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Abstract

L1 regularized logistic regression is now a workhorse of
machine learning: it is widely used for many classifica-
tion problems, particularly ones with many features. L1

regularized logistic regression requires solving a convex
optimization problem. However, standard algorithms
for solving convex optimization problems do not scale
well enough to handle the large datasets encountered
in many practical settings. In this paper, we propose
an efficient algorithm for L1 regularized logistic regres-
sion. Our algorithm iteratively approximates the objec-
tive function by a quadratic approximation at the current
point, while maintaining the L1 constraint. In each iter-
ation, it uses the efficient LARS (Least Angle Regres-
sion) algorithm to solve the resulting L1 constrained
quadratic optimization problem. Our theoretical results
show that our algorithm is guaranteed to converge to the
global optimum. Our experiments show that our algo-
rithm significantly outperforms standard algorithms for
solving convex optimization problems. Moreover, our
algorithm outperforms four previously published algo-
rithms that were specifically designed to solve the L1

regularized logistic regression problem.

Introduction
Logistic regression is widely used in machine learning for
classification problems. It is well-known that regularization
is required to avoid over-fitting, especially when there is a
only small number of training examples, or when there are
a large number of parameters to be learned. In particular,
L1 regularized logistic regression is often used for feature
selection, and has been shown to have good generalization
performance in the presence of many irrelevant features. (Ng
2004; Goodman 2004)

Unregularized logistic regression is an unconstrained con-
vex optimization problem with a continuously differentiable
objective function. As a consequence, it can be solved fairly
efficiently with standard convex optimization methods, such
as Newton’s method or conjugate gradient. However, adding
the L1 regularization makes the optimization problem com-
putationally more expensive to solve. If the L1 regulariza-
tion is enforced by an L1 norm constraint on the parame-
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ter vector, then the optimization problem becomes a con-
straint optimization problem with the number of constraints
equal to twice the number of parameters to be learned. The
running time of standard algorithms to solve convex opti-
mization problems increases with the number of constraints.
If, alternatively, the L1 regularization is implemented by
adding (a constant times) the L1 norm of the parameter vec-
tor to the objective, then the objective is not continuously
differentiable anymore. This precludes the use of, for exam-
ple, Newton’s method to solve the optimization problem ef-
ficiently. Thus, both formulations of L1 regularized logistic
regression lead to a more complicated optimization problem
than unregularized logistic regression. However, the L1 con-
straint (or penalty term) has significant structure. For exam-
ple, if one knew a priori the signs of each of the parameters,
then the L1 constraint would become a single linear con-
straint. Or, in case of regularization by adding the L1 term
to the objective, the L1 term would become linear, resulting
in a continuously differentiable objective. These (and sim-
ilar) observations have led to various algorithms that try to
exploit the structure in the optimization problem and solve
it more efficiently.

Goodman (2004) proposed an algorithm for learning con-
ditional maximum entropy models (of which logistic regres-
sion is a special case) with an exponential prior (also referred
to as a one-sided Laplacian prior). His algorithm is based
on generalized iterative scaling (GIS). The idea is to itera-
tively (efficiently) maximize a differentiable lower bound of
the objective function. The proposed learning algorithm can
easily be extended to the case of logistic regression with a
Laplacian prior by duplicating all the features with the op-
posite sign. Logistic regression with a Laplacian prior is
equivalent to L1 regularized logistic regression.

Perkins et al. (2003) proposed a method called grafting.
The key idea in grafting is to incrementally build a subset
of the parameters, which are allowed to differ from zero.
Grafting uses a local derivative test in each iteration of the
conjugate gradient method, to choose an additional feature
that is allowed to differ from zero. This way, the conjugate
gradient method can be applied without explicitly dealing
with the discontinuous first derivatives.

