
A Fast Data Collection and Augmentation Procedure for Object Recognition

Benjamin Sapp and Ashutosh Saxenaand Andrew Y. Ng
Computer Science Department,

Stanford University, Stanford, CA 94305
{bensapp,asaxena,ang}@cs.stanford.edu

Abstract

When building an application that requires object class recog-
nition, having enough data to learn from is critical for good
performance, and can easily determine the success or fail-
ure of the system. However, it is typically extremely labor-
intensive to collect data, as the process usually involves ac-
quiring the image, then manual cropping and hand-labeling.
Preparing large training sets for object recognition has al-
ready become one of the main bottlenecks for such emerg-
ing applications as mobile robotics and object recognitionon
the web. This paper focuses on a novel and practical solution
to the dataset collection problem. Our method is based on
using a green screen to rapidly collect example images; we
then use a probabilistic model to rapidly synthesize a much
larger training set that attempts to capture desired invariants
in the object’s foreground and background. We demonstrate
this procedure on our own mobile robotics platform, where
we achieve135x savings in the time/effort needed to obtain
a training set. Our data collection method is agnostic to the
learning algorithm being used, and applies to any of a large
class of standard object recognition methods. Given these re-
sults, we suggest that this method become a standard protocol
for developing scalable object recognition systems.
Further, we used our data to build reliable classifiers that en-
abled our robot to visually recognize an object in an office
environment, and thereby fetch an object from an office in
response to a verbal request.

Keywords: Data-driven artificial intelligence, Computer
vision, Robotics: Application.

Introduction
Many succesful real-world object recognition systems re-
quire hundreds or thousands of training examples, e.g., (Vi-
ola and Jones 2004; Wu, Rehg, and Mullin 2004; Fergus,
Perona, and Zisserman 2003; LeCun, Huang, and Bottou
2004). The expense of acquiring such large training sets has
been a bottleneck for many emerging applications. Indeed,
the issue of training data quality and quantity is at the heart
of all learning algorithms—often even an inferior learning
algorithm will outperform a superior one, if it is given more
data to learn from. Either developing better learning algo-
rithms or increasing training set size has significant potential
for improving object classification performance, and they

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Left: Our mobile office assistant robot. Right: The
green screen setup.

may have equal impact on practical applications. This pa-
per describes a method for rapidly synthesizing large train-
ing sets. We also apply these ideas to an office assistant
robot application, which needs to identify common office
objects so as to perform tasks such as fetching/delivering
items around the office.

When building object recognition systems, data collection
usually proceeds by first taking pictures of object instances
in their natural environment, e.g., (Viola and Jones 2004;
Dalal and Triggs 2005; Agarwal and Awan 2004). This in-
volves either searching for the object in its environment or
gathering the object instances beforehand and placing them,
in a natural way, in the environment. The pictures are then
hand-labeled either by marking bounding boxes or tight out-
lines in each picture. This is a tedious and time consuming
process, and prohibitively expensive if our goal is a system
which can reliably detect many object classes. The quality
of the dataset is also heavily dependent on human collection
and annotation performance.

In our approach, we start by rapidly capturing green
screen images of a few example objects, and then synthe-
size a new, larger dataset by perturbing the foreground,
background and shadow of the images using a probabilis-
tic model. The key insight of our procedure is that we can
model the true distribution of an object class roughly as well
as real data, by using synthetic data derived from real im-
ages. Our method also automatically provides highly accu-
rate labels in terms of the bounding box, perspective, object

Figure 2:Other data collection techniques considered. Top row:
Our synthetically generated 3D models. Middle row: Examples
of warping a mug using perspective transformations. Bottomrow:
First page results of a Google image search for “coffee mug.”

shape, etc. This is done at a tiny fraction of the human effort
needed compared to traditional data collection protocols.

In this paper, we also explore the space of data collec-
tion techniques, and elucidate which design choices (such
as manipulations of the foreground, background and shadow
components of an image) result in the best performance.
Although our method described is simple to implement,
it pragmatically enables scaling object recognition to real
world tasks and thus is timely (since deploying such sys-
tems is now within reach) and important. We propose that by
adopting this data collection procedure, most applicationde-
velopers will be able to significantly reduce (by over100x)
the human effort needed to build object recognition systems.

