CI13082 数据手册

高性价比神经网络智能语音芯片

• 脑神经网络处理器 (BNPU) • 复位和电源管理

- BNPU V3.5, 支持 DNN\TDNN\RNN\CNN 等 - 供电电压范围 3.6V~5.5V 神经网络及并行矢量运算,可实现高性能的 - 内置 PMU 电源管理单元 语音识别和通话降噪等功能

• CPU 和存储器

- CPU 主频可达 210 MHz
- 内置 2MBytes Flash 存储器
- 内置 288KBytes SRAM
- 内置 256bit eFuse,可用于应用加密

• Audio Codec

- 高性能低功耗 audio ADC, SNR ≥ 95dB
- 低功耗 audio DAC, SNR ≥ 95dB

PWM

- 支持 3 路 PWM 接口

• GPI0

- 3 路高速 GPIO, 翻转频率可达 20MHz
- 2路 GPIO 支持 5V 电平通讯

- 内置上电复位 (POR)
- 内置电压检测 (PVD)

时钟

- 内置 RC 振荡器

• 通讯接口

- 1路 IIC 接口
- 1路 UART 接口,支持 5V 电平通讯,最高 支持 3Mbps 通讯速率

• 定时器和看门狗

- 内置 2 组 32 位定时器和 1 个看门狗

目录

1	概述	6
	1.1 功能描述	6
	1.2 芯片规格	7
2	引脚图和功能描述	9
	2.1 引脚图	9
	2.2 管脚描述	10
	2.3 复用功能	12
3	芯片接口描述	12
	3.1 通用输入输出(GPIO)	12
	3.1.1 简介	12
	3.1.2 特性	12
	3.2 通用异步收发传输器(UART)	13
	3.2.1 简介	13
	3.2.2 特性	13
	3.2.3 时序图	13
	3.3 脉冲宽度调制输出(PWM)	14
	3.3.1 简介	14
	3.3.2 特性	15
	3.4 通用定时器(TIMER)	16
	3.4.1 简介	17
	3.4.2 特性	17
	3.5 集成电路总线(IIC)	17
	3.5.1 简介	17
	3.5.2 特性说明	18
	3.5.3 时序图	18
	3.6 独立看门狗(IWDG)	19
	3.6.1 简介	19
	3.6.2 特性	19
	3.7 多媒体音频编解码器(CODEC)	19
	3.7.1 简介	19

	3.7.2 特性	20
	3.8 增强型脉冲宽度调制输出(EPWM)	20
	3.8.1 简介	20
	3.8.2 特性	20
	3.8.3 配置值说明	21
	3.8.4 计数模式	21
	3.8.5 使用方法	21
4	电气特性	23
5	封装信息	24
6	订购信息	25
7	应用方案	26
	7.1 应用参考电路图	26
	7.2 其它应用注意事项	27
8	修订历史	28

图片目录

冬	1	:	CI13082 功能框图	7
图	2	:	CI13082 管脚顺序及定义图	9
图	3	:	数据帧时序图 1	. 14
图	4	:	数据帧时序图 2	. 14
图	5	:	数据帧时序图 3	. 14
图	6	:	连续写数据操作时序图	.18
图	7	:	先写后读操作时序图	. 19
图	8	:	IIC 读操作时序图	. 19
图	9	:	封装尺寸	.24
图	10)	: CI1308X 典型应用方案参考电路图	26
图	11	۱ :	: 炉温曲线图	.28

表格目录

表	1	:	管脚描述	10
表	2	:	I0 复用功能	12
表	3	:	电气特性表	23
表	4	:	CI13082 芯片订购信息表	25
表	5	:	CI1308X 升级模式表	27
表	6	:	修订历史	28

1 概述

1.1 功能描述

CI13082 是启英泰伦研发的新一代高性能神经网络智能语音芯片,集成了启英泰伦自研的脑神经网络处理器 BNPU V3.5 和 CPU 内核,系统主频可达 210MHz,内置高达 288KByte的 SRAM,集成 PMU 电源管理单元和 RC 振荡器,集成单通道高性能低功耗 Audio Codec 和多路 UART、IIC、PWM、GPIO 等外围控制接口。CI13082 芯片仅需少量电阻电容等外围器件,即可实现各类智能语音产品硬件方案,性价比极高。

CI13082 采用工业级设计标准,具有很好的环境可靠性,其工作温度范围- 40° C~+85 $^{\circ}$ C,符合 MSL3 级湿敏等级、符合 IEC 61000-4-2 的 4KV 接触放电试验标准、符合 RoHS 和 REACH 环保标准。