Roth (2004) proposed an algorithm called generalized
LASSO that extends a LASSO algorithm proposed by Os-
borne et al. (2000). (The LASSO refers to an L1 regularized



least squares problem. See, Tibshirani (1996) for details.)
In this paper, we propose a new, efficient algorithm for

solving L1 regularized logistic regression. Our algorithm is
based on the iteratively reweighted least squares (IRLS) for-
mulation of logistic regression. More specifically, in each
iteration, our algorithm finds a step direction by optimizing
the quadratic approximation of the objective function at the
current point subject to the L1 norm constraint. The IRLS
formulation of logistic regression allows us to (iteratively)
reformulate the quadratic approximation as a least squares
objective. Thus our algorithm ends up solving an L1 con-
strained least squares problem in every iteration. The L1

constrained least squares problem can be solved very effi-
ciently using least angle regression (LARS), proposed by
Efron et al. (2004).

Our theoretical results show that our algorithm is guar-
anteed to converge to a global optimum. (In fact, our the-
oretical results could be generalized to a larger family of
optimization problems, as discussed later.)

Our experiments show that our algorithm significantly
outperforms the previously proposed algorithms for L1 reg-
ularized logistic regression. Our algorithm also signifi-
cantly outperforms standard gradient-based algorithms, such
as conjugate gradient and Newton’s method.1

We note that Lokhorst (1999) also proposed an algorithm
that uses the IRLS formulation of logistic regression. How-
ever he used a different LASSO algorithm (Osborne, Pres-
nell, & Turlach 2000) in the inner loop and did not provide
any formal convergence guarantees.

L1 Regularized Logistic Regression
We consider a supervised learning task where we are given
M training instances {(x(i), y(i)), i = 1, . . . , M}. Here,
each x(i) ∈ RN is an N -dimensional feature vector, and
y(i) ∈ {0, 1} is a class label. Logistic regression models the
probability distribution of the class label y given a feature
vector x as follows:

p(y = 1|x; θ) = σ(θ>x) =
1

1 + exp(−θ>x)
. (1)

Here θ ∈ RN are the parameters of the logistic regression
model; and σ(·) is the sigmoid function, defined by the sec-
ond equality.

Under the Laplacian prior p(θ) = (β/2)N exp(−β‖θ‖1)
(with β > 0), the maximum a posteriori (MAP) estimate of
the parameters θ is given by:

min
θ

M∑

i=1

− log p(y(i)|x(i); θ) + β‖θ‖1. (2)

This optimization problem is referred to as L1 regularized
logistic regression. Often, it will be convenient to consider

1The standard gradient-based algorithms are not directly appli-
cable, because the objective function of the L1 regularized logistic
regression has discontinuous first derivatives. In our experiments,
we used a smooth approximation of the L1 loss function.

the following alternative parameterization of the L1 regular-
ized logistic regression problem:

min
θ

M∑

i=1

− log p(y(i)|x(i); θ), (3)

subject to ‖θ‖1 ≤ C.

The optimization problems (2) and (3) are equivalent, in the
following sense: for any choice of β, there is a choice of C
such that both optimization problems have the same mini-
mizing argument. This follows from the fact that, (up to a
constant that does not depend on θ) the optimization prob-
lem (2) is the Lagrangian of the constrained optimization
problem (3), where β is the Lagrange multiplier. (Rockafel-
lar 1970) In practice, C (and/or β) may be either chosen
manually or via cross-validation; for the sake of simplicity,
in this paper, we will consider solving the problem (3) for a
given, fixed, value of C.

Our Learning Algorithm
In this section, we describe our learning algorithm for L1

regularized logistic regression. We also formally prove that
our learning algorithm converges to the global optimum of
the optimization problem (3).

Preliminaries
IRLS for unregularized logistic regression Our learning
algorithm is based on iteratively reweighted least squares
(IRLS). (Green 1984; Minka 2003) IRLS reformulates the
problem of finding the step direction for Newton’s method
as a weighted ordinary least squares problem.