Related Work
The problem of acquiring data is quickly becoming a critical
issue in object recognition, as evidenced by several large-
scale online manual annotation efforts created recently, e.g.,
LabelMe (Russell et al. 2005), Peekaboom (von Ahn, Liu,
and Blum 2006) and Google Image Labeler (Google 2005).
While promising, these systems still require manual labor,
which is both time-consuming and error-prone.

A few researchers have explored training vision algo-
rithms using synthetic computer graphics data. (Michels,
Saxena, and Ng 2005) used synthetic images generated
from 3D models of outdoor scenes for autonomous driv-
ing. (Heisele et al. 2001) and (Everingham and Zisserman
2005) used 3D morphable models for training face classi-
fiers. (Agarwal and Triggs 2006) used human models on
real backgrounds for pose estimation. (Saxena et al. 2006;
Saxena, Driemeyer, and Ng 2008) used synthetic images to
learn to grasp objects. (Black et al. 1997) used synthetic
optical flow to learn parametrized motion models. Synthetic
images can also be generated by morphing real images. For
example, (Rowley, Baluja, and Kanade 1998), (Roth, Yang,
and Ahuja 2000) and (Pomerleau 1991) perturbed training
images (rotations, sheering, etc.) to enlarge the trainingset.

ETH-80 (Leibe and Schiele 2003) and COIL-100 (Na-
yar, Watanabe, and Noguchi 1996) were also collected us-
ing green screen capture methods. However, these methods
resulted in non-cluttered, monochrome backgrounds, and
therefore systems trained on these datasets fare poorly in a

real-world environment (see Experiments and Results sec-
tion). (LeCun, Huang, and Bottou 2004) also used an au-
tomated image capture system to create a large collection of
images containing objects uniformly painted green. They fo-
cused on recognition of shape, testing their methods on their
synthetic test set containing objects in the same setting—
uniform color. Although this work evaluates performance
of shape-based methods, it does not address object recogni-
tion in real world environments—when the objects are not
“uniform green”—against real, cluttered backgrounds.

Although the use of green screens to segment foreground
from background is a fairly common technique used in TV
weather broadcasts and movie studios (Smith and Blinn
1996), our research differs from others in that we are lever-
aging synthetic data specifically to improve performance on
real world data. To our knowledge, our paper is the first
to empirically show that green screen data collection is an
effective technique for creating training sets for real-world
object recognition. Our data manipulation and augmenta-
tion techniques used to achieve this are similarly novel.

Other Collection Approaches
In our application work, we also considered three other stan-
dard collection procedures: Internet images, synthetic 3D
models, and using affine transformations to augment the
data. (See Fig. 2.)

(Ponce et al. 2006) give an excellent overview of large,
publicly available data sets and annotation efforts. Several of
these datasets (e.g., (Torralba, Murphy, and Freeman 2004;
Everingham 2006; Fei-Fei, Fergus, and Perona 2006)) were
created by web image search. (Griffin, Holub, and Perona
2007) reported that Google yields, on average, 25.6%good
images (for Caltech-256; (Fergus et al. 2005) gives similar
statistics). We found that this rate was much too optimistic
for collecting a real world dataset, if we define agoodex-
ample to be a qualitatively good representative of the object
class, without occlusion,in a real-world environment. Most
images returned by an Google Image search for office ob-
jects are from online product listings, and show the image
against a monochrome or near monochrome background;
this is not suitable for training a real-world recognition sys-
tem.1

We also considered using 3D models of objects to synthe-
size images. We generated images as in the top row of Fig-
ure 2 using a computer graphics ray tracer, which models
real world texture, shadows, reflections and caustics. Un-
fortunately, these images were insufficiently similar to real
images, and in our experiments classifiers trained on them
performed poorly compared to our procedure. Generating
3D models is also time consuming (about1 hour for sim-
ple models such as a coffee mug; about2.5 hours for a sta-
pler). This is not scalable for building vision systems that
recognize hundreds of different object classes. More impor-

1For example, in the category “watch” in Caltech-256, only 21
out of the 201 watch images are in a natural/realistic setting. In fact,
for our 10 categories, only 2 (coffee mugs and keyboards) returned
more than 100goodresults. A Google Image search for “hammer,”
for example, yielded only 7 results found to begoodout of all 948
images returned!

tantly, even having generated one coffee mug model (say),
we found it extremely difficult to to perturb the model so as
to obtain a training set comprising a diverse set of examples
of mugs.