CI13082 采用启英泰伦新一代 BNPU 技术,该技术支持 DNN\TDNN\RNN\CNN 等神经网络及并行矢量运算,可实现高性能语音识别、语音降噪等功能,具备强劲的环境噪声抑制能力。CI13082 方案还支持汉语、英语、日语等多种全球语言,可广泛应用于家电、照明、玩具、可穿戴设备、工业、汽车等产品领域,实现语音交互及控制和各类智能语音方案应用。

1.2 芯片规格

CI13082 功能框图如图 1 所示:

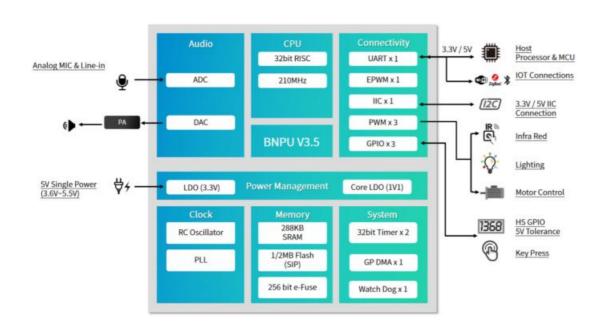


图 1: CI13082 功能框图

■ 脑神经网络处理器 BNPU V3.5

- 采用启英泰伦新一代硬件 BNPU 技术,支持 DNN\TDNN\RNN\CNN 等神经网络及并行矢量运算,可实现高性能语音识别、语音降噪等功能

■ CPU

- 32 位高性能 CPU, 最高支持 210MHz 运行频率

■ 存储器

- 内置 288KB SRAM
- 内置 256bit eFuse
- 内置 2MB Flash

■ 音频接口

- 内置高性能低功耗 Audio Codec 模块,支持单路 ADC 采样和单路 DAC 播放
- 支持 Automatic Level Control (ALC)功能
- 支持 8kHz/16kHz/24kHz/32kHz/44.1kHz/48kHz 采样率

■ 电源管理单元 PMU

- 支持宽电源电压供电,供电范围 3.6V~5.5V
- 内置 2 路高性能 LDO 电路, 无需配置外置电源芯片, 应用方案仅需少量外围阻容器件

■ 时钟

- 内置 RC 振荡器

■ 外设和定时器

- 1路 UART 接口,支持最高 3M 波特率通讯
- 1路 IIC接口,可外接 IIC器件扩展
- 3 路 PWM 接口, 灯控和电机类的应用均可直接驱动
- 内置2组32bit timer
- 内置1组独立看门狗(IWDG)

■ GPIO

- 支持 3 路 GPIO 口,可作为主控 IC 应用
- 每路 GPIO 口可配置中断功能,可配置上下拉状态
- 2路 GPIO 可通过外接 5V 上拉电阻直接支持 5V 电平通讯

■ 软件开发支持

- 提供完整软件开发包、应用方案示例、利用语音开发平台直接在线制作固件等支持,详情请访问: https://aiplatform.chipintelli.com

■ 固件烧录和保护

- 支持 UART 升级和固件保护

■ ESD 性能

- 采用内部 ESD 增强设计,可通过 4KV 接触放电试验

■ ROHS 和 REACH

- 采用环保材料,支持 RoHS 和 REACH 标准

■ 封装和工作温度范围

- 封装形式: SOP8, 尺寸为长 4.9mm, 宽 6.0mm, 高 1.75mm
- 工作环境温度: -40℃~+85℃

2 引脚图和功能描述

2.1 引脚图

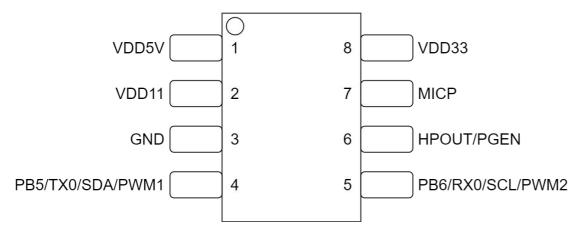


图 2: CI13082 管脚顺序及定义图

2.2 管脚描述

表 1: 管脚描述

管脚号	管脚名称	类型	是否支持 5V 电平	上电默认状态	管脚功能
1	VIN5V	Р	_	_	● 供电电压输入,供电电压范围 3.6V~ 5.5V * Notel*
2	VDD11	Р	_	-	● LDO-1.1V 输出 ● 内核 1.1V 供电输入 * Notel*
3	GND	P	-	_	Ground
4	PB5	10	√	IN, T+U	● GPIO PB5 (上电默认状态) ● UARTO_TX ● IIC_SDA ● PWM1 ● PWMP
5	PB6	10	√	IN, T+U	● GPIO PB6(上电默认状态) ● UARTO_RX ● IIC_SCL ● PWM2 ● PWMN
6	HPOUT	0	-	-	 DAC output PCO - - PWMO PGEN * Note2*
7	MICP	I	-	-	Microphone P inputGPIO PC1TX2PWM3
8	VDD33	Р	-	-	● LDO-3.3V 输出 ● 模拟 3.3V 供电输入 * Note1*