Consider the problem of finding the maximum likelihood
estimate (MLE) of the parameters θ for the unregularized
logistic regression model. The optimization problem can be
written as:

min
θ

M∑

i=1

− log p(y(i)|x(i); θ). (4)

In every iteration, Newton’s method first finds a step di-
rection by approximating the objective by the second order
Taylor expansion at the current point, and optimizing the
quadratic approximation in closed-form. More specifically,
let θ(k) denote the current point in the k’th iteration. Then
Newton’s method finds a step direction by computing the
optimum γ(k) of the quadratic approximation at θ(k) as fol-
lows:

γ(k) = θ(k) −H−1(θ(k))g(θ(k)). (5)

Here H(θ) and g(θ) represent the Hessian and gradient of
the objective function in (4) evaluated at θ. Once the step
direction γ(k) is computed, Newton’s method computes the
next iterate

θ(k+1) = (1− t)θ(k) + tγ(k) (6)

by a line search over the step size parameter t.
We now show how the Newton step direction can be com-

puted by solving a weighted ordinary least squares problem



rather than using Equation (5). (See Green 1984, or Minka
2003 for details of this derivation.) Let X(∈ RN×M ) denote
the design matrix:

X = [x(1)x(2) . . .x(M)].

Let the diagonal matrix Λ and the vector z be defined as
follows: for all i = 1, 2, . . . , M :

Λii = σ(θ(k)>x(i))[1− σ(θ(k)>x(i))], (7)

zi = x(i)>θ(k) +
[1− σ(y(i)θ(k)>x(i))]y(i)

Λii
. (8)

Then, we have that H(θ(k)) = −XΛX> and g(θ(k)) =
XΛ(z − X>θ(k)), and thus Equation (5) can be rewritten
as:

γ(k) = (XΛX>)−1XΛz. (9)

Thus γ(k) is the solution to the following weighted least
squares problem:

γ(k) = arg min
γ
‖(Λ 1

2 X>)γ −Λ
1
2 z‖22. (10)

Therefore, the Newton step direction can be computed by
solving the least squares problem (10), and thus the logistic
regression optimization problem can be solved using iter-
atively reweighted least squares (IRLS). This least squares
formulation will play an important role in our algorithm.
The term IRLS refers to the fact that in every iteration the
least squares problem of Equation (10) has a different di-
agonal weighting matrix Λ and “right-hand side” z, but the
same design matrix X. (Note that, although we did not make
the dependence explicit, the diagonal matrix Λ and the vec-
tor z both depend on θ(k) and therefore change in every iter-
ation.)

IRLS for L1 regularized logistic regression For the case
of L1 regularized logistic regression, as formulated in Equa-
tion (3), the objective is equal to the unregularized logis-
tic regression objective. By augmenting the IRLS formu-
lation of the unregularized logistic regression with the L1

constraint, we get our IRLS formulation for L1 regularized
logistic regression (leaving out the dependencies on k for
clarity):

min
γ
‖(Λ 1

2 X>)γ −Λ
1
2 z‖22, (11)

subject to ‖γ‖1 ≤ C

Our algorithm (presented in more detail below) iteratively
solves the L1 regularized logistic regression problem by (in
every iteration) first solving the L1 constrained least squares
problem (11) to find a step direction and then doing a line
search to determine the step size. Thus our algorithm com-
bines a local quadratic approximation with the global con-
straints.

LARS for solving L1 constrained least squares. The L1

constrained least squares problem of Equation (11) is also
known as a LASSO problem. (Tibshirani 1996) Several al-
gorithms have been developed to solve L1 constrained least

squares problems. In our algorithm, we use LARS with the
LASSO modification. (Efron et al. 2004) LARS with the
LASSO modification uses a stagewise procedure, based on
a simple incremental update, to efficiently solve the L1 reg-
ularized least squares problem.

Our algorithm
Our algorithm iteratively solves the L1 constrained logistic
regression problem of Equation (3). In the k’th iteration, it
finds a step direction γ(k) by solving the constrained least
squares problem of Equation (11). Then it performs a back-
tracking line search (see Boyd & Vandenberghe, 2004 for
details) over the step size parameter t ∈ [0, 1] to find the
next iterate θ(k+1) = (1− t)θ(k) + tγ(k). To summarize, we
propose the following algorithm, which we refer to as IRLS-
LARS. (We discuss the stopping criterion used in more de-
tail when discussing our experimental setup and results.)