Finally, we ran experiments comparing real data vs. aug-
mented synthetic and real data sets that were generated by
perturbing the training images via different affine transfor-
mations. Applying these transformations to examples gen-
erated with our procedure did not improve test set perfor-
mance, probably because our data already contained a large
range of natural projective distortions (such as those ob-
tained simply by our moving the object around on the green
screen when collecting data).

Properties of Real Images and Data
Augmentation

We consider a real image of an object as comprising object
and background components. The object component itself
comprises a shape component, together with an interior tex-
ture/color. For many object classes, the interior texture/color
varies widely among object instances. For example, coffee
mugs have a large variety of colors, pictures, patterns, and
textures printed on them. Hammer handles may be made of
wood, metal, plastic, or arbitrarily textured rubber, and also
come in many colors. (Object classes that do contain useful
interior features, such as faces and keyboards, also exist.)

Because the space of possible interiors is so large for most
object classes, it is difficult for most learning algorithmsto
achieve invariance towards it. Having more training data of-
ten increases classifier performance by making it robust to
different backgrounds or towards the texture on the specific
instance of the object (such as the design on a coffee mug).
In our method, we will compose synthetic examples by au-
tomatically combining different foregrounds, textures, back-
grounds and shadows. One foreground can be paired with
m backgrounds to createm training examples. To make our
synthetic images as close as possible to real images, we will
also develop a probabilistic method that learns how best to
synthesize the artificial examples.

Experimental Setup
We collected data for 10 common office objects: coffee
mugs, staplers, scissors, pliers, hammers, forks, keyboards,
watches, cell phones and telephones. We used 10-12 objects
per class, from which we collected roughly 200 images us-
ing the standard data collection procedure. For this, we took
pictures of the objects against a variety of backgrounds in a
real office environment, placing the objects in a natural way
on desks and bookshelves. Based on logs kept (calculated by
the timestamps on the files to calculate the time for each data
collection session), this took on average106 minutes per ob-
ject class. Hand labeling took an additional 69 minutes per
class on average.

We also collected roughly 200 images of each object class
using our collection procedure. (Figure 3a,b). Here, we sim-
ply placed each object on the green screen, pressed a key to
capture an image, moved the object to a different orientation
and location on the green screen, and repeated 20 times for
each object. Having all the objects nearby allows the human

(a) (b) (c) (d) (e) (f) (g)

Figure 3: (a) IGRN , (b) IOBJ , (c) IBG, (d) IF G, (e) S, a real
(non-synthetic) image obtained by placing mug with logoIF G

in backgroundIBG, (f) the foreground (blue) and shadow mask
(white) obtained, (g)̂S, the image synthetic image inferred using
our probabilistic model.

Figure 4: Different background and foreground manipulation
techniques. Each row corresponds to a differentIF G/IBG tech-
nique: noise, corel, officeandNRT. The left column has instances
of each technique. The middle column contains examples of each
technique used forIF G, fixing IBG to bewhite. The right column
uses each technique forIBG, fixing IF G to beunaltered.

operator to move no more than an arm’s length for the entire
process. Data collection took 19 minutes per class on aver-
age, resulting in a speedup of∼ 9.2x.2 We have made the
real and green-screen data available at:
http://stair.stanford.edu/data.php

Probabilistic Model for Data Synthesis
We now describe our probabilistic model for learning how
to accurately synthesize new images. We model the distri-
bution of real images of objects as a generative model over
the different components of the image—foreground, back-
ground, and texture. We define the following random vari-
ables:
IGRN The blank green screen image (e.g., Fig. 3a).