Notel 管脚需外接 4.7uF 电容

Note2 上电时该管脚为高电平,系统将进入编程模式

符号定义:

- I 输入
- 0 输出
- 10 双向
- P 电源或地
- T+D 三态下拉
- T+U 三态上拉

OUT 上电默认输出

IN 上电默认输入

所有 IO 均可配置驱动能力和上下拉状态。

2.3 复用功能

表 2: I0 复用功能

Pin Name	Function1	Function2	Function3	Function4	Function5	Function6	Specific Function
PB5	PB5	UARTO_TX	IIC_SDA	PWM1	PWMP		
PB6	PB6	UARTO_RX	IIC_SCL	PWM2	PWMN		
PC0	PC0	_	_	PWMO			D G DN
Note3	r co			T WINO			PGEN
PC1	_	PC1	TX2	PWM3			

Note3: HPOUT 与 PCO (PGEN) 管脚复用,内部默认下拉,上电后软件可配置其功能。当上电时系统检测到该管脚为高电平、且 UARTO 接口上有固件升级信号,则自动进入升级模式,此时可通过升级工具对芯片内部的 Flash 进行编程。若此时系统未检测到 UARTO 接口上有固件升级信号、或检测到 PCO 管脚的电压为低电平,都将进入正常工作模式。

3 芯片接口描述

3.1 通用输入输出(GPIO)

3.1.1 简介

GPIO(通用 IO 接口)是一种通用的输入输出端口,允许设备与外围硬件进行 电平信号交互,其既可以作为输入接收外部信号,也可以作为输出控制外围硬件。

3.1.2 特性

CI13082 支持多个可编程的输入/输出管脚(可由软件单独配置),每个 GPI0 端口都有相应的控制寄存器和配置寄存器,可单独打开或关闭每个 GPI0 管脚,实现对外围硬件的精准控制和状态监测。CI13082 芯片支持 2 组 GPI0 (GPI01、GPI02),其中 GPI02 对应的是芯片 PC 口,GPI01 对应的是芯片 PB 口。每组 GPI0 管脚分配请查看 2.2 管脚描述部分。

CI13082 提供 IO 输入输出状态查询接口、中断屏蔽接口、中断屏蔽查询接口、中断清除接口、中断状态查询接口、中断触发方式配置接口(可配置为: 低电平触发、高电平触发、上升沿触发、下降沿触发、双边沿触发)等,以满足不同的

应用场景和需求。

3.2 通用异步收发传输器(UART)

3.2.1 简介

UART 是一种通用异步串行通信数据接口,实现两个设备之间数据的接收和 发送,支持全双工通讯。接收端和发送端之间没有共享时钟信号,为保障通信可 靠性,通讯的两个设备需要设置相同的波特率和数据帧格式。

CI13082 支持 1 个 UART 控制器: UARTO。

3.2.2 特性

- 支持标准的 UART 协议,数据帧格式由起始位、数据位(长度可配置)、奇偶校验位(可选)和停止位(宽度可配置)四部分组成,支持波特率可配置。
- 总线处于空闲状态时,信号线为高电平状态。
- 起始位:用于标识传输数据帧的开始,每个数据帧以发送端输出一个比特宽度的低电平开始,通知接收端数据传输已启动;
- 数据位:传输的数据长度通过 UART_LCR 寄存器可配置为 5~8 位,常用 8 位,位传输顺序为低位优先,先发送最低位 LSB 最后发送最高位 MSB;
- 奇偶校验位:通过 UART_LCR 寄存器配置是否开启奇偶校验功能,通过 UART_LCR 寄存器配置奇校验或偶校验。奇偶校验功能开启状态、数据位传输 完成后,可通过奇/偶校验检测数据传输是否错误;
- 停止位:用于标识传输数据帧的结束,每个数据帧以高电平结束,长度通过 UART_LCR 寄存器可配置为 1、1.5、2 位;

删除[liuxiaofei]:)

3.2.3 时序图

UART 数据传输 1 个数据帧(8 位数据位、奇偶校验位、1bit 停止位)的时序图如下:

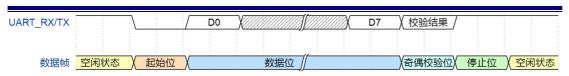


图 3:数据帧时序图 1

UART 数据传输 1 个数据帧(起始位、7 位数据位、奇偶校验位、1. 5bit 停止位)的时序图如下:

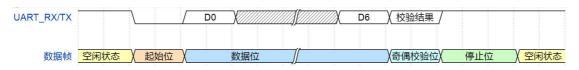


图 4:数据帧时序图 2

UART 数据传输 1 个数据帧(起始位、8 位数据位、无奇偶校验位、2bit 停止位)的时序图如下:

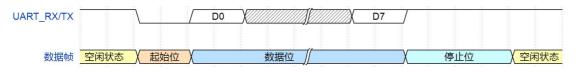


图 5: 数据帧时序图 3

UART 波特率设置越高,数据传输速度越快,但也会增加干扰和误码率。在设置波特率时,需要考虑通信双方串口硬件是否支持该波特率。若波特率设置过高,可能会导致数据传输不稳定。

支持最大 3Mbps 波特率,波特率可通过 UART_I_BRD 和 UART_F_BRD 寄存器配置。

3.3 脉冲宽度调制输出(PWM)

3.3.1 简介

PWM (Pulse Width Modulation) 是一种通过调节数字脉冲的占空比(高电平时间占整个周期的比例)来等效模拟信号电平的技术,广泛应用于电机控制、电源管理、LED 调光等领域。

CI13082 具有 4 个专用 PWM, 每个 PWM 输出信号的频率通过 TIMER_SC 寄存器进行配置,每个 PWM 输出信号的占空比通过 TIMER_SPWMC 寄存器进行配置,不 支持 100%占空比(常高),若需使用 100%占空比,通过配置 GPIO 来实现。

删除[liuxiaofei]: ,且每个专用 PWM 都有一组功能相同的寄存器以提高灵活性

删除[liuxiaofei]:

3.3.2 特性

- 计数时钟分频, 支持 1、2、4、16 分频, 通过 TIMER CFG 寄存器进行配置;
- 支持两个 32 位递减计数器;
- 可变占空比 PWM 脉冲宽度波形输出;
- 支持停止后输出电平极性通过 TIMER RESTART MD 寄存器配置;

3.4 通用定时器(TIMER)

3.4.1 简介

TIMER(通用定时器)是一个基于可配置分频器和多种计数方式 32 位递减计数器,在计数值达到 0 时触发一个定时事件,常用于在指定的时间间隔内反复触发指定窗口的定时器事件,可作为周期性中断发生器、事件计数器使用。CI13082具有 2 个相同的专用 TIMER: TIMER(0~TIMER1, 支持 TIMER 级联。

3.4.2 特性

• 支持三种计数模式,通过 TIMER_CFG 寄存器进行配置:单周期计数模式、自动重装载计数模式、自由运行计数模式;

单周期计数模式: 定时器仅计数一个计数周期:

自动重装载计数模式: 计数器在每个计数结束时重新初始化:

自由运行计数模式: 计数值在每次计数结束时从 0xFFFFFFFF 循环到 0x00000000; _

- 计数时钟分频,支持 1、2、4、16 分频,通过 TIMER CFG 寄存器进行配置;
- 32 位递减计数器,可读取计数器的实时值,通过 TIMER CC 寄存器进行读取;
- 支持级联模式配置,通过 TIMER CFGO 寄存器进行配置:
- <u>支持</u>计数<u>完成上报</u>中断;

3.5 集成电路总线(IIC)

3.5.1 简介

IIC 是一种双向双线同步串行总线,包括 SDA(串行数据线)和 SCL(串行时钟

删除[liuxiaofei]:每个专用 PWM 输出信号由 2 个周期寄存器 (TIMER_SC 和 TIMER_SPWMC)进行控制,计数器的计数值到 达相应的周期寄存器值时,输出最终的 PWM 信号,通过配置 2 个周期寄存器可以控制 PWM 输出信号的频率和占空比。每个 PWM 均有一个高/低电平比较器和选择器。 PWM 获取所选计数器的 32 位计数值,将其与寄存器 TIMER_SPWMC 值和 0 进行比较,进而控制 PWM 输出信号的电平。

若 timer_cnt==寄存器 TIMER_SPWMC 的值,则 PWM 输出信号 pwm_out 为 1;

若 timer_cnt==0,则 PWM 输出信号 pwm_out 为 0; 当计数器计数至 0 时,timer_cnt 计数器会重新装载寄存器 TIMER_SC 的值。timer_cnt 计数器从寄存器 TIMER_SC 配置的值开始递减,达到寄存器 TIMER_SPWMC 配置的值时,PWM 输出信号由低置高,到达 0 时,PWM 输出信号由高置低,产生相应的 PWM 输出信号。