Algorithm 1 IRLS-LARS

1 Set θ(0) = ~0.
2 for (k = 0 to MaxIterations)
3 Compute Λ and z using Equation (7)

and Equation (8) (for θ = θ(k)).
4 Use LARS to solve the L1 constrained least squares

problem of Equation (11), and let γ(k) be the solution.
5 Set θ(k+1) = (1− t)θ(k) + tγ(k), where t is found using

a backtracking line-search that minimizes the objective
function given in Equation (3).

6 Evaluate the objective function, given in
Equation (3) at θ(k+1).

7 if (the stopping criterion is satisfied)
8 Break;
9 end

10 end

We note that our algorithm can be applied to, not only
L1 constrained logistic regression, but rather to any L1 con-
strained optimization problems, so long as the unconstrained
problem can be solved using IRLS. In particular, our algo-
rithm can be used for parameter learning for L1 constrained
generalized linear models. (Nelder & Wedderbum 1972;
McCullagh & Nelder 1989)

Convergence and optimality guarantees
The following theorem shows that the IRLS-LARS algo-
rithm presented in this paper converges to a global opti-
mum.2

Theorem 1. The IRLS-LARS algorithm presented in the pa-
per converges to a global optimum of the L1 constrained
regularized logistic regression problem of Equation (3).

2In fact—although the theorem statement is specific to our
algorithm—the proof easily generalizes to any algorithm that it-
eratively minimizes the local quadratic approximation subject to
the constraints (followed by a line search) so long as the objective
function has a continuous 3rd order derivative, and the feasible set
is convex, closed and bounded.



Proof. Our convergence proof uses the following fact:

Fact 1. Let any point θ0 that is not a global optimum be
given. Then there is an open subset Sθ0 that includes θ0,
and there is a constant Kθ0 > 0 such that the following
holds: for all feasible φ0 ∈ Sθ0 we have that one iteration
of our algorithm, starting from φ0, will give us a (feasible)
point φ1 that satisfies f(φ1) ≤ f(φ0)−Kθ0 .

Proof of Fact 1. We have a convex objective function f with
convex constraints. Since θ0 is not a global optimum, any
open set that includes θ0 includes a feasible point with
strictly lower value of the objective function f . (In fact, all
points on a line segment connecting θ0 with a global op-
timum are feasible and have a strictly lower value of the
objective function f .) The objective f is convex and has
bounded second derivative over the feasible set, thus for any
sufficiently small open set that includes θ0, we have that
this set includes a feasible point with strictly lower value
of the local quadratic approximation at θ0, which we de-
note by f̃θ0 . Thus when our algorithm globally optimizes
the quadratic approximation over the feasible set, the result-
ing point θ1 must satisfy f̃θ0(θ1) < f̃θ0(θ0). Now define
δ > 0 as follows:

δ = f̃θ0(θ0)− f̃θ0(θ1). (12)

Since f is three times continuously differentiable and
since the feasible set is bounded, there exists ε > 0, such
that for all φ0 ∈ Sθ0 = {θ : ‖θ − θ0‖2 ≤ ε} the following
hold:

|f(θ0)− f(φ0)| ≤ δ

8
, (13)

and for all θ in the feasible set:

|f̃θ0(θ)− f̃φ0(θ)| ≤
δ

8
. (14)

From Equation (14) we have for all φ0 ∈ Sθ0 that

|minθ f̃θ0(θ)−minθ f̃φ0(θ)| ≤ δ
4 . (15)

Therefore, for all φ0 ∈ Sθ0 the following holds. Let φ1 be
the global optimum (within the feasible set) of the quadratic
approximation at φ0, then we have that:

f̃φ0(φ1) ≤ f̃θ0(θ1) +
δ

4

≤ f̃θ0(θ0)− δ +
δ

4

= f(θ0)− 3δ

4

= f(φ0) + f(θ0)− f(φ0)− 3δ

4

≤ f(φ0) +
δ

8
− 3δ

4

≤ f(φ0)− δ

2
. (16)

Here we used, in order: Equation (15); Equation (12); sim-
plification (f̃θ0(θ0) = f(θ0)); adding and subtracting the
same term; Equation (14); simplification.