2The bottleneck for the process was the time it took our off-
the-shelf digital camera to take a high resolution picture,store the
image to flash memory, and communicate with the software; this
took a few seconds per image. With better hardware, we could
reduce synthetic data collection to 5 minutes for 200 images.

IOBJ An object image captured against the green
screen (e.g. the mug image in Fig. 3b).
IBG A background image (e.g., an office environment,
Fig. 3c).
IFG A foreground texture image (e.g., a logo on the
mug in Fig. 3d).
S A real (non-synthetic) image obtained by placing an
object (fromIOBJ) with texture (IFG) against a background
(IBG).
These random variables have a joint distribution. We model
pixel i in the real imageS, given the other images, as

P (Si|IOBJi
, IFGi

, IBGi
, IGRNi

)

=
∑

mi∈{fg,bg,sh}

P (Si|mi, IOBJi
, IFGi

, IBGi
, IGRNi

)

· P (mi|IOBJi
, IFGi

, IBGi
, IGRNi

) (1)
Here, mi is a random variable taking on the values
{fg, bg, sh}, and indicates whether thei-th pixel is
part of the foreground, background or shadow compo-
nent (

∑
i=fg,bg,sh P (mi|IOBJi

, IFGi
, IBGi

, IGRNi
) = 1).

Whether the pixel is foreground (part of object), shadow or
background, depends only onIGRN andIOBJ , therefore

P (mi|IOBJi
, IGRNi

, IFGi
, IBGi

) = P (mi|IOBJi
, IGRNi

)

∝ P (IOBJi
, IGRNi

|mi)P (mi)

∝ P (IGRNi
|mi, IOBJi

)P (IOBJi
|mi)P (mi)

(2)
We modelP (IOBJi

|mi), for the background and shadow
components(mi = fg andmi = sh), each as a mixture of
n Gaussians, with the same covariance (Σbg for background
andΣsh for shadow respectively), and with different means
for each mixture component (µbgj

for background andµshj

for shadow respectively, forj = 1, ..., n). The foreground
is modeled with a large-variance Gaussian:P (IOBJi

|mi =
fg) = N (IOBJi

; µfg, Σfg). Here,N (x; µ, Σ) denotes the
density for a Gaussian with meanµ and covarianceΣ.

We also modelIGRNi
given mi and IOBJi

as Gaus-
sian, with mean depending on whether pixeli is back-
ground or shadow: P (IGRNi

|mi = bg, IOBJi
) =

N (IGRNi
; IOBJi

, Σ1), andP (IGRNi
|mi = sh, IOBJi

) =
N (IGRNi

; IOBJi
+ µs, Σ2). Our model forIGRNi

condi-
tioned on pixeli being shadow (mi = sh) takes into ac-
count the darkening effect that the shadow has on the green
screen background pixels; thus, the distribution has mean
around a brighter valueIOBJi

+µs, rather than meanIOBJi
.

(I.e., with the object removed, the shadow pixels become
some amountµs brighter on average.) Because the color of
the green screen does not depend onIOBJi

, the distribution
P (IGRNi

|mi = fg, IOBJi
) = P (IGRNi

|mi = fg) can
also be modeled as a mixture of Gaussians with the same
varianceΣbg, and with separateµbgj

. Finally, we used a
uniform prior P (mi), which in practice was sufficient for
our green screen setting.

To obtain realistic images, we blend the existing compo-
nent with a new component. For example, we blend the ob-
ject image with the new object texture, or the existing back-
ground with a new background. We represent these combi-
nations using a multivariate Gaussian and a linear blending

of IOBJi
with IFGi

or IBGi
:

P (Si|mi = fg, IOBJi
, IFGi

; wfg) =

(1/Z) exp (−‖Si − wfg
T [IOBJi

, IFGi
]T ‖2/2)

P (Si|mi = bg, IOBJi
, IBGi

; wbg) =

(1/Z) exp (−‖Si − wbg
T [IOBJi

, IBGi
]T ‖2/2)

P (Si|mi = sh, IOBJi
, IBGi

; wsh) =

(1/Z) exp (−‖Si − wsh
T [IOBJi

, IBGi
]T ‖2/2)(3)