删除[liuxiaofei]: PWM

删除[liuxiaofei]: PWM

删除[liuxiaofei]: ,且每个专用 TIMER 都有一组功能相同的 寄存器以提高灵活性

删除[liuxiaofei]:每个 TIMER 模块由两个定时器单元组成,即 TIMER_INIT_0 和 TIMER_INIT_1,它们可作为两个独立的定时器也可组合成为一个单级联定时器,两个定时器单元进行级联工作时,TIMER_INIT_1 的时钟源可为级联模式下TIMER_INIT_0 的计数脉冲结束。

删除[liuxiaofei]:

PWM 脉冲宽度波形输出

删除[liuxiaofei]: 结束

删除[liuxiaofei]: 发生

线),SDA 和 SCL 管脚均为开漏输出。IIC 总线通常用于单个或多个主设备和单个或多个从设备之间通信,每个连接到总线上的设备都有一个唯一的地址,同一时刻仅允许有一个 master 主设备发起请求访问 slave 从设备。

CI13082 支持 1 个 IIC, 其数据帧格式通常由起始信号、地址信号、应答信号、数据信号和停止信号五部分组成,支持标准传输速率 100kbit/s 和快速传输速率 400kbit/s 两种模式。

3.5.2 特性说明

- SDA: 串行数据线,双向 I/O 线;
- SCL: 串行时钟线,由 master 提供;
- 支持 master 和 slave 模式可寄存器配置;
- master: 作为 master 主设备时启动总线传输数据,并产生时钟;
- slave: 作为 slave 从设备时被寻址的从设备,具有唯一地址;
- 起始信号: SCL 为高电平时, SDA 从高电平跳变至低电平,表示传输开始;
- 地址信号:支持 7 位寻址模式,包含 7bit 地址位和 1bit 读写位;
- 应答信号: ACK 接收成功, NACK 接受失败或传输结束;
- 数据信号:按 Byte 传输,先发送最高位 MSB 最后发送最低位 LSB;
- 停止信号: SCL 为高电平时, SDA 从低电平跳变至高电平, 表示传输结束;
- 总线传输速率可配置为标准-100kbit/s 和快速-400kbit/s;

3.5.3 时序图

主设备通过产生 Start 起始条件来启动通信:在 SCL 为高电平时将 SDA 拉低,并通过 SCL 发送 8 个时钟脉冲用于传输 1 个 Byte,该 Byte 包含 7Bit 地址位和一 Bit 读/写位。若从设备的地址与传输的 7Bit 地址匹配,则产生应答信号。主设备和从设备可根据读/写位判断是发送还是接收数据,并根据应答位的逻辑电平判断是否结束数据传输。在数据传输过程中,SDA 仅在 SCL 为低时发生变化。一旦完成通信,主设备发送 STOP 停止条件来结束通信:在 SCL 为高电平时将 SDA 拉高。

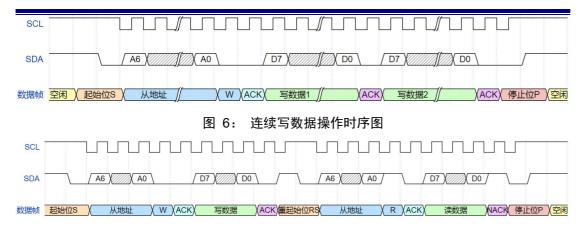


图 7: 先写后读操作时序图

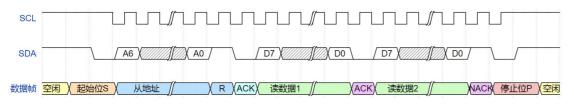


图 8: IIC 读操作时序图

3.6 独立看门狗(IWDG)

3.6.1 简介

IWDG 是一种硬件定时电路,主要用于监测系统由于工作异常而引发的故障并从故障中进行恢复。

3.6.2 特性

CI13082 支持 1 个 IWDG 模块, IWDG 是基于一个 32 位递减计数器, 计数器从装载值开始递减, 计数值计数到 0 时, 产生超时中断, 计数器重新加载装载值, 计数值再次计数到 0 时, 若超时中断未被清除,则 IWDG 将产生复位请求。可通过 SYS_RESET_CFG 寄存器配置复位域的范围。

3.7 多媒体音频编解码器(CODEC)

3.7.1 简介

CI13082 内置高性能低功耗音频 CODEC,支持一路 ADC、一路 DAC, MIC 输入的模拟信号经 MIC 增益,再经 PGA 放大。此 PGA 可通过 CODEC 本身的 ALC 控制, PGA 之后,还可通过数字增益进行放大。

