) in order to fine-tune the discovered
trajectories.

Lastly, algorithms to learn reasonably accurate yet
consistently “optimistic” (Russell and Norvig 1995)
value functions might be helpful for Informed Global
Search.

References

Atkeson, C. G. 1989. Using Local Models to Control Move-
ment. In Proceedings of Neural Information Processing
Systems Conference.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1994. Real-
time Learning and Control using Asynchronous Dynamic
Programming. AI Journal, to appear (also published as
UMass Amherst Technical Report 91-57 in 1991).

Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983.
Neuronlike Adaptive elements that that can learn difficult
Control Problems. TEEFE Trans. on Systems Man and Cy-
bernetics 13(5):835-846.

Bertsekas, D. P. 1995. Dynamic Programming and optimal
control, volume 1. Athena Scientific.

Boone, G. 1997. Minimum-Time Control of the Acrobot.
In International Conference on Robotics and Automation.

Boyan, J. A.; Moore, A. W.; and Sutton, R. S., eds. 1995.
Proceedings of the Workshop on Value Function Approx-
imation. Machine Learning Conference: CMU-CS-95-206.
Web: http://www.cs.cmu.edu/ reinf/ml95/.

Burghes, D., and Graham, A. 1980. Introduction to Control
Theory including Optimal Control. Ellis Horwood.

Davies, S. 1997. Multidimensional Triangulation and In-
terpolation for Reinforcement Learning. In Neural Infor-
mation Processing Systems 9, 1996. Morgan Kaufmann.

Friedman, J. H.; Bentley, J. L.; and Finkel, R. A. 1977.
An Algorithm for Finding Best Matches in Logarithmic
Expected Time. ACM Trans. on Mathematical Software
3(3):209-226.

Korf, R. E. 1990. Real-Time Heuristic Search. Artifical
Intelligence 42.

Latombe, J. 1991. Robot Motion Planning. Kluwer.
Moore, A. W., and Atkeson, C. G. 1995. The Parti-game

Algorithm for Variable Resolution Reinforcement Learning
in Multidimensional State-spaces. Machine Learning 21.

Nilsson, N. J. 1971. Problem-solving Methods in Artificial
Intelligence. McGraw Hill.

Russell, S., and Norvig, P. 1995. Artificial Intelligence A
Modern Approach. Prentice Hall.

Samuel, A. L. 1959. Some Studies in Machine Learning
using the Game of Checkers. IBM Journal on Research
and Development 3. Reprinted in E. A. Feigenbaum and J.
Feldman, editors, Computers and Thought, McGraw-Hill,
1963.

Sutton, R. S. 1996. Generalization in Reinforcement Learn-
ing: Successful Examples Using Sparse Coarse Coding. In
Touretzky, D.; Mozer, M.; and Hasselmo, M., eds., Neural
Information Processing Systems 8.

Tesauro, G., and Galperin, G. R. 1997. On-line Policy
Improvement using Monte-Carlo Search. In Mozer, M. C.;
Jordan, M. I.; and Petsche, T., eds., Advances in Neural

Information Processing Systems 9. Morgan Kaufmann.