Parameter Learning and MAP Inference
To learn the parametersw = [wfg, wbg, wsh] of our
model, we began by collecting a ground-truth dataset with
component imagesIGRN , IOBJ , IBG, IFG, and real (non-
synthetic) imagesS of the object placed in the background,
together with hand-labeled masksm for the shadow, fore-
ground and background. We learn the parametersw of
our model by maximizing the conditional log-likelihood
log P (Si|IOBJi

, IFGi
, IBGi

, IGRNi
, mi; w). Since Eq. 3 is

Gaussian,w can be estimated in closed form. The param-
eters ofP (IOBJi

|mi) andP (GRNi|mi, IOBJi
) were esti-

mated from the ground-truth images—estimating the empir-
ical mean and covariance for the Gaussian distribution, with
user-initialized points for estimating the parameters of the
mixture of Gaussians, includingn, the number of Gaussians
in the mixture.3

Given individual image components and the learned pa-
rameters, MAP inference of imagêS is straightforward,
and can be derived in closed form by solvinĝSi =
argmaxSi

P (Si|IOBJi
, IFGi

, IBGi
, IGRN). This therefore

gives a framework for creating large amounts of synthetic
data from an imageIOBJi

by sampling from a large set of
individual componentsIFG andIBG.

To explore the effectiveness of different interior and back-
ground manipulation methods, we created datasets with a
variety ofw, described in Table 2. We found that modeling
shadows had no significant impact on results, and thus are
not included in our experiments.

Experiments and Results
We now evaluate our synthetic generation techniques. Al-
though this work concerns synthetic generation of datasets,
all test sets arereal datacomprising actual (non-synthetic)
images either from standard datasets, or from our data col-
lection of objects in their natural environments.

Office Object Classification
For classifying the office object categories, we used a su-
pervised learning algorithm that uses the first band of C1
features (Serre, Wolf, and Poggio 2005), and a Gentleboost
ensemble of 200 weak classifiers.4 This algorithm was fast
enough to permit repeated experiments, while still achieving
results comparable to state-of-the-art recognition. Although
our experiments used a standard combination of features and

3In practice,n was typically set to 4 or 5.
4Details: Each weak classifier is a decision stump formed by

thresholding a single C1 feature. Changing the size of the ensemble
or using decision trees instead of stumps gave similar results to
those reported here.

Background Variations Foreground Variations

Object unaltered black white uniform noise corel office NRT Object unaltered black white uniform noise corel office NRT

mug .727 .566 .530 .521 .882 .874 .904 .827 mug .727 .496 .497 .608 .959 .956 .954 .937

scissor .822 .529 .516 .505 .937 .951 .952 .899 scissor .822 .939 .885 .691 .954 .967 .941 .941

stapler .760 .550 .568 .504 .846 .862 .913 .860 stapler .760 .780 .749 .507 .942 .957 .953 .911

keyboard .954 .961 .948 .577 .944 .955 .950 .939 keyboard .954 .500 .851 .850 .980 .978 .977 .972

hammer .886 .511 .515 .565 .941 .949 .977 .921 hammer .886 .962 .932 .742 .987 .972 .977 .973

plier .709 .509 .552 .520 .883 .888 .913 .795 plier .709 .819 .757 .652 .872 .935 .921 .930

fork .612 .515 .517 .493 .670 .623 .668 .605 fork .612 .618 .613 .537 .806 .758 .804 .720

watch .900 .541 .519 .494 .967 .970 .965 .962 watch .900 .496 .498 .746 .974 .971 .967 .969

flipphone .729 .545 .574 .496 .765 .696 .757 .674 flipphone .729 .497 .501 .554 .868 .830 .873 .803

telephone .940 .500 .502 .694 .954 .942 .958 .963 telephone .940 .491 .490 .615 .989 .982 .980 .973

Table 1:Performance comparison of different background and foreground techniques on the 10 office object dataset. The foreground is fixed
with techniqueunalteredin the background variation experiments; the background isfixed to office in the foreground experiments. Each
entry is the result of 10-fold cross validation, with 50 examples in each of the positive and negative training and test sets.