Let t be the step size resulting from the line search. Then
we have that:

f̃φ0(φ0 + t(φ1 − φ0)) ≤ (1− t)f̃φ0(φ0) + tf̃φ0(φ1)

≤ f(φ0)− t
δ

2
. (17)

Here we used, in order: f̃φ0 is convex; f̃φ0(φ0) = f(φ0)
and Equation (16).

Since f is three times continuously differentiable and the
feasible set is bounded, there exists C > 0, such that for all
φ0 ∈ Sθ0 the following holds for all θ in the feasible set:

f(θ) ≤ f̃φ0(θ) + C‖θ − φ0‖32. (18)

Now, we choose θ = φ0 + t(φ1 − φ0) in Equation (18), and
we use Equation (17) to obtain:

f(φ0 + t(φ1−φ0)) ≤ f(φ0)− t δ
2 +C‖t(φ1−φ0)‖32. (19)

Let R be the radius of a sphere that includes the (bounded)
feasible set, then we get that

f(φ0 + t(φ1 − φ0)) ≤ f(φ0)− t δ
2 + Ct3(2R)3. (20)

Choosing t =
√

δ
48CR3 gives us that for all φ0 ∈ Sθ0 , we

have that our algorithm finds a φ∗ such that:

f(φ∗) ≤ f(φ0)−
√

δ3

192CR3
.

Choosing Kθ0 =
√

δ3

192CR3 proves Fact 1.

Now we established Fact 1, we are ready to prove the
theorem. Let any δ > 0 be fixed. Let Pδ = {θ :
θis feasible , ∀ global optima θ∗, ‖θ − θ∗‖ ≥ δ}. We will
show convergence to a global optimum by showing that the
algorithm can only spend a finite number of iterations in the
set Pδ .

From Fact 1 we have that for all θ ∈ Pδ , there exists
an open set Sθ and a positive constant Kθ > 0 such that
the algorithm improves the objective by at least Kθ in one
iteration, when started from a point in the set Sθ. Since such
a set Sθ exists for all θ ∈ Pδ we have that

Pδ ⊆ ∪θ∈Pδ
Sθ.

Since the set Pδ is a closed and bounded subset of RN , we
have (from the Heine-Borel theorem) that Pδ is compact. By
definition of compactness, for every open cover of a compact
set there exists a finite sub-cover. (See, e.g., Royden, 1988,
for more details.) Thus, there is a finite set Qδ such that

Pδ ⊆ ∪θ∈Qδ
Sθ. (21)

Since Qδ is finite, we have that there is some Cδ > 0 such
that

inf
θ∈Qδ

Kθ = Cδ.

Since Qδ covers Pδ , we have that for all points θ ∈ Pδ our
algorithm improves the objective by at least Cδ in every iter-
ation. The objective is bounded, so this means the algorithm
has to leave the set Pδ after a finite number of iterations.
Since this holds true for arbitrary δ > 0, we showed that the
algorithm converges to a global optimum.



Name Description
IRLS-LARS Our algorithm
GenLASSO Generalized LASSO (Roth 2004)
SCGIS Sequential Conditional GIS (Goodman

2004)
Gl1ce Gl1ce (Lokhorst 1999)
Grafting Grafting (Perkins & Theiler 2003)
CG-L1 Conjugate gradient with exact L1

NM-epsL1 Newton’s method with epsL1
CG-epsL1 Conjugate gradient with epsL1
CG-Huber Conjugate gradient with Huber

Table 1: The nine algorithms that were used in our analysis. (See
text for details.)

Experimental Results
We compared the computational efficiency of our algorithm
with the eight other algorithms listed in Table 1. We tested
each algorithm’s performance on 12 different datasets, con-
sisting of 9 UCI datasets (Newman et al. 1998), one artificial
dataset called Madelon from the NIPS 2003 workshop on
feature extraction,3 and two gene expression datasets (Mi-
croarray 1 and 2).4 Table 2 gives details on the number
of training examples and the number of features for each
dataset.

Experimental details on the other algorithms
We compared our algorithm (IRLS-LARS) to four previ-
ously published algorithms: Grafting (Perkins & Theiler
2003), Generalized LASSO (Roth 2004), SCGIS (Goodman
2004), and Gl1ce (Lokhorst 1999).