3.7.2 特性

- DAC 支持最多 24bit, SNR 可达 90dB;
- ADC 支持最多 24bit, SNR 可达 90dB;
- 支持单端、差分的 MIC 输入和 line-in 输入;
- 支持 ALC 自动增益控制;
- 采样率支持: 8k/12k/16k/24k/32k/44.1k/48k;

3.8 增强型脉冲宽度调制输出(EPWM)

3.8.1 简介

EPWM(增强型脉冲宽度调制输出)是一种比普通 PWM 更为复杂的脉冲宽度调制技术,具有更多功能和配置选项。它能够实现反向、斩波、低电平或高电平指定相位等特殊功能,广泛应用于工业及消费类电子领域电源控制器件,例如电机控制、开关电源等。

每个 EPWM 由 2 路 PWM 输出组成,分别为引脚 PWMN 和 PWMP,且这一对 PWM 输出可单独当作普通 PWM 使用,或者互补 PWM 波输出,或者自定义的 PWM 输出。

3.8.2 特性

- 一个频率可控的 16-bit 计数器;
- 支持外部或软件通过 TBCTL 寄存器配置计数器的开始或结束;

删除[liuxiaofei]: 控制

● <u>支持</u>一对多<u>种</u>模式的 PWM 输出:中心对称 PWM 输出;边沿对称 PWM 输出;边沿对称 PWM 输出;边

● 支持初始相位通过 TBPHS 寄存器配置;

● 16-bit 死区时间, <u>支持</u>上升沿或下降沿的延迟时间<u>通过</u>DBRED 或 DBFED 寄存器配置; _

● 外设刹车命令到来时,PWM输出通过TZSEL寄存器可配置为高电平、低电平、 高阻态: 删除[liuxiaofei]: 支持可调

删除[liuxiaofei]: 可单独调节

删除[liuxiaofei]: 可将

删除[liuxiaofei]: 强制成

删除[liuxiaofei]: 软件触发 CPU 中断

3.8.3 配置值说明

EPWM 的核心配置参数包括 TBPRD、ZERO、CMPA 和 CMPB。其中 TBPRD 定义了 PWM 波的周期长度,CMPA 和 CMPB 则用于设置占空比。通过配置这些参数,可控制 PWM 波的频率和占空比。

- TBPRD: 计数周期值(>0),配置宽度最大为16位,通过 AQCTLA或 AQCTLB寄存器配置计数到TBPRD值时产生拉高、拉低或不变等动作;
- ZERO: 计数周期值(=0), 通过 AQCTLA 或 AQCTLB 寄存器配置计数到 ZERO 值 时产生拉高、拉低或不变等动作;
- CMPA: 计数比较值 A, 配置宽度最大为 16 位, 通过 AQCTLA 或 AQCTLB 寄存器 配置计数到 CMPA 值时产生拉高、拉低或不变等动作:
- CMPB: 计数比较值 B, 配置宽度最大为 16 位, 通过 AQCTLA 或 AQCTLB 寄存器 配置计数到 CMPB 值时产生拉高、拉低或不变等动作;

3.8.4 计数模式

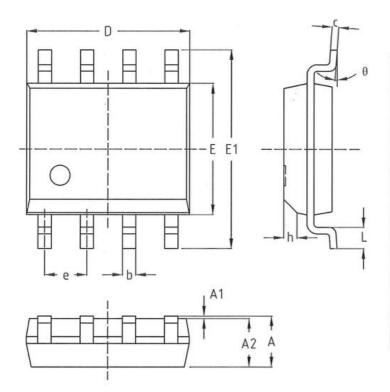
EPWM 支持三种计数模式: 递增模式、递减模式和增减模式。不同的计数模式适用于不同的应用场景。

- 递增模式: 计数器每个周期均是从 0 递增到 TBPRD。1 个 TBPRD 周期就能输出 1 周期 PWM, 支持通过 TBCTR 寄存器配置;
- 递减模式: 计数器每个周期均是从 TBPRD 递减到 0。1 个 TBPRD 周期就能输出 1 周期 PWM, 支持通过 TBCTR 寄存器配置;
- 增减模式: 计数器在奇数周期从 0 向 TBPRD 递增,在偶数周期从 TBPRD 递减到 0。2 个 TBPRD 周期就能输出 1 周期 PWM,支持通过 TBCTR 寄存器配置;

3.8.5 使用方法

EPWM 可通过配置输出多种不同的波形,例如 50%占空比 PWM 波、低电平占空比 PWM 波等。若要得到所需波形,首先需要配置 TBPRD、CMPA、CMPB 的值,并指定 其计数模式,再配置计数器计数到 TBPRD、ZERO、CMPA、CMPB 值时分别产生什么 动作,最终就能输出所需的波形。在该过程中,允许配置 CMPA= CMPB,或者 CMPA> CMPB,或者 CMPA<CMPB。