Technique w
T IT

F Gi,BGi
Description

unaltered [1, 0] − Leavebg/fg from IOBJ unaltered
white/black [0, 1] [255, 255, 255]/[0, 0, 0] Replacebg/fg with white/black

uniform [0, 1] (u1, u2, u3), ui ∼ U(0,255) Randomly sample each pixel uniformly
noise learnt Inoise Inoise = Iuniform ∗ G, G is a3 × 3 Gaussian filter withσ = 0.95
corel learnt Icorel Generic image database from the web, see Li03
office learnt Ioffice Images collected from office environments.
NRT learnt Itex Near-Regular Texture database with 188 textures, see CMU-NRT

Table 2:A description of the various techniques used forIBG andIF G.

learning algorithm, we believe our data synthesis method ap-
plies equally well to other methods.5

Background and Foreground Techniques: Table 1
shows the effect of using different background techniques.

Using white/black backgrounds performed poorly; note
that most standard image-collection methods such as Inter-
net have white backgrounds. The “keyboard” class performs
well regardless of background, because in most examples,
the rectangular keyboard fills up the whole image, making
background irrelevant. The office environment consistently
performs the best or within1% of the best technique across
all 10 object classes. This indicates that background plays
an important role in classifier performance.

Table 1 also shows the effect of using different foreground
techniques. Note that adding random texture (noise, corel,
office, NRT) to the object increases performance over using
an unaltered object foreground, withnoiseandcorelslightly
better than the others. especially telephones, keyboards,and
watch faces). This reflects different foreground textures in-
creasing the diversity in the data.

Evaluation of Data Synthesis Techniques: Even though
a synthetic example (e.g. in Fig. 3g) appears visually similar
to a real one (Fig. 3e), a classifier trained on synthetic exam-
ples could still perform poorly on real test examples. There-
fore, in this experiment, we compare a classifier trained on
real examples to one trained on the same number of syn-

5Other details: Our algorithm was trained on balanced train-
ing sets. The real test set used 50 positive and 50 negative exam-
ples, and no test set object appears in any training image. Neg-
ative examples are sampled from the office environment. Unless
otherwise specified, performance is measured as total accuracy:
Number correct

Total
. Each data point is an average of 10 trials of ran-

domly sampled training and test sets.

Figure 5:Evaluation of our synthesis techniques versus real data
(blue curve). The red curve is foreground techniquenoise, the
green curve,unaltered; both with backgroundoffice.The synthetic
curve matches the performance of the real data.

thetic examples. The synthetic examples were created using
the best technique from the previous experiments. Fig. 5
shows that our synthetic examples (red curve) are competi-
tive with the performance on the real data (blue curve).

Data Set Augmentation: Figure 6 compares the perfor-
mance of classifiers trained on real data (blue curve) versus
classifiers trained on synthetic data created using the same
number of real examples. In the synthetic curves, the dataset
is always augmented to create 150 examples. E.g., at the
point where the number of training examples is 50, each ex-
ample is paired with three different backgrounds (and the
foreground perturbed uniquely three different ways), to cre-
ate 150 examples. If we do not change the foreground while
augmenting the synthetic data (green curve), then the per-
formance only marginally improves; this shows the utility
of our method in achieving diversity in the data.

Figure 6: Improvement of synthetic dataset augmentation over
real data. The synthetic red and green curves use the same tech-
niques as in Fig. 5, however this time each number of original
training examples is mapped to 150 synthetic examples, showing
significant improvement over the real (blue) curve in most cases.

Figure 7: Improvement of synthetic dataset augmentation over
real data on 4 categories of the Caltech-101. Synthetic methods
(red and green curves) are the same techniques as in Fig. 6. Real
data is the blue curve.

In half of the object classes tested, our data collection
procedure applied to 10 examples achieves the same per-
formance as 150 real examples. This reduces our work to
collect data per object to∼ 1.3 minutes, yielding a to-
tal speedup over the standard data collection procedure of
roughly135x.