Three of these algorithms (Gl1ce, SCGIS and Graft-
ing) and our algorithm (IRLS-LARS) were implemented in
MATLAB. In our implementations, we went through great
efforts to carefully implement all the optimization tech-
niques suggested by the corresponding papers. We used
Volker Roth’s C-implementation for GenLASSO.5

We also compared IRLS-LARS to standard optimization al-
gorithms, such as conjugate gradient method and Newton’s

3Madelon is available at:
http://www.clopinet.com/isabelle/Projects/
NIPS2003/.

4Microarray 1 is a colon cancer microarray dataset available at:
http://microarray.princeton.edu/oncology/
Microarray 2 is a leukemia microarray dataset available at:
http://www.broad.mit.edu/cgi-bin/cancer/
publications/pub_paper.cgi?mode=view&paper_
id=43.

5The code for GenLASSO is available at: http:
//www.informatik.uni-bonn.de/˜roth/GenLASSO/
index.html. His implementation contained some unnecessary
steps (for the purposes of our evaluation), such as automatically
performing the cross-validation for determining the regularization
parameter C. We went carefully through his code and removed
these additional computations.

Name Number of
features

Number of
samples

Arrhythmia 279 420
Hepatitis 19 80
Ionosphere 33 351
Promoters 57 106
Spambase 57 4601
Spect 22 267
Spectf 44 349
Splice 60 1527
Wisconsin breast cancer 30 569
Madelon 500 2600
Microarray1 2000 62
Microarray2 3571 72

Table 2: The 12 datasets we used in our experiments. (See text for
details.)

method. These algorithms are not directly applicable to L1

logistic regression because the objective function has dis-
continuous first derivatives. Thus, we used a smooth ap-
proximation of the L1 penalty term. More specifically, we
have that the L1 term is given by

‖θ‖1 =
N∑

j=1

|θj |.

We used the “epsL1” function defined as:

epsL1(θj , ε) =
√

θ2
j + ε,

to obtain a smooth approximation for each of the terms |θj |.
We similarly used the Huber loss function (see, e.g., Boyd
& Vandenberghe 2004):

Huber(θj , ε) =
{

θ2
j /(2ε) if |θj | < ε
|θj | − ε/2 otherwise.

We also tested conjugate gradient with the exact (non-
differentiable) L1 norm penalty (CG-L1). In this case, we
treated the first derivative of the L1 terms as zero when eval-
uated at zero. More specifically we treated ∂|θj |

∂θj
as being

zero for θj = 0.
We went through great efforts to ensure a fair comparison

by optimizing the performance of all other algorithms. We
carefully profiled all algorithms and made optimizations ac-
cordingly. We also spent significant amounts of time tuning
each algorithm’s parameters (when applicable). For exam-
ple, for the algorithms that are based on conjugate gradient
and Newton’s method, we extensively tuned the parameters
of the line-search algorithm; for the algorithms using con-
jugate gradient (Grafting, CG-epsL1, CG-Huber and CG-
L1), we tested both our own conjugate gradient implemen-
tation as well as the MATLAB optimization toolbox’s con-
jugate gradient; for the algorithms that use the approximate
L1 penalty term, we tried many choices for ε in the range
(10−15 < ε < 0.01) and chose the one with the shortest
running time; etc. In all cases, we are reporting the running
times for those parameter settings (and other choices) which
resulted in the shortest running times.



Choice of the regularization parameters
For a fixed dataset, the choice of the regularization param-
eter C (or β) greatly affects the running time of the al-
gorithms. Thus, we ran 10-fold cross validation (for each
dataset) and chose the regularization parameter that achieves
the highest (hold-out) accuracy. Doing so ensures that we
evaluate the algorithms in the regime we care about for clas-
sification.

In particular, we ran our algorithm (IRLS-LARS) to deter-
mine the regularization parameter C. This value of C was
then used for all learning algorithms that use the constrained
version of L1 regularized logistic regression, namely, IRLS-
LARS, GenLASSO, and Gl1ce.