4 电气特性

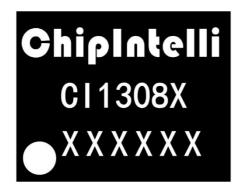

表 3: 电气特性表

符号	描述	最小值	典型值	最大值	单位
VIN5V	芯片供电输入 *Note4*	3.6	5.0	5. 5	V
AVDD	3. 3V电源	2.97	3. 3	3. 63	V
VDD11	1. 1V电源	0.99	1. 1	1.21	V
$V_{{\scriptscriptstyle \mathrm{IH}}}$	输入高电平 (3.0V ≤VDD33 ≤ 3.6V)	0.7×VDD33	-	VDD33+0.3	V
$V_{\scriptscriptstyle \mathrm{IL}}$	输入低电平 (3.0V ≤ VDD33 ≤ 3.6V)	-0.3	-	0. 3×VDD33	V
V_{oL}	输出低电平 @I _{OL} = 12mA	_	ı	0.4	V
V_{OH}	输出高电平 @I _M = 20mA	2.4	=	_	V
I5V-10	5V耐压I0口输出3.3V时驱动电流	20	=	33	mA
I 3v3-10	3.3V耐压I0口输出3.3V时驱动电流	14	-	24	mA
Σ IVDD	芯片所有10总电流之和	_	-	90	mA
Pde	芯片采用5V供电且VDD11采用外部 供给1.1V状态,正常识别时5V电源 的总功耗(TA=25°C)	40	-	90	mW
Pdi	芯片采用5V供电且系统采用内部 LD0供电,正常识别时5V输入的总功 耗(TA=25°C)	125	-	255	mW
RC振荡 器精度 *Note5*	Ta: -40°C∼+85°C	-1.5	=	+1.5	%
Тор	芯片工作环境温度	-40	-	+85	$^{\circ}\!\mathbb{C}$
Tst	芯片储存环境温度	-55	-	+150	°C

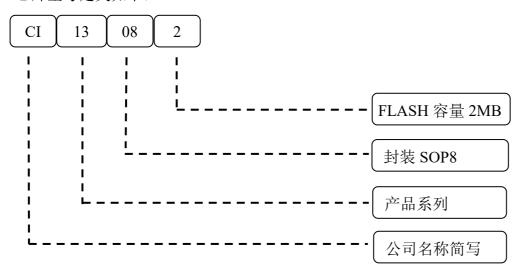
Note4:要求纹波小于 300mVp-p。

Note5:半导体技术原理及特性的原因,芯片内置的 RC 振荡器在高低温环境中,其振荡频率精度会产生一定的温漂(±1.5%),CI13082 内置波特率自适应电路,可支持在高低温环境中芯片与上位机的正常通讯。若应用方案要求芯片的时钟需要非常精确,请采用我司配置有外置晶振的芯片及相应的应用方案。

5 封装信息



	机械万	マサ/mm			
	Dimer	nsions	100		
字符 SYMBOL	最小值 MIN	典型值 NOMINAL	最大值 MAX		
Α	-	-	1.75		
A1	0.10	0.15	0.25		
A2	1.35	1.45	1.55		
b	0.35	-	0.50		
c	0.19	-	0.25		
D	4.80	4.90	5.00		
Ε	3.80	3.90	4.00		
E1	5.80	6.00	6.20		
e 1.27 BSC					
h	0.30	-	0.50		
L	0.50	-	0.80		
θ	0.	_	8°		


图 9:封装尺寸

6 订购信息

CI13082 芯片封装 MRAK 如下图,第一行为公司 LOG,第二行为芯片型号,第三行为生产批次号,左下角圆点为1 脚标识。

芯片型号定义如下:

CI13082 芯片订购信息见表 5-1。

表 4: CI13082 芯片订购信息表

产品型号	封装形式	基本包装	管装数量	出厂标准包装	标准包装数量
CI13082	SOP8	管装	100pcs	盒装	20000pcs (200 管/盒)

7 应用方案

7.1 应用参考电路图

CI13082 芯片需少量外围仅器件,即可开发出支持各类语音应用的终端产品方案。 CI13082 支持单麦克风单端输入。应用方案设计可根据方案所需的功能、功耗和成本等需求 因素,选择适合的电路设计方案。