We also evaluated our dataset augmentation technique on
four categories from Caltech-101 (Fei-Fei, Fergus, and Per-
ona 2006). (See Fig. 7.) Because our goal is to evaluate
dataset augmentation, rather than do well on Caltech-101
per se, we focus on the relative performance of real versus
augmented data. We used the object masks provided with
the Caltech set. Since this set of objects has no consistent
background, we used our office background technique. De-
spite this poor fit to these objects, a small number of train-
ing examples created using our method still beats using real
data.

3-D Data Synthesis / Tree Classification
We now consider a second, outdoor-scene understanding
problem, in which our goal is to classify each pixel in a

(a) (b)

(c)

Figure 8:(a) An image with few tree pixels in setN . (b) A mem-
ber ofN × T . (c) Learning curve improvement for synthetic aug-
mented data.

test set as eithertree or non-tree. Here, the training data
consists of images along with aligned depth maps, while
the test data consists of only images. We first apply our
synthetic data augmentation techniques to place the object
(tree) correctly in new backgrounds using 3D depth informa-
tion, (Saxena, Sun, and Ng 2007) producing a much larger
augmented training set. Specifically, our training data is a
set of real examples with trees present|T | = 24, and a
set of “non-tree” images|N | = 103, where the only trees
present are small and in the background, e.g., Fig. 8(a). Us-
ing this real data, we can only achieve a training set size of
|N | + |T |. However, our method generates a dataset of size
|N | × |T |. Fig. 8(c) shows that using our method, we obtain
higher classification performance, measured as area under
the ROC curve (AUC).

In all test cases, the real training set consists of an equal
number of tree and non-tree images. The real training set
at most contains only 24 trees, fixed at their true positions
and scales, and the information gain from going from 2 to
24 examples is marginal. The synthetic training set, how-
ever, has trees in a much more diverse set of realistic scales
and positions, allowing the classifier to generalize betterto
unseen examples. This is true even for the first data point,
|N | = |T | = 2, in which the real training set has 2 tree and
2 non-tree images, while the synthetic set has 4 tree images.

100,000 Examples
With the ease of our collection and augmentation tech-
niques, we can push the upper limits of training set size. We
collected images of 100 coffee mugs at different orientations
(24 azimuths and 4 elevations) covering the entire upper
hemisphere. We used these to synthesize training sets of up
to 105 examples using different backgrounds and textures.
We evaluated our data using an efficient implementation of
k-NN using cover trees (Beygelzimer, Kakade, and Lang-
ford 2006) against the extremely challenging ‘coffee-mug’

Figure 9: Synthetic generation techniques boost performance on
the Caltech-256 category ‘coffee-mug’ using105 examples.

category of the Caltech-256. We achieve a best performance
of 84.58% accuracy with105 examples. Unfortunately, our
dataset is 450 times larger than the largest available real data
set that we can use to compare to our method’s performance.
As a baseline, we include results trained on the 220 good
samples of coffee mugs from the LabelMe database. (Both
the LabelMe and Caltech-256 data sets were manually pre-
filtered to remove noisy examples.) To actually collect105

examples using standard techniques would have taken 1458
hours, based on our collection time analysis (see Experimen-
tal Setup section). Our method, on the other hand, took a
total of 16 hours.

Fig. 9 shows that the performance of even a simple clas-
sification algorithm improves significantly with the amount
of data. Thus, we believe our procedure holds promise to
improve performance of learning algorithms in general.

Robotic Application
Finally, this work was driven by the real world problem of
developing an efficient method to train an office assistant
robot. We take our classifiers trained on the rapidly col-
lected, manipulated, and augmented data and integrate them
into our robotics platform. Our method was able to build
reliable classifiers that enabled our robot to visually recog-
nize an object in an office environment, and thereby fetch an
object from an office in response to a verbal request. Video
demonstration of these results is provided at:
http://stair.stanford.edu

References
Agarwal, S., and Awan, A. 2004. Learning to detect objects
in images via a sparse, part-based representation.IEEE PAMI
26(11):1475–1490.

Agarwal, A., and Triggs, B. 2006. A local basis representation
for estimating human pose from cluttered images. InACCV.

Beygelzimer, A.; Kakade, S.; and Langford, J. 2006. Cover trees
for nearest neighbor. InICML. New York, NY, USA: ACM Press.