The other algorithms solve the formulation with the L1

penalty term (or a smooth version thereof), as given in Equa-
tion (2). As discussed in more detail in our description of L1

regularized logistic regression, the optimization problems of
Equation (2) and Equation (3) are equivalent, in the follow-
ing sense: for any choice of C, there is a choice of β such
that the solution to both problems is the same. We now show
how to find β explicitly for a given value of C.

From the Karush-Kuhn-Tucker (KKT) conditions, we
have that the optimal primal solution θ∗ and the optimal dual
solution β∗ (of the constrained optimization problem) sat-
isfy the following conditions:

∂
∑M

i=1 log p(y(i)|x(i); θ)
∂θj

∣∣∣∣∣
θ∗

= β∗sign(θj), (22)

for all θ∗j 6= 0. From Lagrange duality, we also have that the
optimal primal solution θ∗ is given by

θ∗ = arg min
θ

M∑

i=1

− log p(y(i)|x(i); θ) + β∗‖θ‖1. (23)

Thus, by choosing

β = β∗ = sign(θj)
∂

∑M
i=1 log p(y(i)|x(i); θ)

∂θj

∣∣∣∣∣
θ∗

(24)

(for any j such that θ∗j 6= 0). We ensure that the optimal
solution of the formulation with L1 penalty term gives the
same optimal solution as the formulation with the L1 con-
straint (‖θ‖1 ≤ C).6

Running time
The efficiency of an algorithm was measured based on the
running time, i.e., the CPU time measured in seconds until
the algorithm meets the stopping criterion. Each algorithm
was run on a Linux machine with AMD Opteron 2GHz with
4.6GB RAM.7

6Effectively the KKT condition as in (22) is not exactly satisfied
for approximate L1 functions. However, typical ε value turned out
to be very small(≈ 10−10) such that the resulting approximate L1

functions were very close to the true L1 functions.
7For the runs that took longer than 500 seconds, we truncated

the running time to 500 seconds.

Stopping criterion For each algorithm the stopping cri-
terion is based on how close the current objective function
value (denoted by obj) is to the optimal objective function
value (denoted by obj∗). For each dataset, we first compute
obj∗ as follows. First, we run our algorithm (IRLS-LARS)
for an extensive amount of time to obtain the solution θ∗.
Then, we use θ∗ to compute β∗ from Equation (24). Finally,
we verify whether the KKT optimality conditions (see Boyd
& Vandenberghe, 2004) are satisfied for the values for θ∗
and β∗ we found. In all cases, we found that the KKT con-
ditions were satisfied up to a very small error.8

Using the optimal objective obj∗, we defined the stopping
criterion as:

|obj∗ − obj|
|obj∗| < τ. (25)

We used τ = 10−6 for our algorithm, Grafting, SCGIS, and
GenLASSO. For the algorithms with the approximate L1

functions, we used a less stringent bound (τ = 10−5) since
the objective function with the approximate L1 penalty term
is slightly different from from the original one formulated in
Equation (2).

Discussion of experimental results
Figure 1 shows the results for the five algorithms specifi-
cally designed for L1 regularized logistic regression (IRLS-
LARS, Grafting, SCGIS, GenLASSO and Gl1ce) on 12
datasets. Since the running times for the standard opti-
mization methods (CG-L1, NM-epsL1, CG-epsL1 and CG-
Huber) tend to be significantly higher, we do not report them
in the same figure. (Doing so allows us to visualize more
clearly the differences in performance for the first set of al-
gorithms.) We report the performance of the standard op-
timization algorithms (and our algorithm) in Table 3. In
all cases we report the average running time (in seconds)
over 100 trials of the same experiment (dataset and algo-
rithm combination).

The results reported in Figure 1 show that our algorithm
(IRLS-LARS) was more efficient than all other algorithms
in 11 out of 12 datasets. On one dataset (Microarray2) Gen-
Lasso and Gl1ce were slightly faster. All other algorithms
were slower than our algorithm on every dataset.

IRLS-LARS significantly outperformed Grafting and
SCGIS. More specifically, in 8 (out of 12) datasets our
method was more than 8 times faster than Grafting. (In the
other 4, it was also faster, although not by a factor of 8.) Our
method was at least 10 times faster than SCGIS in 10 out of
12 datasets.