以下以 CI13082 的典型应用方案为例,介绍应用方案设计的要点和注意事项

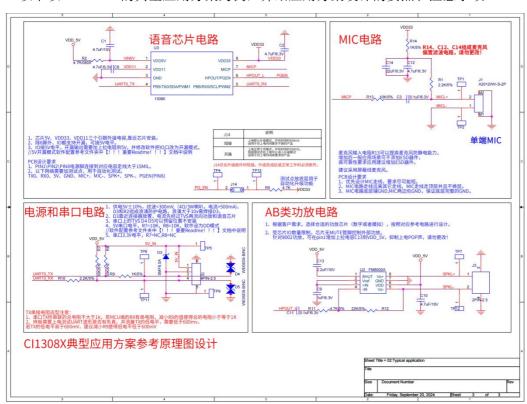


图 10: CI1308X 典型应用方案参考电路图

上图为包括 CI13082 在内的 CI1308X 系列芯片,单麦克风单端输入和功放输出的典型应用方案的参考设计电路图,该设计不局限于匹配某个具体的终端产品。应用方案的设计应基于适配上位机终端产品的原则,根据终端产品的功能和性能需求,前往启英泰伦文档中心和AI 平台下载参考原理图和参考 PCB 图。文档中心链接 https://document.chipintelli.com

应用方案设计时若需预留板级升级功能,可以将 UARTO 引脚以插座或测试点的方式引出,以便于 PCB 板贴片完成后通过 UARTO 烧写或升级固件。

CI13082 的 HPOUT/PGEN 管脚在芯片内部预置有下拉电阻,上电时系统将检测该引脚是 否被外部上拉电阻拉高为 3.3V 高电平,若是高电平且检测 UARTO 引脚有外部输入的升级信 号,系统即进入升级模式。若该引脚外部未接上拉电阻,芯片上电时可跳过升级模式检测环 节直接进入正常启动模式,以实现系统的快速开机。若应用方案有快速开机需求,可将 HPOUT/PGEN 管脚引出,预留一跳线,然后接一个 4.7K Ω 的电阻上拉到 VDD33。该设计状态下系统上电时为正常功能启动模式,开机时间可缩短为 350ms 左右。若此时需要在线升级,可通过短接跳线或短接跳线两端的测试点将 PGEN 管脚拉为 3.3V 高电平,即可通过 UARTO口升级;若应用方案无快速开机需求,可通过 4.7K Ω 电阻将 PGEN 直接拉高。具体实施方案请参照参考应用图原图或咨询我司的 FAE,PGEN 两种工作模式如下表:

PG_EN 工作模式图示	J14 安装情 况	PG_EN 高低电 平	开机时间
TP4 TP13 TP13 TP13 TP13 TP13 TP13 TP13 TP13	短接	高电平,升级模式	850ms
TP4 TP13 TP13 TP13 TP13 TP13 TP13 TP13 TP13	开路	低电平,工作模式	350ms

表 5: CI1308X 升级模式表

CI13082 芯片无 MICBIAS 脚,麦克风供电采用外部 3.3V,推荐采用图 10 中的供电设计,由 R14、C12、C14 构成的滤波电路不可更改。

CI13082 仅支持单端麦克风输入,推荐采用图 10 中的麦克风设计,且线长小于 20 厘米。该典型应用方案的功放配置为 AB 类功放,推荐采用 8002 系列功放。若不需要语音播报功能,可去除该部分电路以降低方案成本。功放 MUTE 功能请参考参考图 10。

CI13082 的 UART 口可支持 5V 电平通讯。应用方案若需外接 5V 通讯电平,推荐采用图 6-1 中的串口设计,在 UARTO 的 RX 和 TX 引脚外围增加 5V 上拉电阻即可,无需配置电平转换电路。

7.2 其它应用注意事项

1. CI13082 采用无铅环保材料制造,SMT 焊接时请按照无铅标准设置炉温和时间参数。如

下图

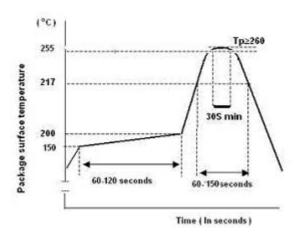


图 11: 炉温曲线图

2. CI13082 的取用、搬运、生产加工等过程需注意采取防静电措施,其包装需采用防静电材料。

8 修订历史

表 6: 修订历史

修订版本	修订内容	修订日期
1.0	初始版本	2024.06.19
1.1	1、增加接口部分描述	2025.07.03
_		

- 启英泰伦保留对本说明书的解释权和更改权,如有更改恕不另行通知!客户在应用设计前应获取 最新版本资料,并验证相关信息是否准确和完整。
- 任何半导体产品在特定条件下都有发生失效或故障的可能,芯片应用方有责任在使用本产品进行系统设计和整机制造时,遵守安全标准并采取安全防护措施,以避免可能的产品失效造成人身伤害或财产损失!
- 启英泰伦将竭诚为客户提供更好的产品和更优质的服务!