Black, M. J.; Yacoob, Y.; Jepson, A. D.; and Fleet, D. J. 1997.
Learning parameterized models of image motion. InCVPR.

Dalal, N., and Triggs, B. 2005. Histograms of oriented gradients
for human detection. InCVPR.

Everingham, M., and Zisserman, A. 2005. Identifying individ-

uals in video by combining generative and discriminative head
models. InICCV.

Everingham, M. e. a. 2006. The 2005 pascal visual object classes
challenge. InMachine Learning Challenges. Springer-Verlag.

Fei-Fei, L.; Fergus, R.; and Perona, P. 2006. One-shot learning
of object categories.IEEE PAMI28(4):594–611.

Fergus, R.; Fei-Fei, L.; Perona, P.; and Zisserman, A. 2005.
Learning object categories from google’s image search. InICCV.

Fergus, R.; Perona, P.; and Zisserman, A. 2003. Object class
recognition by unsupervised scale-invariant learning. InCVPR.

Google. 2005. Google image labeler.
http://images.google.com/imagelabeler.

Griffin, G.; Holub, A.; and Perona, P. 2007. Caltech-256 object
category dataset. Technical Report 7694, Caltech.

Heisele, B.; Serre, T.; Pontil, M.; Vetter, T.; and Poggio, T. 2001.
Categorization by learning and combining object parts. InNIPS.

LeCun, Y.; Huang, F.-J.; and Bottou, L. 2004. Learning methods
for generic object recognition with invariance to pose and light-
ing. In CVPR.

Leibe, B., and Schiele, B. 2003. Analyzing appearance and con-
tour based methods for object categorization. InCVPR.

Michels, J.; Saxena, A.; and Ng, A. Y. 2005. High speed obstacle
avoidance using monocular vision and reinforcement learning. In
ICML.

Nayar, S. K.; Watanabe, M.; and Noguchi, M. 1996. Real-time
focus range sensor.IEEE PAMI18(12):1186–1198.

Pomerleau, D. 1991. Efficient training of artificial neural net-
works for autonomous navigation.Neural Comp3(1):88–97.

Ponce, J.; Hebert, M.; Schmid, C.; and Zisserman, A., eds. 2006.
Toward Category-Level Object Recognition, volume 4170 ofLec-
ture Notes in Computer Science. Springer.
Roth, D.; Yang, M.; and Ahuja, N. 2000. A SNoW-based face
detector. NIPS.
Rowley, H.; Baluja, S.; and Kanade, T. 1998. Neural network-
based face detection.IEEE PAMI20(1):23–38.
Russell, B. C.; Torralba, A.; Murphy, K. P.; and Freeman, W. T.
2005. LabelMe: a database and web-based tool for image anno-
tation. Technical report, MIT.

Saxena, A.; Driemeyer, J.; Kearns, J.; and Ng, A. Y. 2006.
Robotic grasping of novel objects. InNIPS.

Saxena, A.; Driemeyer, J.; and Ng, A. Y. 2008. Robotic grasping
of novel objects using vision.IJRR27(2).

Saxena, A.; Sun, M.; and Ng, A. Y. 2007. Learning 3-d scene
structure from a single still image. InICCV workshop on 3D
Representation for Recognition (3dRR-07).

Serre, T.; Wolf, L.; and Poggio, T. 2005. Object recognitionwith
features inspired by visual cortex. InCVPR.

Smith, A. R., and Blinn, J. F. 1996. Blue screen matting. In
SIGGRAPH, 259–268.

Torralba, A.; Murphy, K. P.; and Freeman, W. T. 2004. Shar-
ing features: efficient boosting procedures for multiclassobject
detection. InCVPR.

Viola, P., and Jones, M. 2004. Robust real-time object detection.
IJCV 57(2).

von Ahn, L.; Liu, R.; and Blum, M. 2006. Peekaboom: a game
for locating objects in images. InSIGCHI.

Wu, J.; Rehg, J.; and Mullin, M. 2004. Learning a rare event
detection cascade by direct feature selection. InNIPS.