GenLASSO and Gl1ce are the strongest competitors, and
even then our algorithm is more than twice as fast as Gl1ce

8In all cases, the primal constraint (‖θ‖1 ≤ C) was satisfied
with an error less than 10−13, and Equation (24) was satisfied with
an error less than 5 × 10−8. All the other KKT conditions were
satisfied exactly. We performed the same procedure using Gen-
LASSO and obtained similar results. In all cases, the absolute
difference between the obj∗’s obtained from running IRLS-LARS
and the obj∗’s obtained from running GenLASSO was smaller than
10−8; and the relative difference was always smaller than 10−10.



Data IRLS-
LARS

NM-
epsL1

CG-
epsL1

CG-
Huber

CG-
L1

Arrhythmia 0.0420 2.8450 14.384 13.660 14.065
Hepatitis 0.0046 0.0258 0.0819 0.6580 0.6347
Ionosphere 0.0516 0.1534 0.1746 0.9717 0.9237
Promoters 0.0182 0.0632 0.2047 0.8418 0.7328
Spambase 4.0804 21.172 10.151 13.410 12.016
Spect 0.0345 0.0704 0.1206 0.7651 0.7293
Spectf 0.0646 0.2330 0.5493 1.1761 1.1235
Splice 0.8376 2.9828 0.9424 4.3407 4.8007
WBCa 0.1222 0.7225 4.9592 1.4854 1.3777
Madelon 0.8602 55.060 113.22 95.223 104.50
Microarray1 0.0330 242.88 500.00 500.00 500.00
Microarray2 0.4069 500.00 500.00 500.00 500.00

aWisconsin breast cancer

Table 3: The running time (seconds) of IRLS-LARS, CG-L1 and
three algorithms with the approximate L1 functions (NM-epsL1,
CG-epsL1 and CG-Huber). (See text for details.)

for 5 out of 12 datasets and more than twice as fast as Gen-
LASSO for 8 out of 12 datasets. We note that (as opposed
to ours and all the other methods) GenLASSO is highly-
optimized C code (linked with highly optimized numerical
libraries). It is widely accepted that C code is faster than
MATLAB code, and thus we are giving GenLASSO a some-
what unfair advantage in our comparison.9

As reported in Table 3, conjugate gradient and Newton’s
method are an order of magnitude slower than our IRLS-
LARS algorithm in most of the datasets (despite the less
stringent stopping criterion). Among these methods, NM-
epsL1 seems to be the second best algorithm on the datasets
with a small number of features. However, this method
quickly becomes inefficient as the number of features in-
creases. Also other methods similarly suffered from the in-
creasing number of features. We observe that CG-L1 is very
competitive with CG-epsL1 and CG-Huber.

Conclusions
In this paper, we proposed a new algorithm for learning L1

regularized logistic regression. Our theoretical results show
that our algorithm is guaranteed to converge to a global op-
timum. Our experiments showed that our algorithm is com-
putationally very efficient. In particular, it outperforms stan-
dard algorithms for solving convex optimization problems,
as well as other algorithms previously developed specifically
to solve the L1 regularized logistic regression problem.

9We have implemented GenLASSO in MATLAB. However, the
extensive optimization tricks used in the C-code and numerical li-
braries were hard to be duplicated in MATLAB, making it hard to
evaluate GenLASSO correctly with our MATLAB code. Since C
code is widely accepted to be at least as fast as MATLAB code, we
decided to report the C code results (possibly favoring GenLASSO
somewhat in our comparisons).
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Figure 1: Comparison of the running time (seconds) among five algorithms (IRLS-LARS, Grafting, SCGIS, GenLASSO and Gl1ce) over 12
datasets. Each plot corresponds to one dataset. The name of the dataset is indicated at the top of the plot, and the number of features (N ) and
the number of training instances (M ) are shown as “Name of the data: N ×M”. For each experiment, we report the running time in seconds,
and the running time relative to IRLS-LARS in parentheses. (See text for discussion.)


